embassy/embassy-nrf/src/rng.rs

219 lines
6.5 KiB
Rust
Raw Normal View History

use core::cell::RefCell;
use core::convert::Infallible;
use core::future::Future;
use core::marker::PhantomData;
use core::ptr::NonNull;
use core::task::Poll;
use core::task::Waker;
use embassy::interrupt::InterruptExt;
use embassy::traits;
use embassy::util::CriticalSectionMutex;
use embassy::util::OnDrop;
use embassy::util::Unborrow;
use embassy_extras::unborrow;
use futures::future::poll_fn;
use rand_core::RngCore;
use crate::interrupt;
use crate::pac;
use crate::peripherals::RNG;
impl RNG {
fn regs() -> &'static pac::rng::RegisterBlock {
unsafe { &*pac::RNG::ptr() }
}
}
static STATE: CriticalSectionMutex<RefCell<State>> =
CriticalSectionMutex::new(RefCell::new(State {
buffer: None,
waker: None,
index: 0,
}));
struct State {
buffer: Option<NonNull<[u8]>>,
waker: Option<Waker>,
index: usize,
}
// SAFETY: `NonNull` is `!Send` because of the possibility of it being aliased.
// However, `buffer` is only used within `on_interrupt`,
// and the original `&mut` passed to `fill_bytes` cannot be used because the safety contract of `Rng::new`
// means that it must still be borrowed by `RngFuture`, and so `rustc` will not let it be accessed.
unsafe impl Send for State {}
/// A wrapper around an nRF RNG peripheral.
///
/// It has a non-blocking API, through `embassy::traits::Rng`, and a blocking api through `rand`.
pub struct Rng<'d> {
irq: interrupt::RNG,
phantom: PhantomData<(&'d mut RNG, &'d mut interrupt::RNG)>,
}
impl<'d> Rng<'d> {
/// Creates a new RNG driver from the `RNG` peripheral and interrupt.
///
/// SAFETY: The future returned from `fill_bytes` must not have its lifetime end without running its destructor,
/// e.g. using `mem::forget`.
///
/// The synchronous API is safe.
pub unsafe fn new(
_rng: impl Unborrow<Target = RNG> + 'd,
irq: impl Unborrow<Target = interrupt::RNG> + 'd,
) -> Self {
unborrow!(irq);
let this = Self {
irq,
phantom: PhantomData,
};
Self::stop();
this.disable_irq();
this.irq.set_handler(Self::on_interrupt);
this.irq.unpend();
this.irq.enable();
this
}
fn on_interrupt(_: *mut ()) {
critical_section::with(|cs| {
let mut state = STATE.borrow(cs).borrow_mut();
// SAFETY: the safety requirements on `Rng::new` make sure that the original `&mut`'s lifetime is still valid,
// meaning it can't be aliased and is a valid pointer.
let buffer = unsafe { state.buffer.unwrap().as_mut() };
buffer[state.index] = RNG::regs().value.read().value().bits();
state.index += 1;
if state.index == buffer.len() {
// Stop the RNG within the interrupt so that it doesn't get triggered again on the way to waking the future.
Self::stop();
if let Some(waker) = state.waker.take() {
waker.wake();
}
}
RNG::regs().events_valrdy.reset();
});
}
fn stop() {
RNG::regs().tasks_stop.write(|w| unsafe { w.bits(1) })
}
fn start(&self) {
RNG::regs().tasks_start.write(|w| unsafe { w.bits(1) })
}
fn enable_irq(&self) {
RNG::regs().intenset.write(|w| w.valrdy().set());
}
fn disable_irq(&self) {
RNG::regs().intenclr.write(|w| w.valrdy().clear());
}
/// Enable or disable the RNG's bias correction.
///
/// Bias correction removes any bias towards a '1' or a '0' in the bits generated.
/// However, this makes the generation of numbers slower.
///
/// Defaults to disabled.
pub fn bias_correction(&self, enable: bool) {
RNG::regs().config.write(|w| w.dercen().bit(enable))
}
}
impl<'d> Drop for Rng<'d> {
fn drop(&mut self) {
self.irq.disable()
}
}
impl<'d> traits::rng::Rng for Rng<'d> {
type Error = Infallible;
#[rustfmt::skip] // For some reason rustfmt removes the where clause
type RngFuture<'a> where 'd: 'a = impl Future<Output = Result<(), Self::Error>> + 'a;
fn fill_bytes<'a>(&'a mut self, dest: &'a mut [u8]) -> Self::RngFuture<'a> {
async move {
critical_section::with(|cs| {
let mut state = STATE.borrow(cs).borrow_mut();
state.buffer = Some(dest.into());
});
2021-06-29 23:45:49 +00:00
self.enable_irq();
self.start();
let on_drop = OnDrop::new(|| {
Self::stop();
self.disable_irq();
});
poll_fn(|cx| {
critical_section::with(|cs| {
let mut state = STATE.borrow(cs).borrow_mut();
state.waker = Some(cx.waker().clone());
// SAFETY: see safety message in interrupt handler.
// Also, both here and in the interrupt handler, we're in a critical section,
// so they can't interfere with each other.
let buffer = unsafe { state.buffer.unwrap().as_ref() };
if state.index == buffer.len() {
// Reset the state for next time
state.buffer = None;
state.index = 0;
Poll::Ready(())
} else {
Poll::Pending
}
})
})
.await;
// Trigger the teardown
drop(on_drop);
Ok(())
}
}
}
impl<'d> RngCore for Rng<'d> {
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.start();
for byte in dest.iter_mut() {
let regs = RNG::regs();
while regs.events_valrdy.read().bits() == 0 {}
regs.events_valrdy.reset();
*byte = regs.value.read().value().bits();
}
Self::stop();
}
fn next_u32(&mut self) -> u32 {
let mut bytes = [0; 4];
self.fill_bytes(&mut bytes);
// We don't care about the endianness, so just use the native one.
u32::from_ne_bytes(bytes)
}
fn next_u64(&mut self) -> u64 {
let mut bytes = [0; 8];
self.fill_bytes(&mut bytes);
u64::from_ne_bytes(bytes)
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> {
self.fill_bytes(dest);
Ok(())
}
}
// TODO: Should `Rng` implement `CryptoRng`? It's 'suitable for cryptographic purposes' according to the specification.