stm32/rcc: unify f0, f1, f3.

This commit is contained in:
Dario Nieuwenhuis 2024-02-14 00:10:59 +01:00
parent ccd2c574c3
commit 1860e22693
6 changed files with 137 additions and 525 deletions

View file

@ -68,7 +68,7 @@ rand_core = "0.6.3"
sdio-host = "0.5.0"
critical-section = "1.1"
#stm32-metapac = { version = "15" }
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-7734584b2007766b1c5a6a7f2654fdb442fa211a" }
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-3cc1a1603e61881a6f0a1a47c12c16c57c245ba8" }
vcell = "0.1.3"
bxcan = "0.7.0"
nb = "1.0.0"
@ -89,7 +89,7 @@ critical-section = { version = "1.1", features = ["std"] }
proc-macro2 = "1.0.36"
quote = "1.0.15"
#stm32-metapac = { version = "15", default-features = false, features = ["metadata"]}
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-7734584b2007766b1c5a6a7f2654fdb442fa211a", default-features = false, features = ["metadata"]}
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-3cc1a1603e61881a6f0a1a47c12c16c57c245ba8", default-features = false, features = ["metadata"]}
[features]

View file

@ -1,232 +0,0 @@
use crate::pac::flash::vals::Latency;
use crate::pac::rcc::vals::Pllsrc;
pub use crate::pac::rcc::vals::{
Hpre as AHBPrescaler, Pllmul as PllMul, Ppre as APBPrescaler, Prediv as PllPreDiv, Sw as Sysclk,
};
use crate::pac::{FLASH, RCC};
use crate::time::Hertz;
/// HSI speed
pub const HSI_FREQ: Hertz = Hertz(8_000_000);
#[derive(Clone, Copy, Eq, PartialEq)]
pub enum HseMode {
/// crystal/ceramic oscillator (HSEBYP=0)
Oscillator,
/// external analog clock (low swing) (HSEBYP=1)
Bypass,
}
#[derive(Clone, Copy, Eq, PartialEq)]
pub struct Hse {
/// HSE frequency.
pub freq: Hertz,
/// HSE mode.
pub mode: HseMode,
}
#[derive(Clone, Copy, Eq, PartialEq)]
pub enum PllSource {
HSE,
HSI,
#[cfg(rcc_f0v4)]
HSI48,
}
#[derive(Clone, Copy)]
pub struct Pll {
pub src: PllSource,
/// PLL pre-divider.
///
/// On some chips, this must be 2 if `src == HSI`. Init will panic if this is not the case.
pub prediv: PllPreDiv,
/// PLL multiplication factor.
pub mul: PllMul,
}
/// Clocks configutation
#[non_exhaustive]
pub struct Config {
pub hsi: bool,
pub hse: Option<Hse>,
#[cfg(crs)]
pub hsi48: Option<super::Hsi48Config>,
pub sys: Sysclk,
pub pll: Option<Pll>,
pub ahb_pre: AHBPrescaler,
pub apb1_pre: APBPrescaler,
pub ls: super::LsConfig,
}
impl Default for Config {
fn default() -> Self {
Self {
hsi: true,
hse: None,
#[cfg(crs)]
hsi48: Some(Default::default()),
sys: Sysclk::HSI,
pll: None,
ahb_pre: AHBPrescaler::DIV1,
apb1_pre: APBPrescaler::DIV1,
ls: Default::default(),
}
}
}
/// Initialize and Set the clock frequencies
pub(crate) unsafe fn init(config: Config) {
// Configure HSI
let hsi = match config.hsi {
false => {
RCC.cr().modify(|w| w.set_hsion(false));
None
}
true => {
RCC.cr().modify(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
Some(HSI_FREQ)
}
};
// Configure HSE
let hse = match config.hse {
None => {
RCC.cr().modify(|w| w.set_hseon(false));
None
}
Some(hse) => {
match hse.mode {
HseMode::Bypass => assert!(max::HSE_BYP.contains(&hse.freq)),
HseMode::Oscillator => assert!(max::HSE_OSC.contains(&hse.freq)),
}
RCC.cr().modify(|w| w.set_hsebyp(hse.mode != HseMode::Oscillator));
RCC.cr().modify(|w| w.set_hseon(true));
while !RCC.cr().read().hserdy() {}
Some(hse.freq)
}
};
// configure HSI48
#[cfg(crs)]
let hsi48 = config.hsi48.map(|config| super::init_hsi48(config));
#[cfg(not(crs))]
let hsi48: Option<Hertz> = None;
// Enable PLL
let pll = config.pll.map(|pll| {
let (src_val, src_freq) = match pll.src {
#[cfg(not(any(rcc_f0v1, rcc_f0v2)))]
PllSource::HSI => (Pllsrc::HSI_DIV_PREDIV, unwrap!(hsi)),
#[cfg(any(rcc_f0v1, rcc_f0v2))]
PllSource::HSI => {
if pll.prediv != PllPreDiv::DIV2 {
panic!("if PLL source is HSI, PLL prediv must be 2.");
}
(Pllsrc::HSI_DIV2, unwrap!(hsi))
}
PllSource::HSE => (Pllsrc::HSE_DIV_PREDIV, unwrap!(hse)),
#[cfg(rcc_f0v4)]
PllSource::HSI48 => (Pllsrc::HSI48_DIV_PREDIV, unwrap!(hsi48)),
};
let in_freq = src_freq / pll.prediv;
assert!(max::PLL_IN.contains(&in_freq));
let out_freq = in_freq * pll.mul;
assert!(max::PLL_OUT.contains(&out_freq));
RCC.cfgr2().modify(|w| w.set_prediv(pll.prediv));
RCC.cfgr().modify(|w| {
w.set_pllmul(pll.mul);
w.set_pllsrc(src_val);
});
RCC.cr().modify(|w| w.set_pllon(true));
while !RCC.cr().read().pllrdy() {}
out_freq
});
// Configure sysclk
let sys = match config.sys {
Sysclk::HSI => unwrap!(hsi),
Sysclk::HSE => unwrap!(hse),
Sysclk::PLL1_P => unwrap!(pll),
#[cfg(rcc_f0v4)]
Sysclk::HSI48 => unwrap!(hsi48),
#[allow(unreachable_patterns)]
_ => unreachable!(),
};
let hclk = sys / config.ahb_pre;
let (pclk1, pclk1_tim) = super::util::calc_pclk(hclk, config.apb1_pre);
assert!(max::HCLK.contains(&hclk));
assert!(max::PCLK1.contains(&pclk1));
// Set latency based on HCLK frquency
let latency = match hclk.0 {
..=24_000_000 => Latency::WS0,
_ => Latency::WS1,
};
FLASH.acr().modify(|w| {
w.set_latency(latency);
w.set_prftbe(true);
});
// Set prescalers
// CFGR has been written before (PLL, PLL48) don't overwrite these settings
RCC.cfgr().modify(|w| {
w.set_ppre(config.apb1_pre);
w.set_hpre(config.ahb_pre);
});
// Wait for the new prescalers to kick in
// "The clocks are divided with the new prescaler factor from
// 1 to 16 AHB cycles after write"
cortex_m::asm::delay(16);
// CFGR has been written before (PLL, PLL48, clock divider) don't overwrite these settings
RCC.cfgr().modify(|w| w.set_sw(config.sys));
while RCC.cfgr().read().sws() != config.sys {}
let rtc = config.ls.init();
set_clocks!(
hsi: hsi,
hse: hse,
pll1_p: pll,
sys: Some(sys),
pclk1: Some(pclk1),
pclk2: Some(pclk1),
pclk1_tim: Some(pclk1_tim),
pclk2_tim: Some(pclk1_tim),
hclk1: Some(hclk),
#[cfg(all(not(rcc_f37), adc3_common))]
adc34: Some(adc34),
#[cfg(stm32f334)]
hrtim: hrtim,
hsi48: hsi48,
rtc: rtc,
lse: None,
);
}
mod max {
use core::ops::RangeInclusive;
use crate::time::Hertz;
pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(4_000_000)..=Hertz(32_000_000);
pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(32_000_000);
pub(crate) const HCLK: RangeInclusive<Hertz> = Hertz(0)..=Hertz(48_000_000);
pub(crate) const PCLK1: RangeInclusive<Hertz> = Hertz(0)..=Hertz(48_000_000);
pub(crate) const PLL_IN: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(24_000_000);
pub(crate) const PLL_OUT: RangeInclusive<Hertz> = Hertz(16_000_000)..=Hertz(48_000_000);
}

View file

@ -1,9 +1,14 @@
use crate::pac::flash::vals::Latency;
pub use crate::pac::rcc::vals::{
Adcpres as AdcPllPrescaler, Hpre as AHBPrescaler, Pllmul as PllMul, Ppre as APBPrescaler, Prediv as PllPreDiv,
Sw as Sysclk,
};
use crate::pac::rcc::vals::{Pllsrc, Usbpre};
#[cfg(stm32f1)]
pub use crate::pac::rcc::vals::Adcpre as ADCPrescaler;
#[cfg(stm32f3)]
pub use crate::pac::rcc::vals::Adcpres as AdcPllPrescaler;
use crate::pac::rcc::vals::Pllsrc;
#[cfg(stm32f1)]
pub use crate::pac::rcc::vals::Pllxtpre as PllPreDiv;
#[cfg(any(stm32f0, stm32f3))]
pub use crate::pac::rcc::vals::Prediv as PllPreDiv;
pub use crate::pac::rcc::vals::{Hpre as AHBPrescaler, Pllmul as PllMul, Ppre as APBPrescaler, Sw as Sysclk};
use crate::pac::{FLASH, RCC};
use crate::time::Hertz;
@ -30,6 +35,8 @@ pub struct Hse {
pub enum PllSource {
HSE,
HSI,
#[cfg(rcc_f0v4)]
HSI48,
}
#[derive(Clone, Copy)]
@ -38,19 +45,21 @@ pub struct Pll {
/// PLL pre-divider.
///
/// On some F3 chips, this must be 2 if `src == HSI`. Init will panic if this is not the case.
/// On some chips, this must be 2 if `src == HSI`. Init will panic if this is not the case.
pub prediv: PllPreDiv,
/// PLL multiplication factor.
pub mul: PllMul,
}
#[cfg(all(stm32f3, not(rcc_f37)))]
#[derive(Clone, Copy)]
pub enum AdcClockSource {
Pll(AdcPllPrescaler),
Hclk(AdcHclkPrescaler),
}
#[cfg(all(stm32f3, not(rcc_f37)))]
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum AdcHclkPrescaler {
Div1,
@ -58,6 +67,7 @@ pub enum AdcHclkPrescaler {
Div4,
}
#[cfg(stm32f334)]
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum HrtimClockSource {
BusClk,
@ -69,17 +79,23 @@ pub enum HrtimClockSource {
pub struct Config {
pub hsi: bool,
pub hse: Option<Hse>,
#[cfg(crs)]
pub hsi48: Option<super::Hsi48Config>,
pub sys: Sysclk,
pub pll: Option<Pll>,
pub ahb_pre: AHBPrescaler,
pub apb1_pre: APBPrescaler,
#[cfg(not(stm32f0))]
pub apb2_pre: APBPrescaler,
#[cfg(not(rcc_f37))]
#[cfg(stm32f1)]
pub adc_pre: ADCPrescaler,
#[cfg(all(stm32f3, not(rcc_f37)))]
pub adc: AdcClockSource,
#[cfg(all(not(rcc_f37), adc3_common))]
#[cfg(all(stm32f3, not(rcc_f37), adc3_common))]
pub adc34: AdcClockSource,
#[cfg(stm32f334)]
pub hrtim: HrtimClockSource,
@ -92,16 +108,24 @@ impl Default for Config {
Self {
hsi: true,
hse: None,
#[cfg(crs)]
hsi48: Some(Default::default()),
sys: Sysclk::HSI,
pll: None,
ahb_pre: AHBPrescaler::DIV1,
apb1_pre: APBPrescaler::DIV1,
#[cfg(not(stm32f0))]
apb2_pre: APBPrescaler::DIV1,
ls: Default::default(),
#[cfg(not(rcc_f37))]
#[cfg(stm32f1)]
// ensure ADC is not out of range by default even if APB2 is maxxed out (36mhz)
adc_pre: ADCPrescaler::DIV6,
#[cfg(all(stm32f3, not(rcc_f37)))]
adc: AdcClockSource::Hclk(AdcHclkPrescaler::Div1),
#[cfg(all(not(rcc_f37), adc3_common))]
#[cfg(all(stm32f3, not(rcc_f37), adc3_common))]
adc34: AdcClockSource::Hclk(AdcHclkPrescaler::Div1),
#[cfg(stm32f334)]
hrtim: HrtimClockSource::BusClk,
@ -143,13 +167,18 @@ pub(crate) unsafe fn init(config: Config) {
}
};
// configure HSI48
#[cfg(crs)]
let hsi48 = config.hsi48.map(|config| super::init_hsi48(config));
#[cfg(not(crs))]
let hsi48: Option<Hertz> = None;
// Enable PLL
// RM0316: "Reserved, must be kept at reset value."
let pll = config.pll.map(|pll| {
let (src_val, src_freq) = match pll.src {
#[cfg(rcc_f3v3)]
#[cfg(any(rcc_f0v3, rcc_f0v4, rcc_f3v3))]
PllSource::HSI => (Pllsrc::HSI_DIV_PREDIV, unwrap!(hsi)),
#[cfg(not(rcc_f3v3))]
#[cfg(not(any(rcc_f0v3, rcc_f0v4, rcc_f3v3)))]
PllSource::HSI => {
if pll.prediv != PllPreDiv::DIV2 {
panic!("if PLL source is HSI, PLL prediv must be 2.");
@ -157,16 +186,21 @@ pub(crate) unsafe fn init(config: Config) {
(Pllsrc::HSI_DIV2, unwrap!(hsi))
}
PllSource::HSE => (Pllsrc::HSE_DIV_PREDIV, unwrap!(hse)),
#[cfg(rcc_f0v4)]
PllSource::HSI48 => (Pllsrc::HSI48_DIV_PREDIV, unwrap!(hsi48)),
};
let in_freq = src_freq / pll.prediv;
assert!(max::PLL_IN.contains(&in_freq));
let out_freq = in_freq * pll.mul;
assert!(max::PLL_OUT.contains(&out_freq));
#[cfg(not(stm32f1))]
RCC.cfgr2().modify(|w| w.set_prediv(pll.prediv));
RCC.cfgr().modify(|w| {
w.set_pllmul(pll.mul);
w.set_pllsrc(src_val);
#[cfg(stm32f1)]
w.set_pllxtpre(pll.prediv);
});
RCC.cr().modify(|w| w.set_pllon(true));
while !RCC.cr().read().pllrdy() {}
@ -174,17 +208,16 @@ pub(crate) unsafe fn init(config: Config) {
out_freq
});
#[cfg(any(rcc_f1, rcc_f1cl, stm32f3))]
let usb = match pll {
Some(Hertz(72_000_000)) => {
RCC.cfgr().modify(|w| w.set_usbpre(Usbpre::DIV1_5));
Some(Hertz(48_000_000))
}
Some(Hertz(48_000_000)) => {
RCC.cfgr().modify(|w| w.set_usbpre(Usbpre::DIV1));
Some(Hertz(48_000_000))
}
Some(Hertz(72_000_000)) => Some(crate::pac::rcc::vals::Usbpre::DIV1_5),
Some(Hertz(48_000_000)) => Some(crate::pac::rcc::vals::Usbpre::DIV1),
_ => None,
};
}
.map(|usbpre| {
RCC.cfgr().modify(|w| w.set_usbpre(usbpre));
Hertz(48_000_000)
});
// Configure sysclk
let sys = match config.sys {
@ -196,13 +229,28 @@ pub(crate) unsafe fn init(config: Config) {
let hclk = sys / config.ahb_pre;
let (pclk1, pclk1_tim) = super::util::calc_pclk(hclk, config.apb1_pre);
#[cfg(not(stm32f0))]
let (pclk2, pclk2_tim) = super::util::calc_pclk(hclk, config.apb2_pre);
#[cfg(stm32f0)]
let (pclk2, pclk2_tim) = (pclk1, pclk1_tim);
assert!(max::HCLK.contains(&hclk));
assert!(max::PCLK1.contains(&pclk1));
#[cfg(not(stm32f0))]
assert!(max::PCLK2.contains(&pclk2));
#[cfg(stm32f1)]
let adc = pclk2 / config.adc_pre;
#[cfg(stm32f1)]
assert!(max::ADC.contains(&adc));
// Set latency based on HCLK frquency
#[cfg(stm32f0)]
let latency = match hclk.0 {
..=24_000_000 => Latency::WS0,
_ => Latency::WS1,
};
#[cfg(any(stm32f1, stm32f3))]
let latency = match hclk.0 {
..=24_000_000 => Latency::WS0,
..=48_000_000 => Latency::WS1,
@ -213,18 +261,28 @@ pub(crate) unsafe fn init(config: Config) {
// RM0316: "The prefetch buffer must be kept on when using a prescaler
// different from 1 on the AHB clock.", "Half-cycle access cannot be
// used when there is a prescaler different from 1 on the AHB clock"
#[cfg(stm32f3)]
if config.ahb_pre != AHBPrescaler::DIV1 {
w.set_hlfcya(false);
w.set_prftbe(true);
}
#[cfg(not(stm32f3))]
w.set_prftbe(true);
});
// Set prescalers
// CFGR has been written before (PLL, PLL48) don't overwrite these settings
RCC.cfgr().modify(|w| {
w.set_ppre1(config.apb1_pre);
w.set_ppre2(config.apb2_pre);
RCC.cfgr().modify(|w: &mut stm32_metapac::rcc::regs::Cfgr| {
#[cfg(not(stm32f0))]
{
w.set_ppre1(config.apb1_pre);
w.set_ppre2(config.apb2_pre);
}
#[cfg(stm32f0)]
w.set_ppre(config.apb1_pre);
w.set_hpre(config.ahb_pre);
#[cfg(stm32f1)]
w.set_adcpre(config.adc_pre);
});
// Wait for the new prescalers to kick in
@ -238,10 +296,10 @@ pub(crate) unsafe fn init(config: Config) {
let rtc = config.ls.init();
#[cfg(not(rcc_f37))]
#[cfg(all(stm32f3, not(rcc_f37)))]
use crate::pac::adccommon::vals::Ckmode;
#[cfg(not(rcc_f37))]
#[cfg(all(stm32f3, not(rcc_f37)))]
let adc = match config.adc {
AdcClockSource::Pll(adcpres) => {
RCC.cfgr2().modify(|w| w.set_adc12pres(adcpres));
@ -265,7 +323,7 @@ pub(crate) unsafe fn init(config: Config) {
}
};
#[cfg(all(not(rcc_f37), adc3_common))]
#[cfg(all(stm32f3, not(rcc_f37), adc3_common))]
let adc34 = match config.adc34 {
AdcClockSource::Pll(adcpres) => {
RCC.cfgr2().modify(|w| w.set_adc34pres(adcpres));
@ -316,18 +374,63 @@ pub(crate) unsafe fn init(config: Config) {
pclk1_tim: Some(pclk1_tim),
pclk2_tim: Some(pclk2_tim),
hclk1: Some(hclk),
#[cfg(not(rcc_f37))]
#[cfg(all(stm32f3, not(rcc_f37)))]
adc: Some(adc),
#[cfg(all(not(rcc_f37), adc3_common))]
#[cfg(all(stm32f3, not(rcc_f37), adc3_common))]
adc34: Some(adc34),
#[cfg(stm32f334)]
hrtim: hrtim,
rtc: rtc,
hsi48: hsi48,
#[cfg(any(rcc_f1, rcc_f1cl, stm32f3))]
usb: usb,
lse: None,
);
}
#[cfg(stm32f0)]
mod max {
use core::ops::RangeInclusive;
use crate::time::Hertz;
pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(4_000_000)..=Hertz(32_000_000);
pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(32_000_000);
pub(crate) const HCLK: RangeInclusive<Hertz> = Hertz(0)..=Hertz(48_000_000);
pub(crate) const PCLK1: RangeInclusive<Hertz> = Hertz(0)..=Hertz(48_000_000);
pub(crate) const PLL_IN: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(24_000_000);
pub(crate) const PLL_OUT: RangeInclusive<Hertz> = Hertz(16_000_000)..=Hertz(48_000_000);
}
#[cfg(stm32f1)]
mod max {
use core::ops::RangeInclusive;
use crate::time::Hertz;
#[cfg(not(rcc_f1cl))]
pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(4_000_000)..=Hertz(16_000_000);
#[cfg(not(rcc_f1cl))]
pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(25_000_000);
#[cfg(rcc_f1cl)]
pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(3_000_000)..=Hertz(25_000_000);
#[cfg(rcc_f1cl)]
pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(50_000_000);
pub(crate) const HCLK: RangeInclusive<Hertz> = Hertz(0)..=Hertz(72_000_000);
pub(crate) const PCLK1: RangeInclusive<Hertz> = Hertz(0)..=Hertz(36_000_000);
pub(crate) const PCLK2: RangeInclusive<Hertz> = Hertz(0)..=Hertz(72_000_000);
pub(crate) const PLL_IN: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(25_000_000);
pub(crate) const PLL_OUT: RangeInclusive<Hertz> = Hertz(16_000_000)..=Hertz(72_000_000);
pub(crate) const ADC: RangeInclusive<Hertz> = Hertz(0)..=Hertz(14_000_000);
}
#[cfg(stm32f3)]
mod max {
use core::ops::RangeInclusive;

View file

@ -1,257 +0,0 @@
use crate::pac::flash::vals::Latency;
use crate::pac::rcc::vals::Pllsrc;
#[cfg(any(rcc_f1, rcc_f1cl))]
use crate::pac::rcc::vals::Usbpre;
pub use crate::pac::rcc::vals::{
Adcpre as ADCPrescaler, Hpre as AHBPrescaler, Pllmul as PllMul, Pllxtpre as PllPreDiv, Ppre as APBPrescaler,
Sw as Sysclk,
};
use crate::pac::{FLASH, RCC};
use crate::time::Hertz;
/// HSI speed
pub const HSI_FREQ: Hertz = Hertz(8_000_000);
#[derive(Clone, Copy, Eq, PartialEq)]
pub enum HseMode {
/// crystal/ceramic oscillator (HSEBYP=0)
Oscillator,
/// external analog clock (low swing) (HSEBYP=1)
Bypass,
}
#[derive(Clone, Copy, Eq, PartialEq)]
pub struct Hse {
/// HSE frequency.
pub freq: Hertz,
/// HSE mode.
pub mode: HseMode,
}
#[derive(Clone, Copy, Eq, PartialEq)]
pub enum PllSource {
HSE,
HSI,
}
#[derive(Clone, Copy)]
pub struct Pll {
pub src: PllSource,
/// PLL pre-divider.
///
/// On some F3 chips, this must be 2 if `src == HSI`. Init will panic if this is not the case.
pub prediv: PllPreDiv,
/// PLL multiplication factor.
pub mul: PllMul,
}
/// Clocks configutation
#[non_exhaustive]
pub struct Config {
pub hsi: bool,
pub hse: Option<Hse>,
pub sys: Sysclk,
pub pll: Option<Pll>,
pub ahb_pre: AHBPrescaler,
pub apb1_pre: APBPrescaler,
pub apb2_pre: APBPrescaler,
pub adc_pre: ADCPrescaler,
pub ls: super::LsConfig,
}
impl Default for Config {
fn default() -> Self {
Self {
hsi: true,
hse: None,
sys: Sysclk::HSI,
pll: None,
ahb_pre: AHBPrescaler::DIV1,
apb1_pre: APBPrescaler::DIV1,
apb2_pre: APBPrescaler::DIV1,
ls: Default::default(),
// ensure ADC is not out of range by default even if APB2 is maxxed out (36mhz)
adc_pre: ADCPrescaler::DIV6,
}
}
}
/// Initialize and Set the clock frequencies
pub(crate) unsafe fn init(config: Config) {
// Configure HSI
let hsi = match config.hsi {
false => {
RCC.cr().modify(|w| w.set_hsion(false));
None
}
true => {
RCC.cr().modify(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
Some(HSI_FREQ)
}
};
// Configure HSE
let hse = match config.hse {
None => {
RCC.cr().modify(|w| w.set_hseon(false));
None
}
Some(hse) => {
match hse.mode {
HseMode::Bypass => assert!(max::HSE_BYP.contains(&hse.freq)),
HseMode::Oscillator => assert!(max::HSE_OSC.contains(&hse.freq)),
}
RCC.cr().modify(|w| w.set_hsebyp(hse.mode != HseMode::Oscillator));
RCC.cr().modify(|w| w.set_hseon(true));
while !RCC.cr().read().hserdy() {}
Some(hse.freq)
}
};
// Enable PLL
let pll = config.pll.map(|pll| {
let (src_val, src_freq) = match pll.src {
PllSource::HSI => {
if pll.prediv != PllPreDiv::DIV2 {
panic!("if PLL source is HSI, PLL prediv must be 2.");
}
(Pllsrc::HSI_DIV2, unwrap!(hsi))
}
PllSource::HSE => (Pllsrc::HSE_DIV_PREDIV, unwrap!(hse)),
};
let in_freq = src_freq / pll.prediv;
assert!(max::PLL_IN.contains(&in_freq));
let out_freq = in_freq * pll.mul;
assert!(max::PLL_OUT.contains(&out_freq));
RCC.cfgr().modify(|w| {
w.set_pllmul(pll.mul);
w.set_pllsrc(src_val);
w.set_pllxtpre(pll.prediv);
});
RCC.cr().modify(|w| w.set_pllon(true));
while !RCC.cr().read().pllrdy() {}
out_freq
});
#[cfg(any(rcc_f1, rcc_f1cl))]
let usb = match pll {
Some(Hertz(72_000_000)) => {
RCC.cfgr().modify(|w| w.set_usbpre(Usbpre::DIV1_5));
Some(Hertz(48_000_000))
}
Some(Hertz(48_000_000)) => {
RCC.cfgr().modify(|w| w.set_usbpre(Usbpre::DIV1));
Some(Hertz(48_000_000))
}
_ => None,
};
// Configure sysclk
let sys = match config.sys {
Sysclk::HSI => unwrap!(hsi),
Sysclk::HSE => unwrap!(hse),
Sysclk::PLL1_P => unwrap!(pll),
_ => unreachable!(),
};
let hclk = sys / config.ahb_pre;
let (pclk1, pclk1_tim) = super::util::calc_pclk(hclk, config.apb1_pre);
let (pclk2, pclk2_tim) = super::util::calc_pclk(hclk, config.apb2_pre);
assert!(max::HCLK.contains(&hclk));
assert!(max::PCLK1.contains(&pclk1));
assert!(max::PCLK2.contains(&pclk2));
let adc = pclk2 / config.adc_pre;
assert!(max::ADC.contains(&adc));
// Set latency based on HCLK frquency
let latency = match hclk.0 {
..=24_000_000 => Latency::WS0,
..=48_000_000 => Latency::WS1,
_ => Latency::WS2,
};
FLASH.acr().modify(|w| {
w.set_latency(latency);
// RM0316: "The prefetch buffer must be kept on when using a prescaler
// different from 1 on the AHB clock.", "Half-cycle access cannot be
// used when there is a prescaler different from 1 on the AHB clock"
if config.ahb_pre != AHBPrescaler::DIV1 {
w.set_hlfcya(false);
w.set_prftbe(true);
}
});
// Set prescalers
// CFGR has been written before (PLL, PLL48) don't overwrite these settings
RCC.cfgr().modify(|w| {
w.set_ppre1(config.apb1_pre);
w.set_ppre2(config.apb2_pre);
w.set_hpre(config.ahb_pre);
w.set_adcpre(config.adc_pre);
});
// Wait for the new prescalers to kick in
// "The clocks are divided with the new prescaler factor from
// 1 to 16 AHB cycles after write"
cortex_m::asm::delay(16);
// CFGR has been written before (PLL, PLL48, clock divider) don't overwrite these settings
RCC.cfgr().modify(|w| w.set_sw(config.sys));
while RCC.cfgr().read().sws() != config.sys {}
let rtc = config.ls.init();
set_clocks!(
hsi: hsi,
hse: hse,
pll1_p: pll,
sys: Some(sys),
pclk1: Some(pclk1),
pclk2: Some(pclk2),
pclk1_tim: Some(pclk1_tim),
pclk2_tim: Some(pclk2_tim),
hclk1: Some(hclk),
adc: Some(adc),
rtc: rtc,
#[cfg(any(rcc_f1, rcc_f1cl))]
usb: usb,
lse: None,
);
}
mod max {
use core::ops::RangeInclusive;
use crate::time::Hertz;
#[cfg(not(rcc_f1cl))]
pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(4_000_000)..=Hertz(16_000_000);
#[cfg(not(rcc_f1cl))]
pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(25_000_000);
#[cfg(rcc_f1cl)]
pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(3_000_000)..=Hertz(25_000_000);
#[cfg(rcc_f1cl)]
pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(50_000_000);
pub(crate) const HCLK: RangeInclusive<Hertz> = Hertz(0)..=Hertz(72_000_000);
pub(crate) const PCLK1: RangeInclusive<Hertz> = Hertz(0)..=Hertz(36_000_000);
pub(crate) const PCLK2: RangeInclusive<Hertz> = Hertz(0)..=Hertz(72_000_000);
pub(crate) const PLL_IN: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(25_000_000);
pub(crate) const PLL_OUT: RangeInclusive<Hertz> = Hertz(16_000_000)..=Hertz(72_000_000);
pub(crate) const ADC: RangeInclusive<Hertz> = Hertz(0)..=Hertz(14_000_000);
}

View file

@ -18,10 +18,8 @@ mod hsi48;
#[cfg(crs)]
pub use hsi48::*;
#[cfg_attr(stm32f0, path = "f0.rs")]
#[cfg_attr(stm32f1, path = "f1.rs")]
#[cfg_attr(stm32f3, path = "f3.rs")]
#[cfg_attr(any(stm32f2, stm32f4, stm32f7), path = "f.rs")]
#[cfg_attr(any(stm32f0, stm32f1, stm32f3), path = "f013.rs")]
#[cfg_attr(any(stm32f2, stm32f4, stm32f7), path = "f247.rs")]
#[cfg_attr(stm32c0, path = "c0.rs")]
#[cfg_attr(stm32g0, path = "g0.rs")]
#[cfg_attr(stm32g4, path = "g4.rs")]