913: (embassy-rp): Add DMA implementation r=Dirbaio a=MathiasKoch

This PR adds everything necessary to do peripheral to memory DMA & memory to memory DMA operations.

It also adds async UART read & write, powered by DMA

Co-authored-by: Mathias <mk@blackbird.online>
This commit is contained in:
bors[bot] 2022-08-26 10:57:10 +00:00 committed by GitHub
commit 24ab21a7dd
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
7 changed files with 536 additions and 109 deletions

View file

@ -1,82 +1,265 @@
use core::pin::Pin;
use core::sync::atomic::{compiler_fence, Ordering}; use core::sync::atomic::{compiler_fence, Ordering};
use core::task::{Context, Poll};
use embassy_hal_common::impl_peripheral; use embassy_cortex_m::interrupt::{Interrupt, InterruptExt};
use embassy_hal_common::{impl_peripheral, into_ref, Peripheral, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use futures::Future;
use pac::dma::vals::DataSize;
use crate::pac::dma::vals; use crate::pac::dma::vals;
use crate::{pac, peripherals}; use crate::{interrupt, pac, peripherals};
pub struct Dma<T: Channel> { #[interrupt]
_inner: T, unsafe fn DMA_IRQ_0() {
let ints0 = pac::DMA.ints0().read().ints0();
for channel in 0..CHANNEL_COUNT {
let ctrl_trig = pac::DMA.ch(channel).ctrl_trig().read();
if ctrl_trig.ahb_error() {
panic!("DMA: error on DMA_0 channel {}", channel);
}
if ints0 & (1 << channel) == (1 << channel) {
CHANNEL_WAKERS[channel].wake();
}
}
pac::DMA.ints0().write(|w| w.set_ints0(ints0));
} }
impl<T: Channel> Dma<T> { pub(crate) unsafe fn init() {
pub fn copy(inner: T, from: &[u32], to: &mut [u32]) { let irq = interrupt::DMA_IRQ_0::steal();
assert!(from.len() == to.len()); irq.disable();
irq.set_priority(interrupt::Priority::P3);
pac::DMA.inte0().write(|w| w.set_inte0(0xFFFF));
irq.enable();
}
pub unsafe fn read<'a, C: Channel, W: Word>(
ch: impl Peripheral<P = C> + 'a,
from: *const W,
to: &mut [W],
dreq: u8,
) -> Transfer<'a, C> {
let (to_ptr, len) = crate::dma::slice_ptr_parts_mut(to);
copy_inner(
ch,
from as *const u32,
to_ptr as *mut u32,
len,
W::size(),
false,
true,
dreq,
)
}
pub unsafe fn write<'a, C: Channel, W: Word>(
ch: impl Peripheral<P = C> + 'a,
from: &[W],
to: *mut W,
dreq: u8,
) -> Transfer<'a, C> {
let (from_ptr, len) = crate::dma::slice_ptr_parts(from);
copy_inner(
ch,
from_ptr as *const u32,
to as *mut u32,
len,
W::size(),
true,
false,
dreq,
)
}
pub unsafe fn copy<'a, C: Channel, W: Word>(
ch: impl Peripheral<P = C> + 'a,
from: &[W],
to: &mut [W],
) -> Transfer<'a, C> {
let (from_ptr, from_len) = crate::dma::slice_ptr_parts(from);
let (to_ptr, to_len) = crate::dma::slice_ptr_parts_mut(to);
assert_eq!(from_len, to_len);
copy_inner(
ch,
from_ptr as *const u32,
to_ptr as *mut u32,
from_len,
W::size(),
true,
true,
vals::TreqSel::PERMANENT.0,
)
}
fn copy_inner<'a, C: Channel>(
ch: impl Peripheral<P = C> + 'a,
from: *const u32,
to: *mut u32,
len: usize,
data_size: DataSize,
incr_read: bool,
incr_write: bool,
dreq: u8,
) -> Transfer<'a, C> {
into_ref!(ch);
unsafe { unsafe {
let p = inner.regs(); let p = ch.regs();
p.read_addr().write_value(from.as_ptr() as u32); p.read_addr().write_value(from as u32);
p.write_addr().write_value(to.as_mut_ptr() as u32); p.write_addr().write_value(to as u32);
p.trans_count().write_value(from.len() as u32); p.trans_count().write_value(len as u32);
compiler_fence(Ordering::SeqCst); compiler_fence(Ordering::SeqCst);
p.ctrl_trig().write(|w| { p.ctrl_trig().write(|w| {
w.set_data_size(vals::DataSize::SIZE_WORD); // TODO: Add all DREQ options to pac vals::TreqSel, and use
w.set_incr_read(true); // `set_treq:sel`
w.set_incr_write(true); w.0 = ((dreq as u32) & 0x3f) << 15usize;
w.set_chain_to(inner.number()); w.set_data_size(data_size);
w.set_incr_read(incr_read);
w.set_incr_write(incr_write);
w.set_chain_to(ch.number());
w.set_en(true); w.set_en(true);
}); });
while p.ctrl_trig().read().busy() {}
compiler_fence(Ordering::SeqCst); compiler_fence(Ordering::SeqCst);
} }
Transfer::new(ch)
}
pub struct Transfer<'a, C: Channel> {
channel: PeripheralRef<'a, C>,
}
impl<'a, C: Channel> Transfer<'a, C> {
pub(crate) fn new(channel: impl Peripheral<P = C> + 'a) -> Self {
into_ref!(channel);
Self { channel }
}
}
impl<'a, C: Channel> Drop for Transfer<'a, C> {
fn drop(&mut self) {
let p = self.channel.regs();
unsafe {
pac::DMA
.chan_abort()
.modify(|m| m.set_chan_abort(1 << self.channel.number()));
while p.ctrl_trig().read().busy() {}
}
} }
} }
pub struct NoDma; impl<'a, C: Channel> Unpin for Transfer<'a, C> {}
impl<'a, C: Channel> Future for Transfer<'a, C> {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
// We need to register/re-register the waker for each poll because any
// calls to wake will deregister the waker.
CHANNEL_WAKERS[self.channel.number() as usize].register(cx.waker());
impl_peripheral!(NoDma); if unsafe { self.channel.regs().ctrl_trig().read().busy() } {
Poll::Pending
} else {
Poll::Ready(())
}
}
}
const CHANNEL_COUNT: usize = 12;
const NEW_AW: AtomicWaker = AtomicWaker::new();
static CHANNEL_WAKERS: [AtomicWaker; CHANNEL_COUNT] = [NEW_AW; CHANNEL_COUNT];
mod sealed { mod sealed {
use super::*; pub trait Channel {}
pub trait Channel { pub trait Word {}
}
pub trait Channel: Peripheral<P = Self> + sealed::Channel + Into<AnyChannel> + Sized + 'static {
fn number(&self) -> u8; fn number(&self) -> u8;
fn regs(&self) -> pac::dma::Channel { fn regs(&self) -> pac::dma::Channel {
pac::DMA.ch(self.number() as _) pac::DMA.ch(self.number() as _)
} }
fn degrade(self) -> AnyChannel {
AnyChannel { number: self.number() }
} }
} }
pub trait Channel: sealed::Channel {} pub trait Word: sealed::Word {
fn size() -> vals::DataSize;
}
impl sealed::Word for u8 {}
impl Word for u8 {
fn size() -> vals::DataSize {
vals::DataSize::SIZE_BYTE
}
}
impl sealed::Word for u16 {}
impl Word for u16 {
fn size() -> vals::DataSize {
vals::DataSize::SIZE_HALFWORD
}
}
impl sealed::Word for u32 {}
impl Word for u32 {
fn size() -> vals::DataSize {
vals::DataSize::SIZE_WORD
}
}
pub struct AnyChannel { pub struct AnyChannel {
number: u8, number: u8,
} }
impl Channel for AnyChannel {} impl_peripheral!(AnyChannel);
impl sealed::Channel for AnyChannel {
impl sealed::Channel for AnyChannel {}
impl Channel for AnyChannel {
fn number(&self) -> u8 { fn number(&self) -> u8 {
self.number self.number
} }
} }
macro_rules! channel { macro_rules! channel {
($type:ident, $num:expr) => { ($name:ident, $num:expr) => {
impl Channel for peripherals::$type {} impl sealed::Channel for peripherals::$name {}
impl sealed::Channel for peripherals::$type { impl Channel for peripherals::$name {
fn number(&self) -> u8 { fn number(&self) -> u8 {
$num $num
} }
} }
impl From<peripherals::$name> for crate::dma::AnyChannel {
fn from(val: peripherals::$name) -> Self {
crate::dma::Channel::degrade(val)
}
}
}; };
} }
// TODO: replace transmutes with core::ptr::metadata once it's stable
#[allow(unused)]
pub(crate) fn slice_ptr_parts<T>(slice: *const [T]) -> (usize, usize) {
unsafe { core::mem::transmute(slice) }
}
#[allow(unused)]
pub(crate) fn slice_ptr_parts_mut<T>(slice: *mut [T]) -> (usize, usize) {
unsafe { core::mem::transmute(slice) }
}
channel!(DMA_CH0, 0); channel!(DMA_CH0, 0);
channel!(DMA_CH1, 1); channel!(DMA_CH1, 1);
channel!(DMA_CH2, 2); channel!(DMA_CH2, 2);

View file

@ -105,6 +105,7 @@ pub fn init(_config: config::Config) -> Peripherals {
unsafe { unsafe {
clocks::init(); clocks::init();
timer::init(); timer::init();
dma::init();
} }
peripherals peripherals

View file

@ -2,6 +2,7 @@ use core::marker::PhantomData;
use embassy_hal_common::{into_ref, PeripheralRef}; use embassy_hal_common::{into_ref, PeripheralRef};
use crate::dma::{AnyChannel, Channel};
use crate::gpio::sealed::Pin; use crate::gpio::sealed::Pin;
use crate::gpio::AnyPin; use crate::gpio::AnyPin;
use crate::{pac, peripherals, Peripheral}; use crate::{pac, peripherals, Peripheral};
@ -76,26 +77,27 @@ pub enum Error {
Framing, Framing,
} }
pub struct Uart<'d, T: Instance> { pub struct Uart<'d, T: Instance, M: Mode> {
tx: UartTx<'d, T>, tx: UartTx<'d, T, M>,
rx: UartRx<'d, T>, rx: UartRx<'d, T, M>,
} }
pub struct UartTx<'d, T: Instance> { pub struct UartTx<'d, T: Instance, M: Mode> {
phantom: PhantomData<&'d mut T>, tx_dma: Option<PeripheralRef<'d, AnyChannel>>,
phantom: PhantomData<(&'d mut T, M)>,
} }
pub struct UartRx<'d, T: Instance> { pub struct UartRx<'d, T: Instance, M: Mode> {
phantom: PhantomData<&'d mut T>, rx_dma: Option<PeripheralRef<'d, AnyChannel>>,
phantom: PhantomData<(&'d mut T, M)>,
} }
impl<'d, T: Instance> UartTx<'d, T> { impl<'d, T: Instance, M: Mode> UartTx<'d, T, M> {
fn new() -> Self { fn new(tx_dma: Option<PeripheralRef<'d, AnyChannel>>) -> Self {
Self { phantom: PhantomData } Self {
tx_dma,
phantom: PhantomData,
} }
pub async fn write(&mut self, _buffer: &[u8]) -> Result<(), Error> {
todo!()
} }
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> { pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
@ -111,18 +113,33 @@ impl<'d, T: Instance> UartTx<'d, T> {
pub fn blocking_flush(&mut self) -> Result<(), Error> { pub fn blocking_flush(&mut self) -> Result<(), Error> {
let r = T::regs(); let r = T::regs();
unsafe { while r.uartfr().read().txff() {} } unsafe { while !r.uartfr().read().txfe() {} }
Ok(()) Ok(())
} }
} }
impl<'d, T: Instance> UartRx<'d, T> { impl<'d, T: Instance> UartTx<'d, T, Async> {
fn new() -> Self { pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
Self { phantom: PhantomData } let ch = self.tx_dma.as_mut().unwrap();
let transfer = unsafe {
T::regs().uartdmacr().modify(|reg| {
reg.set_txdmae(true);
});
// If we don't assign future to a variable, the data register pointer
// is held across an await and makes the future non-Send.
crate::dma::write(ch, buffer, T::regs().uartdr().ptr() as *mut _, T::TX_DREQ)
};
transfer.await;
Ok(())
} }
}
pub async fn read(&mut self, _buffer: &mut [u8]) -> Result<(), Error> { impl<'d, T: Instance, M: Mode> UartRx<'d, T, M> {
todo!(); fn new(rx_dma: Option<PeripheralRef<'d, AnyChannel>>) -> Self {
Self {
rx_dma,
phantom: PhantomData,
}
} }
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> { pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
@ -130,6 +147,10 @@ impl<'d, T: Instance> UartRx<'d, T> {
unsafe { unsafe {
for b in buffer { for b in buffer {
*b = loop { *b = loop {
if r.uartfr().read().rxfe() {
continue;
}
let dr = r.uartdr().read(); let dr = r.uartdr().read();
if dr.oe() { if dr.oe() {
@ -140,7 +161,7 @@ impl<'d, T: Instance> UartRx<'d, T> {
return Err(Error::Parity); return Err(Error::Parity);
} else if dr.fe() { } else if dr.fe() {
return Err(Error::Framing); return Err(Error::Framing);
} else if dr.fe() { } else {
break dr.data(); break dr.data();
} }
}; };
@ -150,25 +171,41 @@ impl<'d, T: Instance> UartRx<'d, T> {
} }
} }
impl<'d, T: Instance> Uart<'d, T> { impl<'d, T: Instance> UartRx<'d, T, Async> {
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
let ch = self.rx_dma.as_mut().unwrap();
let transfer = unsafe {
T::regs().uartdmacr().modify(|reg| {
reg.set_rxdmae(true);
});
// If we don't assign future to a variable, the data register pointer
// is held across an await and makes the future non-Send.
crate::dma::read(ch, T::regs().uartdr().ptr() as *const _, buffer, T::RX_DREQ)
};
transfer.await;
Ok(())
}
}
impl<'d, T: Instance> Uart<'d, T, Blocking> {
/// Create a new UART without hardware flow control /// Create a new UART without hardware flow control
pub fn new( pub fn new_blocking(
uart: impl Peripheral<P = T> + 'd, uart: impl Peripheral<P = T> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd, tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd, rx: impl Peripheral<P = impl RxPin<T>> + 'd,
config: Config, config: Config,
) -> Self { ) -> Self {
into_ref!(tx, rx); into_ref!(tx, rx);
Self::new_inner(uart, rx.map_into(), tx.map_into(), None, None, config) Self::new_inner(uart, rx.map_into(), tx.map_into(), None, None, None, None, config)
} }
/// Create a new UART with hardware flow control (RTS/CTS) /// Create a new UART with hardware flow control (RTS/CTS)
pub fn new_with_rtscts( pub fn new_with_rtscts_blocking(
uart: impl Peripheral<P = T> + 'd, uart: impl Peripheral<P = T> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd, tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd, rx: impl Peripheral<P = impl RxPin<T>> + 'd,
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
rts: impl Peripheral<P = impl RtsPin<T>> + 'd, rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
config: Config, config: Config,
) -> Self { ) -> Self {
into_ref!(tx, rx, cts, rts); into_ref!(tx, rx, cts, rts);
@ -176,18 +213,72 @@ impl<'d, T: Instance> Uart<'d, T> {
uart, uart,
rx.map_into(), rx.map_into(),
tx.map_into(), tx.map_into(),
Some(cts.map_into()),
Some(rts.map_into()), Some(rts.map_into()),
Some(cts.map_into()),
None,
None,
config,
)
}
}
impl<'d, T: Instance> Uart<'d, T, Async> {
/// Create a new DMA enabled UART without hardware flow control
pub fn new(
uart: impl Peripheral<P = T> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx_dma: impl Peripheral<P = impl Channel> + 'd,
rx_dma: impl Peripheral<P = impl Channel> + 'd,
config: Config,
) -> Self {
into_ref!(tx, rx, tx_dma, rx_dma);
Self::new_inner(
uart,
rx.map_into(),
tx.map_into(),
None,
None,
Some(tx_dma.map_into()),
Some(rx_dma.map_into()),
config, config,
) )
} }
/// Create a new DMA enabled UART with hardware flow control (RTS/CTS)
pub fn new_with_rtscts(
uart: impl Peripheral<P = T> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
tx_dma: impl Peripheral<P = impl Channel> + 'd,
rx_dma: impl Peripheral<P = impl Channel> + 'd,
config: Config,
) -> Self {
into_ref!(tx, rx, cts, rts, tx_dma, rx_dma);
Self::new_inner(
uart,
rx.map_into(),
tx.map_into(),
Some(rts.map_into()),
Some(cts.map_into()),
Some(tx_dma.map_into()),
Some(rx_dma.map_into()),
config,
)
}
}
impl<'d, T: Instance, M: Mode> Uart<'d, T, M> {
fn new_inner( fn new_inner(
_uart: impl Peripheral<P = T> + 'd, _uart: impl Peripheral<P = T> + 'd,
tx: PeripheralRef<'d, AnyPin>, tx: PeripheralRef<'d, AnyPin>,
rx: PeripheralRef<'d, AnyPin>, rx: PeripheralRef<'d, AnyPin>,
cts: Option<PeripheralRef<'d, AnyPin>>,
rts: Option<PeripheralRef<'d, AnyPin>>, rts: Option<PeripheralRef<'d, AnyPin>>,
cts: Option<PeripheralRef<'d, AnyPin>>,
tx_dma: Option<PeripheralRef<'d, AnyChannel>>,
rx_dma: Option<PeripheralRef<'d, AnyChannel>>,
config: Config, config: Config,
) -> Self { ) -> Self {
into_ref!(_uart); into_ref!(_uart);
@ -195,6 +286,30 @@ impl<'d, T: Instance> Uart<'d, T> {
unsafe { unsafe {
let r = T::regs(); let r = T::regs();
tx.io().ctrl().write(|w| w.set_funcsel(2));
rx.io().ctrl().write(|w| w.set_funcsel(2));
tx.pad_ctrl().write(|w| {
w.set_ie(true);
});
rx.pad_ctrl().write(|w| {
w.set_ie(true);
});
if let Some(pin) = &cts {
pin.io().ctrl().write(|w| w.set_funcsel(2));
pin.pad_ctrl().write(|w| {
w.set_ie(true);
});
}
if let Some(pin) = &rts {
pin.io().ctrl().write(|w| w.set_funcsel(2));
pin.pad_ctrl().write(|w| {
w.set_ie(true);
});
}
let clk_base = crate::clocks::clk_peri_freq(); let clk_base = crate::clocks::clk_peri_freq();
let baud_rate_div = (8 * clk_base) / config.baudrate; let baud_rate_div = (8 * clk_base) / config.baudrate;
@ -215,10 +330,14 @@ impl<'d, T: Instance> Uart<'d, T> {
let (pen, eps) = match config.parity { let (pen, eps) = match config.parity {
Parity::ParityNone => (false, false), Parity::ParityNone => (false, false),
Parity::ParityEven => (true, true),
Parity::ParityOdd => (true, false), Parity::ParityOdd => (true, false),
Parity::ParityEven => (true, true),
}; };
// PL011 needs a (dummy) line control register write to latch in the
// divisors. We don't want to actually change LCR contents here.
r.uartlcr_h().modify(|_| {});
r.uartlcr_h().write(|w| { r.uartlcr_h().write(|w| {
w.set_wlen(config.data_bits.bits()); w.set_wlen(config.data_bits.bits());
w.set_stp2(config.stop_bits == StopBits::STOP2); w.set_stp2(config.stop_bits == StopBits::STOP2);
@ -234,27 +353,16 @@ impl<'d, T: Instance> Uart<'d, T> {
w.set_ctsen(cts.is_some()); w.set_ctsen(cts.is_some());
w.set_rtsen(rts.is_some()); w.set_rtsen(rts.is_some());
}); });
tx.io().ctrl().write(|w| w.set_funcsel(2));
rx.io().ctrl().write(|w| w.set_funcsel(2));
if let Some(pin) = &cts {
pin.io().ctrl().write(|w| w.set_funcsel(2));
}
if let Some(pin) = &rts {
pin.io().ctrl().write(|w| w.set_funcsel(2));
}
} }
Self { Self {
tx: UartTx::new(), tx: UartTx::new(tx_dma),
rx: UartRx::new(), rx: UartRx::new(rx_dma),
} }
} }
}
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> { impl<'d, T: Instance, M: Mode> Uart<'d, T, M> {
self.tx.write(buffer).await
}
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> { pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.tx.blocking_write(buffer) self.tx.blocking_write(buffer)
} }
@ -263,30 +371,39 @@ impl<'d, T: Instance> Uart<'d, T> {
self.tx.blocking_flush() self.tx.blocking_flush()
} }
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.rx.read(buffer).await
}
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> { pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.rx.blocking_read(buffer) self.rx.blocking_read(buffer)
} }
/// Split the Uart into a transmitter and receiver, which is /// Split the Uart into a transmitter and receiver, which is particuarly
/// particuarly useful when having two tasks correlating to /// useful when having two tasks correlating to transmitting and receiving.
/// transmitting and receiving. pub fn split(self) -> (UartTx<'d, T, M>, UartRx<'d, T, M>) {
pub fn split(self) -> (UartTx<'d, T>, UartRx<'d, T>) {
(self.tx, self.rx) (self.tx, self.rx)
} }
} }
impl<'d, T: Instance> Uart<'d, T, Async> {
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.tx.write(buffer).await
}
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.rx.read(buffer).await
}
}
mod eh02 { mod eh02 {
use super::*; use super::*;
impl<'d, T: Instance> embedded_hal_02::serial::Read<u8> for UartRx<'d, T> { impl<'d, T: Instance, M: Mode> embedded_hal_02::serial::Read<u8> for UartRx<'d, T, M> {
type Error = Error; type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> { fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
let r = T::regs(); let r = T::regs();
unsafe { unsafe {
if r.uartfr().read().rxfe() {
return Err(nb::Error::WouldBlock);
}
let dr = r.uartdr().read(); let dr = r.uartdr().read();
if dr.oe() { if dr.oe() {
@ -297,16 +414,14 @@ mod eh02 {
Err(nb::Error::Other(Error::Parity)) Err(nb::Error::Other(Error::Parity))
} else if dr.fe() { } else if dr.fe() {
Err(nb::Error::Other(Error::Framing)) Err(nb::Error::Other(Error::Framing))
} else if dr.fe() {
Ok(dr.data())
} else { } else {
Err(nb::Error::WouldBlock) Ok(dr.data())
} }
} }
} }
} }
impl<'d, T: Instance> embedded_hal_02::blocking::serial::Write<u8> for UartTx<'d, T> { impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::serial::Write<u8> for UartTx<'d, T, M> {
type Error = Error; type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> { fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer) self.blocking_write(buffer)
@ -316,14 +431,14 @@ mod eh02 {
} }
} }
impl<'d, T: Instance> embedded_hal_02::serial::Read<u8> for Uart<'d, T> { impl<'d, T: Instance, M: Mode> embedded_hal_02::serial::Read<u8> for Uart<'d, T, M> {
type Error = Error; type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> { fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx) embedded_hal_02::serial::Read::read(&mut self.rx)
} }
} }
impl<'d, T: Instance> embedded_hal_02::blocking::serial::Write<u8> for Uart<'d, T> { impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::serial::Write<u8> for Uart<'d, T, M> {
type Error = Error; type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> { fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer) self.blocking_write(buffer)
@ -349,15 +464,15 @@ mod eh1 {
} }
} }
impl<'d, T: Instance> embedded_hal_1::serial::ErrorType for Uart<'d, T> { impl<'d, T: Instance, M: Mode> embedded_hal_1::serial::ErrorType for Uart<'d, T, M> {
type Error = Error; type Error = Error;
} }
impl<'d, T: Instance> embedded_hal_1::serial::ErrorType for UartTx<'d, T> { impl<'d, T: Instance, M: Mode> embedded_hal_1::serial::ErrorType for UartTx<'d, T, M> {
type Error = Error; type Error = Error;
} }
impl<'d, T: Instance> embedded_hal_1::serial::ErrorType for UartRx<'d, T> { impl<'d, T: Instance, M: Mode> embedded_hal_1::serial::ErrorType for UartRx<'d, T, M> {
type Error = Error; type Error = Error;
} }
} }
@ -366,7 +481,7 @@ cfg_if::cfg_if! {
if #[cfg(all(feature = "unstable-traits", feature = "nightly", feature = "_todo_embedded_hal_serial"))] { if #[cfg(all(feature = "unstable-traits", feature = "nightly", feature = "_todo_embedded_hal_serial"))] {
use core::future::Future; use core::future::Future;
impl<'d, T: Instance> embedded_hal_async::serial::Write for UartTx<'d, T> impl<'d, T: Instance, M: Mode> embedded_hal_async::serial::Write for UartTx<'d, T, M>
{ {
type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a; type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
@ -381,7 +496,7 @@ cfg_if::cfg_if! {
} }
} }
impl<'d, T: Instance> embedded_hal_async::serial::Read for UartRx<'d, T> impl<'d, T: Instance, M: Mode> embedded_hal_async::serial::Read for UartRx<'d, T, M>
{ {
type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a; type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
@ -390,7 +505,7 @@ cfg_if::cfg_if! {
} }
} }
impl<'d, T: Instance> embedded_hal_async::serial::Write for Uart<'d, T> impl<'d, T: Instance, M: Mode> embedded_hal_async::serial::Write for Uart<'d, T, M>
{ {
type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a; type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
@ -405,7 +520,7 @@ cfg_if::cfg_if! {
} }
} }
impl<'d, T: Instance> embedded_hal_async::serial::Read for Uart<'d, T> impl<'d, T: Instance, M: Mode> embedded_hal_async::serial::Read for Uart<'d, T, M>
{ {
type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a; type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
@ -419,7 +534,12 @@ cfg_if::cfg_if! {
mod sealed { mod sealed {
use super::*; use super::*;
pub trait Mode {}
pub trait Instance { pub trait Instance {
const TX_DREQ: u8;
const RX_DREQ: u8;
fn regs() -> pac::uart::Uart; fn regs() -> pac::uart::Uart;
} }
pub trait TxPin<T: Instance> {} pub trait TxPin<T: Instance> {}
@ -428,11 +548,29 @@ mod sealed {
pub trait RtsPin<T: Instance> {} pub trait RtsPin<T: Instance> {}
} }
pub trait Mode: sealed::Mode {}
macro_rules! impl_mode {
($name:ident) => {
impl sealed::Mode for $name {}
impl Mode for $name {}
};
}
pub struct Blocking;
pub struct Async;
impl_mode!(Blocking);
impl_mode!(Async);
pub trait Instance: sealed::Instance {} pub trait Instance: sealed::Instance {}
macro_rules! impl_instance { macro_rules! impl_instance {
($inst:ident, $irq:ident) => { ($inst:ident, $irq:ident, $tx_dreq:expr, $rx_dreq:expr) => {
impl sealed::Instance for peripherals::$inst { impl sealed::Instance for peripherals::$inst {
const TX_DREQ: u8 = $tx_dreq;
const RX_DREQ: u8 = $rx_dreq;
fn regs() -> pac::uart::Uart { fn regs() -> pac::uart::Uart {
pac::$inst pac::$inst
} }
@ -441,8 +579,8 @@ macro_rules! impl_instance {
}; };
} }
impl_instance!(UART0, UART0); impl_instance!(UART0, UART0, 20, 21);
impl_instance!(UART1, UART1); impl_instance!(UART1, UART1, 22, 23);
pub trait TxPin<T: Instance>: sealed::TxPin<T> + crate::gpio::Pin {} pub trait TxPin<T: Instance>: sealed::TxPin<T> + crate::gpio::Pin {}
pub trait RxPin<T: Instance>: sealed::RxPin<T> + crate::gpio::Pin {} pub trait RxPin<T: Instance>: sealed::RxPin<T> + crate::gpio::Pin {}

View file

@ -10,7 +10,7 @@ use {defmt_rtt as _, panic_probe as _};
async fn main(_spawner: Spawner) { async fn main(_spawner: Spawner) {
let p = embassy_rp::init(Default::default()); let p = embassy_rp::init(Default::default());
let config = uart::Config::default(); let config = uart::Config::default();
let mut uart = uart::Uart::new_with_rtscts(p.UART0, p.PIN_0, p.PIN_1, p.PIN_2, p.PIN_3, config); let mut uart = uart::Uart::new_with_rtscts_blocking(p.UART0, p.PIN_0, p.PIN_1, p.PIN_3, p.PIN_2, config);
uart.blocking_write("Hello World!\r\n".as_bytes()).unwrap(); uart.blocking_write("Hello World!\r\n".as_bytes()).unwrap();
loop { loop {

View file

@ -0,0 +1,41 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use defmt::{assert_eq, *};
use embassy_executor::Spawner;
use embassy_rp::dma::copy;
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let p = embassy_rp::init(Default::default());
info!("Hello World!");
// Check `u8` copy
{
let data: [u8; 2] = [0xC0, 0xDE];
let mut buf = [0; 2];
unsafe { copy(p.DMA_CH0, &data, &mut buf).await };
assert_eq!(buf, data);
}
// Check `u16` copy
{
let data: [u16; 2] = [0xC0BE, 0xDEAD];
let mut buf = [0; 2];
unsafe { copy(p.DMA_CH1, &data, &mut buf).await };
assert_eq!(buf, data);
}
// Check `u32` copy
{
let data: [u32; 2] = [0xC0BEDEAD, 0xDEADAAFF];
let mut buf = [0; 2];
unsafe { copy(p.DMA_CH2, &data, &mut buf).await };
assert_eq!(buf, data);
}
info!("Test OK");
cortex_m::asm::bkpt();
}

32
tests/rp/src/bin/uart.rs Normal file
View file

@ -0,0 +1,32 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use defmt::{assert_eq, *};
use embassy_executor::Spawner;
use embassy_rp::uart::{Config, Uart};
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let p = embassy_rp::init(Default::default());
info!("Hello World!");
let (tx, rx, uart) = (p.PIN_0, p.PIN_1, p.UART0);
let config = Config::default();
let mut uart = Uart::new_blocking(uart, tx, rx, config);
// We can't send too many bytes, they have to fit in the FIFO.
// This is because we aren't sending+receiving at the same time.
let data = [0xC0, 0xDE];
uart.blocking_write(&data).unwrap();
let mut buf = [0; 2];
uart.blocking_read(&mut buf).unwrap();
assert_eq!(buf, data);
info!("Test OK");
cortex_m::asm::bkpt();
}

View file

@ -0,0 +1,32 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use defmt::{assert_eq, *};
use embassy_executor::Spawner;
use embassy_rp::uart::{Config, Uart};
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let p = embassy_rp::init(Default::default());
info!("Hello World!");
let (tx, rx, uart) = (p.PIN_0, p.PIN_1, p.UART0);
let config = Config::default();
let mut uart = Uart::new(uart, tx, rx, p.DMA_CH0, p.DMA_CH1, config);
// We can't send too many bytes, they have to fit in the FIFO.
// This is because we aren't sending+receiving at the same time.
let data = [0xC0, 0xDE];
uart.write(&data).await.unwrap();
let mut buf = [0; 2];
uart.read(&mut buf).await.unwrap();
assert_eq!(buf, data);
info!("Test OK");
cortex_m::asm::bkpt();
}