Merge pull request #2468 from exoticorn/pio_i2s-example

add pio_i2s example for RP2040
This commit is contained in:
Dario Nieuwenhuis 2024-01-21 21:30:11 +00:00 committed by GitHub
commit 20fd03a14f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -0,0 +1,125 @@
//! This example shows generating audio and sending it to a connected i2s DAC using the PIO
//! module of the RP2040.
//!
//! Connect the i2s DAC as follows:
//! bclk : GPIO 18
//! lrc : GPIO 19
//! din : GPIO 20
//! Then hold down the boot select button to trigger a rising triangle waveform.
#![no_std]
#![no_main]
use core::mem;
use embassy_executor::Spawner;
use embassy_rp::peripherals::PIO0;
use embassy_rp::pio::{Config, FifoJoin, InterruptHandler, Pio, ShiftConfig, ShiftDirection};
use embassy_rp::{bind_interrupts, Peripheral};
use fixed::traits::ToFixed;
use static_cell::StaticCell;
use {defmt_rtt as _, panic_probe as _};
bind_interrupts!(struct Irqs {
PIO0_IRQ_0 => InterruptHandler<PIO0>;
});
const SAMPLE_RATE: u32 = 48_000;
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let mut p = embassy_rp::init(Default::default());
// Setup pio state machine for i2s output
let mut pio = Pio::new(p.PIO0, Irqs);
#[rustfmt::skip]
let pio_program = pio_proc::pio_asm!(
".side_set 2",
" set x, 14 side 0b01", // side 0bWB - W = Word Clock, B = Bit Clock
"left_data:",
" out pins, 1 side 0b00",
" jmp x-- left_data side 0b01",
" out pins 1 side 0b10",
" set x, 14 side 0b11",
"right_data:",
" out pins 1 side 0b10",
" jmp x-- right_data side 0b11",
" out pins 1 side 0b00",
);
let bit_clock_pin = p.PIN_18;
let left_right_clock_pin = p.PIN_19;
let data_pin = p.PIN_20;
let data_pin = pio.common.make_pio_pin(data_pin);
let bit_clock_pin = pio.common.make_pio_pin(bit_clock_pin);
let left_right_clock_pin = pio.common.make_pio_pin(left_right_clock_pin);
let cfg = {
let mut cfg = Config::default();
cfg.use_program(
&pio.common.load_program(&pio_program.program),
&[&bit_clock_pin, &left_right_clock_pin],
);
cfg.set_out_pins(&[&data_pin]);
const BIT_DEPTH: u32 = 16;
const CHANNELS: u32 = 2;
let clock_frequency = SAMPLE_RATE * BIT_DEPTH * CHANNELS;
cfg.clock_divider = (125_000_000. / clock_frequency as f64 / 2.).to_fixed();
cfg.shift_out = ShiftConfig {
threshold: 32,
direction: ShiftDirection::Left,
auto_fill: true,
};
// join fifos to have twice the time to start the next dma transfer
cfg.fifo_join = FifoJoin::TxOnly;
cfg
};
pio.sm0.set_config(&cfg);
pio.sm0.set_pin_dirs(
embassy_rp::pio::Direction::Out,
&[&data_pin, &left_right_clock_pin, &bit_clock_pin],
);
// create two audio buffers (back and front) which will take turns being
// filled with new audio data and being sent to the pio fifo using dma
const BUFFER_SIZE: usize = 960;
static DMA_BUFFER: StaticCell<[u32; BUFFER_SIZE * 2]> = StaticCell::new();
let dma_buffer = DMA_BUFFER.init_with(|| [0u32; BUFFER_SIZE * 2]);
let (mut back_buffer, mut front_buffer) = dma_buffer.split_at_mut(BUFFER_SIZE);
// start pio state machine
pio.sm0.set_enable(true);
let tx = pio.sm0.tx();
let mut dma_ref = p.DMA_CH0.into_ref();
let mut fade_value: i32 = 0;
let mut phase: i32 = 0;
loop {
// trigger transfer of front buffer data to the pio fifo
// but don't await the returned future, yet
let dma_future = tx.dma_push(dma_ref.reborrow(), front_buffer);
// fade in audio when bootsel is pressed
let fade_target = if p.BOOTSEL.is_pressed() { i32::MAX } else { 0 };
// fill back buffer with fresh audio samples before awaiting the dma future
for s in back_buffer.iter_mut() {
// exponential approach of fade_value => fade_target
fade_value += (fade_target - fade_value) >> 14;
// generate triangle wave with amplitude and frequency based on fade value
phase = (phase + (fade_value >> 22)) & 0xffff;
let triangle_sample = (phase as i16 as i32).abs() - 16384;
let sample = (triangle_sample * (fade_value >> 15)) >> 16;
// duplicate mono sample into lower and upper half of dma word
*s = (sample as u16 as u32) * 0x10001;
}
// now await the dma future. once the dma finishes, the next buffer needs to be queued
// within DMA_DEPTH / SAMPLE_RATE = 8 / 48000 seconds = 166us
dma_future.await;
mem::swap(&mut back_buffer, &mut front_buffer);
}
}