Remove unused files

This commit is contained in:
Dario Nieuwenhuis 2021-05-06 04:01:54 +02:00
parent f5f98cdeab
commit 386e4bf0de
6 changed files with 0 additions and 1517 deletions

View file

@ -1,120 +0,0 @@
//! Async low power Serial.
//!
//! The peripheral is autmatically enabled and disabled as required to save power.
//! Lowest power consumption can only be guaranteed if the send receive futures
//! are dropped correctly (e.g. not using `mem::forget()`).
use bxcan;
use bxcan::Interrupts;
use core::future::Future;
use embassy::interrupt::Interrupt;
use embassy::util::InterruptFuture;
use nb;
use nb::block;
use crate::interrupt;
/// Interface to the Serial peripheral
pub struct Can<T: Instance> {
can: bxcan::Can<T>,
tx_int: T::TInterrupt,
rx_int: T::RInterrupt,
}
impl<T: Instance> Can<T> {
pub fn new(mut can: bxcan::Can<T>, tx_int: T::TInterrupt, rx_int: T::RInterrupt) -> Self {
// Sync to the bus and start normal operation.
can.enable_interrupts(
Interrupts::TRANSMIT_MAILBOX_EMPTY | Interrupts::FIFO0_MESSAGE_PENDING,
);
block!(can.enable()).unwrap();
Can {
can: can,
tx_int: tx_int,
rx_int: rx_int,
}
}
/// Sends can frame.
///
/// This method async-blocks until the frame is transmitted.
pub fn transmit<'a>(&'a mut self, frame: &'a bxcan::Frame) -> impl Future<Output = ()> + 'a {
async move {
let fut = InterruptFuture::new(&mut self.tx_int);
// Infallible
self.can.transmit(frame).unwrap();
fut.await;
}
}
/// Receive can frame.
///
/// This method async-blocks until the frame is received.
pub fn receive<'a>(&'a mut self) -> impl Future<Output = bxcan::Frame> + 'a {
async move {
let mut frame: Option<bxcan::Frame>;
loop {
let fut = InterruptFuture::new(&mut self.rx_int);
frame = match self.can.receive() {
Ok(frame) => Some(frame),
Err(nb::Error::WouldBlock) => None,
Err(nb::Error::Other(_)) => None, // Ignore overrun errors.
};
if frame.is_some() {
break;
}
fut.await;
}
frame.unwrap()
}
}
}
mod private {
pub trait Sealed {}
}
pub trait Instance: bxcan::Instance + private::Sealed {
type TInterrupt: Interrupt;
type RInterrupt: Interrupt;
}
macro_rules! can {
($($can:ident => ($tint:ident, $rint:ident),)+) => {
$(
impl private::Sealed for crate::hal::can::Can<crate::pac::$can> {}
impl Instance for crate::hal::can::Can<crate::pac::$can> {
type TInterrupt = interrupt::$tint;
type RInterrupt = interrupt::$rint;
}
)+
}
}
#[cfg(any(
feature = "stm32f401",
feature = "stm32f405",
feature = "stm32f407",
feature = "stm32f410",
feature = "stm32f411",
feature = "stm32f412",
feature = "stm32f413",
feature = "stm32f415",
feature = "stm32f417",
feature = "stm32f423",
feature = "stm32f427",
feature = "stm32f429",
feature = "stm32f437",
feature = "stm32f439",
feature = "stm32f446",
feature = "stm32f469",
feature = "stm32f479",
))]
can! {
CAN1 => (CAN1_TX, CAN1_RX0),
CAN2 => (CAN2_TX, CAN2_RX0),
}

View file

@ -1,2 +0,0 @@
pub mod serial;
pub mod spi;

View file

@ -1,357 +0,0 @@
//! Async Serial.
use core::future::Future;
use core::marker::PhantomData;
use embassy::interrupt::Interrupt;
use embassy::traits::uart::{Error, Read, ReadUntilIdle, Write};
use embassy::util::InterruptFuture;
use futures::{select_biased, FutureExt};
use crate::hal::{
dma,
dma::config::DmaConfig,
dma::traits::{Channel, DMASet, PeriAddress, Stream},
dma::{MemoryToPeripheral, PeripheralToMemory, Transfer},
rcc::Clocks,
serial,
serial::config::{Config as SerialConfig, DmaConfig as SerialDmaConfig},
serial::{Event as SerialEvent, Pins},
};
use crate::interrupt;
use crate::pac;
/// Interface to the Serial peripheral
pub struct Serial<
USART: PeriAddress<MemSize = u8> + WithInterrupt,
TSTREAM: Stream + WithInterrupt,
RSTREAM: Stream + WithInterrupt,
CHANNEL: Channel,
> {
tx_stream: Option<TSTREAM>,
rx_stream: Option<RSTREAM>,
usart: Option<USART>,
tx_int: TSTREAM::Interrupt,
rx_int: RSTREAM::Interrupt,
usart_int: USART::Interrupt,
channel: PhantomData<CHANNEL>,
}
// static mut INSTANCE: *const Serial<USART1, Stream7<DMA2>, Stream2<DMA2>> = ptr::null_mut();
impl<USART, TSTREAM, RSTREAM, CHANNEL> Serial<USART, TSTREAM, RSTREAM, CHANNEL>
where
USART: serial::Instance
+ PeriAddress<MemSize = u8>
+ DMASet<TSTREAM, CHANNEL, MemoryToPeripheral>
+ DMASet<RSTREAM, CHANNEL, PeripheralToMemory>
+ WithInterrupt,
TSTREAM: Stream + WithInterrupt,
RSTREAM: Stream + WithInterrupt,
CHANNEL: Channel,
{
// Leaking futures is forbidden!
pub unsafe fn new<PINS>(
usart: USART,
streams: (TSTREAM, RSTREAM),
pins: PINS,
tx_int: TSTREAM::Interrupt,
rx_int: RSTREAM::Interrupt,
usart_int: USART::Interrupt,
mut config: SerialConfig,
clocks: Clocks,
) -> Self
where
PINS: Pins<USART>,
{
config.dma = SerialDmaConfig::TxRx;
let (usart, _) = serial::Serial::new(usart, pins, config, clocks)
.unwrap()
.release();
let (tx_stream, rx_stream) = streams;
Serial {
tx_stream: Some(tx_stream),
rx_stream: Some(rx_stream),
usart: Some(usart),
tx_int: tx_int,
rx_int: rx_int,
usart_int: usart_int,
channel: PhantomData,
}
}
}
impl<USART, TSTREAM, RSTREAM, CHANNEL> Read for Serial<USART, TSTREAM, RSTREAM, CHANNEL>
where
USART: serial::Instance
+ PeriAddress<MemSize = u8>
+ DMASet<TSTREAM, CHANNEL, MemoryToPeripheral>
+ DMASet<RSTREAM, CHANNEL, PeripheralToMemory>
+ WithInterrupt
+ 'static,
TSTREAM: Stream + WithInterrupt + 'static,
RSTREAM: Stream + WithInterrupt + 'static,
CHANNEL: Channel + 'static,
{
type ReadFuture<'a> = impl Future<Output = Result<(), Error>> + 'a;
/// Receives serial data.
///
/// The future is pending until the buffer is completely filled.
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
let static_buf = unsafe { core::mem::transmute::<&'a mut [u8], &'static mut [u8]>(buf) };
async move {
let rx_stream = self.rx_stream.take().unwrap();
let usart = self.usart.take().unwrap();
let mut rx_transfer = Transfer::init(
rx_stream,
usart,
static_buf,
None,
DmaConfig::default()
.transfer_complete_interrupt(true)
.memory_increment(true)
.double_buffer(false),
);
let fut = InterruptFuture::new(&mut self.rx_int);
rx_transfer.start(|_usart| {});
fut.await;
let (rx_stream, usart, _, _) = rx_transfer.free();
self.rx_stream.replace(rx_stream);
self.usart.replace(usart);
Ok(())
}
}
}
impl<USART, TSTREAM, RSTREAM, CHANNEL> Write for Serial<USART, TSTREAM, RSTREAM, CHANNEL>
where
USART: serial::Instance
+ PeriAddress<MemSize = u8>
+ DMASet<TSTREAM, CHANNEL, MemoryToPeripheral>
+ DMASet<RSTREAM, CHANNEL, PeripheralToMemory>
+ WithInterrupt
+ 'static,
TSTREAM: Stream + WithInterrupt + 'static,
RSTREAM: Stream + WithInterrupt + 'static,
CHANNEL: Channel + 'static,
{
type WriteFuture<'a> = impl Future<Output = Result<(), Error>> + 'a;
/// Sends serial data.
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
#[allow(mutable_transmutes)]
let static_buf = unsafe { core::mem::transmute::<&'a [u8], &'static mut [u8]>(buf) };
async move {
let tx_stream = self.tx_stream.take().unwrap();
let usart = self.usart.take().unwrap();
let mut tx_transfer = Transfer::init(
tx_stream,
usart,
static_buf,
None,
DmaConfig::default()
.transfer_complete_interrupt(true)
.memory_increment(true)
.double_buffer(false),
);
let fut = InterruptFuture::new(&mut self.tx_int);
tx_transfer.start(|_usart| {});
fut.await;
let (tx_stream, usart, _buf, _) = tx_transfer.free();
self.tx_stream.replace(tx_stream);
self.usart.replace(usart);
Ok(())
}
}
}
impl<USART, TSTREAM, RSTREAM, CHANNEL> ReadUntilIdle for Serial<USART, TSTREAM, RSTREAM, CHANNEL>
where
USART: serial::Instance
+ PeriAddress<MemSize = u8>
+ DMASet<TSTREAM, CHANNEL, MemoryToPeripheral>
+ DMASet<RSTREAM, CHANNEL, PeripheralToMemory>
+ WithInterrupt
+ 'static,
TSTREAM: Stream + WithInterrupt + 'static,
RSTREAM: Stream + WithInterrupt + 'static,
CHANNEL: Channel + 'static,
{
type ReadUntilIdleFuture<'a> = impl Future<Output = Result<usize, Error>> + 'a;
/// Receives serial data.
///
/// The future is pending until either the buffer is completely full, or the RX line falls idle after receiving some data.
///
/// Returns the number of bytes read.
fn read_until_idle<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadUntilIdleFuture<'a> {
let static_buf = unsafe { core::mem::transmute::<&'a mut [u8], &'static mut [u8]>(buf) };
async move {
let rx_stream = self.rx_stream.take().unwrap();
let usart = self.usart.take().unwrap();
unsafe {
/* __HAL_UART_ENABLE_IT(&uart->UartHandle, UART_IT_IDLE); */
(*USART::ptr()).cr1.modify(|_, w| w.idleie().set_bit());
/* __HAL_UART_CLEAR_IDLEFLAG(&uart->UartHandle); */
(*USART::ptr()).sr.read();
(*USART::ptr()).dr.read();
};
let mut rx_transfer = Transfer::init(
rx_stream,
usart,
static_buf,
None,
DmaConfig::default()
.transfer_complete_interrupt(true)
.memory_increment(true)
.double_buffer(false),
);
let total_bytes = RSTREAM::get_number_of_transfers() as usize;
let fut = InterruptFuture::new(&mut self.rx_int);
let fut_idle = InterruptFuture::new(&mut self.usart_int);
rx_transfer.start(|_usart| {});
futures::future::select(fut, fut_idle).await;
let (rx_stream, usart, _, _) = rx_transfer.free();
let remaining_bytes = RSTREAM::get_number_of_transfers() as usize;
unsafe {
(*USART::ptr()).cr1.modify(|_, w| w.idleie().clear_bit());
}
self.rx_stream.replace(rx_stream);
self.usart.replace(usart);
Ok(total_bytes - remaining_bytes)
}
}
}
mod private {
pub trait Sealed {}
}
pub trait WithInterrupt: private::Sealed {
type Interrupt: Interrupt;
}
macro_rules! dma {
($($PER:ident => ($dma:ident, $stream:ident),)+) => {
$(
impl private::Sealed for dma::$stream<pac::$dma> {}
impl WithInterrupt for dma::$stream<pac::$dma> {
type Interrupt = interrupt::$PER;
}
)+
}
}
macro_rules! usart {
($($PER:ident => ($usart:ident),)+) => {
$(
impl private::Sealed for pac::$usart {}
impl WithInterrupt for pac::$usart {
type Interrupt = interrupt::$PER;
}
)+
}
}
dma! {
DMA2_STREAM0 => (DMA2, Stream0),
DMA2_STREAM1 => (DMA2, Stream1),
DMA2_STREAM2 => (DMA2, Stream2),
DMA2_STREAM3 => (DMA2, Stream3),
DMA2_STREAM4 => (DMA2, Stream4),
DMA2_STREAM5 => (DMA2, Stream5),
DMA2_STREAM6 => (DMA2, Stream6),
DMA2_STREAM7 => (DMA2, Stream7),
DMA1_STREAM0 => (DMA1, Stream0),
DMA1_STREAM1 => (DMA1, Stream1),
DMA1_STREAM2 => (DMA1, Stream2),
DMA1_STREAM3 => (DMA1, Stream3),
DMA1_STREAM4 => (DMA1, Stream4),
DMA1_STREAM5 => (DMA1, Stream5),
DMA1_STREAM6 => (DMA1, Stream6),
}
#[cfg(any(feature = "stm32f401", feature = "stm32f410", feature = "stm32f411",))]
usart! {
USART1 => (USART1),
USART2 => (USART2),
USART6 => (USART6),
}
#[cfg(any(feature = "stm32f405", feature = "stm32f407"))]
usart! {
USART1 => (USART1),
USART2 => (USART2),
USART3 => (USART3),
USART6 => (USART6),
UART4 => (UART4),
UART5 => (UART5),
}
#[cfg(feature = "stm32f412")]
usart! {
USART1 => (USART1),
USART2 => (USART2),
USART3 => (USART3),
USART6 => (USART6),
}
#[cfg(feature = "stm32f413")]
usart! {
USART1 => (USART1),
USART2 => (USART2),
USART3 => (USART3),
USART6 => (USART6),
USART7 => (USART7),
USART8 => (USART8),
UART5 => (UART5),
UART9 => (UART9),
UART10 => (UART10),
}
#[cfg(any(
feature = "stm32f427",
feature = "stm32f429",
feature = "stm32f446",
feature = "stm32f469"
))]
usart! {
USART1 => (USART1),
USART2 => (USART2),
USART3 => (USART3),
USART6 => (USART6),
UART4 => (UART4),
UART5 => (UART5),
// UART7 => (UART7),
// UART8 => (UART8),
}

View file

@ -1,475 +0,0 @@
//! Async SPI
use embassy::time;
use core::{future::Future, marker::PhantomData, mem, ops::Deref, pin::Pin, ptr};
use embassy::{interrupt::Interrupt, traits::spi::FullDuplex, util::InterruptFuture};
use nb;
pub use crate::hal::spi::{Mode, Phase, Polarity};
use crate::hal::{
bb, dma,
dma::config::DmaConfig,
dma::traits::{Channel, DMASet, PeriAddress, Stream},
dma::{MemoryToPeripheral, PeripheralToMemory, Transfer},
rcc::Clocks,
spi::Pins,
time::Hertz,
};
use crate::interrupt;
use crate::pac;
use futures::future;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
TxBufferTooLong,
RxBufferTooLong,
Overrun,
ModeFault,
Crc,
}
fn read_sr<T: Instance>(spi: &T) -> nb::Result<u8, Error> {
let sr = spi.sr.read();
Err(if sr.ovr().bit_is_set() {
nb::Error::Other(Error::Overrun)
} else if sr.modf().bit_is_set() {
nb::Error::Other(Error::ModeFault)
} else if sr.crcerr().bit_is_set() {
nb::Error::Other(Error::Crc)
} else if sr.rxne().bit_is_set() {
// NOTE(read_volatile) read only 1 byte (the svd2rust API only allows
// reading a half-word)
return Ok(unsafe { ptr::read_volatile(&spi.dr as *const _ as *const u8) });
} else {
nb::Error::WouldBlock
})
}
fn write_sr<T: Instance>(spi: &T, byte: u8) -> nb::Result<(), Error> {
let sr = spi.sr.read();
Err(if sr.ovr().bit_is_set() {
// Read from the DR to clear the OVR bit
let _ = spi.dr.read();
nb::Error::Other(Error::Overrun)
} else if sr.modf().bit_is_set() {
// Write to CR1 to clear MODF
spi.cr1.modify(|_r, w| w);
nb::Error::Other(Error::ModeFault)
} else if sr.crcerr().bit_is_set() {
// Clear the CRCERR bit
spi.sr.modify(|_r, w| {
w.crcerr().clear_bit();
w
});
nb::Error::Other(Error::Crc)
} else if sr.txe().bit_is_set() {
// NOTE(write_volatile) see note above
unsafe { ptr::write_volatile(&spi.dr as *const _ as *mut u8, byte) }
return Ok(());
} else {
nb::Error::WouldBlock
})
}
/// Interface to the Serial peripheral
pub struct Spi<
SPI: PeriAddress<MemSize = u8> + WithInterrupt,
TSTREAM: Stream + WithInterrupt,
RSTREAM: Stream + WithInterrupt,
CHANNEL: Channel,
> {
tx_stream: Option<TSTREAM>,
rx_stream: Option<RSTREAM>,
spi: Option<SPI>,
tx_int: TSTREAM::Interrupt,
rx_int: RSTREAM::Interrupt,
spi_int: SPI::Interrupt,
channel: PhantomData<CHANNEL>,
}
impl<SPI, TSTREAM, RSTREAM, CHANNEL> Spi<SPI, TSTREAM, RSTREAM, CHANNEL>
where
SPI: Instance
+ PeriAddress<MemSize = u8>
+ DMASet<TSTREAM, CHANNEL, MemoryToPeripheral>
+ DMASet<RSTREAM, CHANNEL, PeripheralToMemory>
+ WithInterrupt,
TSTREAM: Stream + WithInterrupt,
RSTREAM: Stream + WithInterrupt,
CHANNEL: Channel,
{
// Leaking futures is forbidden!
pub unsafe fn new<PINS>(
spi: SPI,
streams: (TSTREAM, RSTREAM),
pins: PINS,
tx_int: TSTREAM::Interrupt,
rx_int: RSTREAM::Interrupt,
spi_int: SPI::Interrupt,
mode: Mode,
freq: Hertz,
clocks: Clocks,
) -> Self
where
PINS: Pins<SPI>,
{
let (tx_stream, rx_stream) = streams;
// let spi1: crate::pac::SPI1 = unsafe { mem::transmute(()) };
// let mut hspi = crate::hal::spi::Spi::spi1(
// spi1,
// (
// crate::hal::spi::NoSck,
// crate::hal::spi::NoMiso,
// crate::hal::spi::NoMosi,
// ),
// mode,
// freq,
// clocks,
// );
unsafe { SPI::enable_clock() };
let clock = SPI::clock_speed(clocks);
// disable SS output
// spi.cr2
// .write(|w| w.ssoe().clear_bit().rxdmaen().set_bit().txdmaen().set_bit());
spi.cr2.write(|w| w.ssoe().clear_bit());
let br = match clock.0 / freq.0 {
0 => unreachable!(),
1..=2 => 0b000,
3..=5 => 0b001,
6..=11 => 0b010,
12..=23 => 0b011,
24..=47 => 0b100,
48..=95 => 0b101,
96..=191 => 0b110,
_ => 0b111,
};
// mstr: master configuration
// lsbfirst: MSB first
// ssm: enable software slave management (NSS pin free for other uses)
// ssi: set nss high = master mode
// dff: 8 bit frames
// bidimode: 2-line unidirectional
// spe: enable the SPI bus
spi.cr1.write(|w| {
w.cpha()
.bit(mode.phase == Phase::CaptureOnSecondTransition)
.cpol()
.bit(mode.polarity == Polarity::IdleHigh)
.mstr()
.set_bit()
.br()
.bits(br)
.lsbfirst()
.clear_bit()
.ssm()
.set_bit()
.ssi()
.set_bit()
.rxonly()
.clear_bit()
.dff()
.clear_bit()
.bidimode()
.clear_bit()
.spe()
.set_bit()
});
Self {
tx_stream: Some(tx_stream),
rx_stream: Some(rx_stream),
spi: Some(spi),
tx_int: tx_int,
rx_int: rx_int,
spi_int: spi_int,
channel: PhantomData,
}
}
}
impl<SPI, TSTREAM, RSTREAM, CHANNEL> FullDuplex<u8> for Spi<SPI, TSTREAM, RSTREAM, CHANNEL>
where
SPI: Instance
+ PeriAddress<MemSize = u8>
+ DMASet<TSTREAM, CHANNEL, MemoryToPeripheral>
+ DMASet<RSTREAM, CHANNEL, PeripheralToMemory>
+ WithInterrupt
+ 'static,
TSTREAM: Stream + WithInterrupt + 'static,
RSTREAM: Stream + WithInterrupt + 'static,
CHANNEL: Channel + 'static,
{
type Error = Error;
type WriteFuture<'a> = impl Future<Output = Result<(), Error>> + 'a;
type ReadFuture<'a> = impl Future<Output = Result<(), Error>> + 'a;
type WriteReadFuture<'a> = impl Future<Output = Result<(), Error>> + 'a;
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
#[allow(mutable_transmutes)]
let static_buf: &'static mut [u8] = unsafe { mem::transmute(buf) };
async move {
let rx_stream = self.rx_stream.take().unwrap();
let spi = self.spi.take().unwrap();
spi.cr2.modify(|_, w| w.errie().set_bit());
let mut rx_transfer = Transfer::init(
rx_stream,
spi,
static_buf,
None,
DmaConfig::default()
.transfer_complete_interrupt(true)
.memory_increment(true)
.double_buffer(false),
);
let fut = InterruptFuture::new(&mut self.rx_int);
let fut_err = InterruptFuture::new(&mut self.spi_int);
rx_transfer.start(|_spi| {});
future::select(fut, fut_err).await;
let (rx_stream, spi, _buf, _) = rx_transfer.free();
spi.cr2.modify(|_, w| w.errie().clear_bit());
self.rx_stream.replace(rx_stream);
self.spi.replace(spi);
Ok(())
}
}
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
#[allow(mutable_transmutes)]
let static_buf: &'static mut [u8] = unsafe { mem::transmute(buf) };
async move {
let tx_stream = self.tx_stream.take().unwrap();
let spi = self.spi.take().unwrap();
// let mut tx_transfer = Transfer::init(
// tx_stream,
// spi,
// static_buf,
// None,
// DmaConfig::default()
// .transfer_complete_interrupt(true)
// .memory_increment(true)
// .double_buffer(false),
// );
//
// let fut = InterruptFuture::new(&mut self.tx_int);
//
// tx_transfer.start(|_spi| {});
// fut.await;
// let (tx_stream, spi, _buf, _) = tx_transfer.free();
for i in 0..(static_buf.len() - 1) {
let byte = static_buf[i];
nb::block!(write_sr(&spi, byte));
}
self.tx_stream.replace(tx_stream);
self.spi.replace(spi);
Ok(())
}
}
fn read_write<'a>(
&'a mut self,
read_buf: &'a mut [u8],
write_buf: &'a [u8],
) -> Self::WriteReadFuture<'a> {
#[allow(mutable_transmutes)]
let write_static_buf: &'static mut [u8] = unsafe { mem::transmute(write_buf) };
let read_static_buf: &'static mut [u8] = unsafe { mem::transmute(read_buf) };
async move {
let tx_stream = self.tx_stream.take().unwrap();
let rx_stream = self.rx_stream.take().unwrap();
let spi_tx = self.spi.take().unwrap();
let spi_rx: SPI = unsafe { mem::transmute_copy(&spi_tx) };
spi_rx
.cr2
.modify(|_, w| w.errie().set_bit().txeie().set_bit().rxneie().set_bit());
// let mut tx_transfer = Transfer::init(
// tx_stream,
// spi_tx,
// write_static_buf,
// None,
// DmaConfig::default()
// .transfer_complete_interrupt(true)
// .memory_increment(true)
// .double_buffer(false),
// );
//
// let mut rx_transfer = Transfer::init(
// rx_stream,
// spi_rx,
// read_static_buf,
// None,
// DmaConfig::default()
// .transfer_complete_interrupt(true)
// .memory_increment(true)
// .double_buffer(false),
// );
//
// let tx_fut = InterruptFuture::new(&mut self.tx_int);
// let rx_fut = InterruptFuture::new(&mut self.rx_int);
// let rx_fut_err = InterruptFuture::new(&mut self.spi_int);
//
// rx_transfer.start(|_spi| {});
// tx_transfer.start(|_spi| {});
//
// time::Timer::after(time::Duration::from_millis(500)).await;
//
// // tx_fut.await;
// // future::select(rx_fut, rx_fut_err).await;
//
// let (rx_stream, spi_rx, _buf, _) = rx_transfer.free();
// let (tx_stream, _, _buf, _) = tx_transfer.free();
for i in 0..(read_static_buf.len() - 1) {
let byte = write_static_buf[i];
loop {
let fut = InterruptFuture::new(&mut self.spi_int);
match write_sr(&spi_tx, byte) {
Ok(()) => break,
_ => {}
}
fut.await;
}
loop {
let fut = InterruptFuture::new(&mut self.spi_int);
match read_sr(&spi_tx) {
Ok(byte) => {
read_static_buf[i] = byte;
break;
}
_ => {}
}
fut.await;
}
}
spi_rx.cr2.modify(|_, w| {
w.errie()
.clear_bit()
.txeie()
.clear_bit()
.rxneie()
.clear_bit()
});
self.rx_stream.replace(rx_stream);
self.tx_stream.replace(tx_stream);
self.spi.replace(spi_rx);
Ok(())
}
}
}
mod private {
pub trait Sealed {}
}
pub trait WithInterrupt: private::Sealed {
type Interrupt: Interrupt;
}
pub trait Instance: Deref<Target = pac::spi1::RegisterBlock> + private::Sealed {
unsafe fn enable_clock();
fn clock_speed(clocks: Clocks) -> Hertz;
}
macro_rules! dma {
($($PER:ident => ($dma:ident, $stream:ident),)+) => {
$(
impl private::Sealed for dma::$stream<pac::$dma> {}
impl WithInterrupt for dma::$stream<pac::$dma> {
type Interrupt = interrupt::$PER;
}
)+
}
}
macro_rules! spi {
($($PER:ident => ($SPI:ident, $pclkX:ident, $apbXenr:ident, $en:expr),)+) => {
$(
impl private::Sealed for pac::$SPI {}
impl Instance for pac::$SPI {
unsafe fn enable_clock() {
const EN_BIT: u8 = $en;
// NOTE(unsafe) self reference will only be used for atomic writes with no side effects.
let rcc = &(*pac::RCC::ptr());
// Enable clock.
bb::set(&rcc.$apbXenr, EN_BIT);
// Stall the pipeline to work around erratum 2.1.13 (DM00037591)
cortex_m::asm::dsb();
}
fn clock_speed(clocks: Clocks) -> Hertz {
clocks.$pclkX()
}
}
impl WithInterrupt for pac::$SPI {
type Interrupt = interrupt::$PER;
}
)+
}
}
dma! {
DMA2_STREAM0 => (DMA2, Stream0),
DMA2_STREAM1 => (DMA2, Stream1),
DMA2_STREAM2 => (DMA2, Stream2),
DMA2_STREAM3 => (DMA2, Stream3),
DMA2_STREAM4 => (DMA2, Stream4),
DMA2_STREAM5 => (DMA2, Stream5),
DMA2_STREAM6 => (DMA2, Stream6),
DMA2_STREAM7 => (DMA2, Stream7),
DMA1_STREAM0 => (DMA1, Stream0),
DMA1_STREAM1 => (DMA1, Stream1),
DMA1_STREAM2 => (DMA1, Stream2),
DMA1_STREAM3 => (DMA1, Stream3),
DMA1_STREAM4 => (DMA1, Stream4),
DMA1_STREAM5 => (DMA1, Stream5),
DMA1_STREAM6 => (DMA1, Stream6),
}
#[cfg(any(
feature = "stm32f401",
feature = "stm32f410",
feature = "stm32f411",
feature = "stm32f446",
))]
spi! {
SPI1 => (SPI1, pclk2, apb2enr, 12),
SPI2 => (SPI2, pclk1, apb2enr, 14),
// SPI6 => (SPI6, pclk2, apb2enr, 21),
SPI4 => (SPI3, pclk2, apb2enr, 13),
// SPI5 => (SPI3, pclk2, apb2enr, 20),
}
#[cfg(any(feature = "stm32f405", feature = "stm32f407"))]
spi! {
SPI1 => (SPI1, pclk2, apb2enr, 12),
SPI3 => (SPI3, pclk1, apb2enr, 15),
}

View file

@ -1,59 +0,0 @@
use core::sync::atomic::{compiler_fence, Ordering};
use crate::pac::NVIC_PRIO_BITS;
// Re-exports
pub use cortex_m::interrupt::{CriticalSection, Mutex};
pub use embassy::interrupt::{declare, take, Interrupt};
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(u8)]
pub enum Priority {
Level0 = 0,
Level1 = 1,
Level2 = 2,
Level3 = 3,
Level4 = 4,
Level5 = 5,
Level6 = 6,
Level7 = 7,
Level8 = 8,
Level9 = 9,
Level10 = 10,
Level11 = 11,
Level12 = 12,
Level13 = 13,
Level14 = 14,
Level15 = 15,
}
impl From<u8> for Priority {
fn from(priority: u8) -> Self {
match priority >> (8 - NVIC_PRIO_BITS) {
0 => Self::Level0,
1 => Self::Level1,
2 => Self::Level2,
3 => Self::Level3,
4 => Self::Level4,
5 => Self::Level5,
6 => Self::Level6,
7 => Self::Level7,
8 => Self::Level8,
9 => Self::Level9,
10 => Self::Level10,
11 => Self::Level11,
12 => Self::Level12,
13 => Self::Level13,
14 => Self::Level14,
15 => Self::Level15,
_ => unreachable!(),
}
}
}
impl From<Priority> for u8 {
fn from(p: Priority) -> Self {
(p as u8) << (8 - NVIC_PRIO_BITS)
}
}

View file

@ -1,504 +0,0 @@
use crate::hal::bb;
use crate::hal::rcc::Clocks;
use core::cell::Cell;
use core::convert::TryInto;
use core::sync::atomic::{compiler_fence, AtomicU32, Ordering};
use embassy::interrupt::InterruptExt;
use embassy::time::{Clock, TICKS_PER_SECOND};
use crate::interrupt;
use crate::interrupt::{CriticalSection, Interrupt, Mutex};
// RTC timekeeping works with something we call "periods", which are time intervals
// of 2^15 ticks. The RTC counter value is 16 bits, so one "overflow cycle" is 2 periods.
//
// A `period` count is maintained in parallel to the RTC hardware `counter`, like this:
// - `period` and `counter` start at 0
// - `period` is incremented on overflow (at counter value 0)
// - `period` is incremented "midway" between overflows (at counter value 0x8000)
//
// Therefore, when `period` is even, counter is in 0..0x7FFF. When odd, counter is in 0x8000..0xFFFF
// This allows for now() to return the correct value even if it races an overflow.
//
// To get `now()`, `period` is read first, then `counter` is read. If the counter value matches
// the expected range for the `period` parity, we're done. If it doesn't, this means that
// a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value
// corresponds to the next period.
//
// `period` is a 32bit integer, so It overflows on 2^32 * 2^15 / 32768 seconds of uptime, which is 136 years.
fn calc_now(period: u32, counter: u16) -> u64 {
((period as u64) << 15) + ((counter as u32 ^ ((period & 1) << 15)) as u64)
}
struct AlarmState {
timestamp: Cell<u64>,
callback: Cell<Option<(fn(*mut ()), *mut ())>>,
}
impl AlarmState {
fn new() -> Self {
Self {
timestamp: Cell::new(u64::MAX),
callback: Cell::new(None),
}
}
}
// TODO: This is sometimes wasteful, try to find a better way
const ALARM_COUNT: usize = 3;
/// RTC timer that can be used by the executor and to set alarms.
///
/// It can work with Timers 2, 3, 4, 5, 9 and 12. Timers 9 and 12 only have one alarm available,
/// while the others have three each.
/// This timer works internally with a unit of 2^15 ticks, which means that if a call to
/// [`embassy::time::Clock::now`] is blocked for that amount of ticks the returned value will be
/// wrong (an old value). The current default tick rate is 32768 ticks per second.
pub struct RTC<T: Instance> {
rtc: T,
irq: T::Interrupt,
/// Number of 2^23 periods elapsed since boot.
period: AtomicU32,
/// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled.
alarms: Mutex<[AlarmState; ALARM_COUNT]>,
clocks: Clocks,
}
impl<T: Instance> RTC<T> {
pub fn new(rtc: T, irq: T::Interrupt, clocks: Clocks) -> Self {
Self {
rtc,
irq,
period: AtomicU32::new(0),
alarms: Mutex::new([AlarmState::new(), AlarmState::new(), AlarmState::new()]),
clocks,
}
}
pub fn start(&'static self) {
self.rtc.enable_clock();
self.rtc.stop_and_reset();
let multiplier = if T::ppre(&self.clocks) == 1 { 1 } else { 2 };
let freq = T::pclk(&self.clocks) * multiplier;
let psc = freq / TICKS_PER_SECOND as u32 - 1;
let psc: u16 = psc.try_into().unwrap();
self.rtc.set_psc_arr(psc, u16::MAX);
// Mid-way point
self.rtc.set_compare(0, 0x8000);
self.rtc.set_compare_interrupt(0, true);
self.irq.set_handler(|ptr| unsafe {
let this = &*(ptr as *const () as *const Self);
this.on_interrupt();
});
self.irq.set_handler_context(self as *const _ as *mut _);
self.irq.unpend();
self.irq.enable();
self.rtc.start();
}
fn on_interrupt(&self) {
if self.rtc.overflow_interrupt_status() {
self.rtc.overflow_clear_flag();
self.next_period();
}
// Half overflow
if self.rtc.compare_interrupt_status(0) {
self.rtc.compare_clear_flag(0);
self.next_period();
}
for n in 1..=ALARM_COUNT {
if self.rtc.compare_interrupt_status(n) {
self.rtc.compare_clear_flag(n);
interrupt::free(|cs| self.trigger_alarm(n, cs));
}
}
}
fn next_period(&self) {
interrupt::free(|cs| {
let period = self.period.fetch_add(1, Ordering::Relaxed) + 1;
let t = (period as u64) << 15;
for n in 1..=ALARM_COUNT {
let alarm = &self.alarms.borrow(cs)[n - 1];
let at = alarm.timestamp.get();
let diff = at - t;
if diff < 0xc000 {
self.rtc.set_compare(n, at as u16);
self.rtc.set_compare_interrupt(n, true);
}
}
})
}
fn trigger_alarm(&self, n: usize, cs: &CriticalSection) {
self.rtc.set_compare_interrupt(n, false);
let alarm = &self.alarms.borrow(cs)[n - 1];
alarm.timestamp.set(u64::MAX);
// Call after clearing alarm, so the callback can set another alarm.
if let Some((f, ctx)) = alarm.callback.get() {
f(ctx);
}
}
fn set_alarm_callback(&self, n: usize, callback: fn(*mut ()), ctx: *mut ()) {
interrupt::free(|cs| {
let alarm = &self.alarms.borrow(cs)[n - 1];
alarm.callback.set(Some((callback, ctx)));
})
}
fn set_alarm(&self, n: usize, timestamp: u64) {
interrupt::free(|cs| {
let alarm = &self.alarms.borrow(cs)[n - 1];
alarm.timestamp.set(timestamp);
let t = self.now();
if timestamp <= t {
self.trigger_alarm(n, cs);
return;
}
let diff = timestamp - t;
if diff < 0xc000 {
let safe_timestamp = timestamp.max(t + 3);
self.rtc.set_compare(n, safe_timestamp as u16);
self.rtc.set_compare_interrupt(n, true);
} else {
self.rtc.set_compare_interrupt(n, false);
}
})
}
pub fn alarm1(&'static self) -> Alarm<T> {
Alarm { n: 1, rtc: self }
}
pub fn alarm2(&'static self) -> Option<Alarm<T>> {
if T::REAL_ALARM_COUNT >= 2 {
Some(Alarm { n: 2, rtc: self })
} else {
None
}
}
pub fn alarm3(&'static self) -> Option<Alarm<T>> {
if T::REAL_ALARM_COUNT >= 3 {
Some(Alarm { n: 3, rtc: self })
} else {
None
}
}
}
impl<T: Instance> embassy::time::Clock for RTC<T> {
fn now(&self) -> u64 {
let period = self.period.load(Ordering::Relaxed);
compiler_fence(Ordering::Acquire);
let counter = self.rtc.counter();
calc_now(period, counter)
}
}
pub struct Alarm<T: Instance> {
n: usize,
rtc: &'static RTC<T>,
}
impl<T: Instance> embassy::time::Alarm for Alarm<T> {
fn set_callback(&self, callback: fn(*mut ()), ctx: *mut ()) {
self.rtc.set_alarm_callback(self.n, callback, ctx);
}
fn set(&self, timestamp: u64) {
self.rtc.set_alarm(self.n, timestamp);
}
fn clear(&self) {
self.rtc.set_alarm(self.n, u64::MAX);
}
}
mod sealed {
pub trait Sealed {}
}
pub trait Instance: sealed::Sealed + Sized + 'static {
type Interrupt: Interrupt;
const REAL_ALARM_COUNT: usize;
fn enable_clock(&self);
fn set_compare(&self, n: usize, value: u16);
fn set_compare_interrupt(&self, n: usize, enable: bool);
fn compare_interrupt_status(&self, n: usize) -> bool;
fn compare_clear_flag(&self, n: usize);
fn overflow_interrupt_status(&self) -> bool;
fn overflow_clear_flag(&self);
// This method should ensure that the values are really updated before returning
fn set_psc_arr(&self, psc: u16, arr: u16);
fn stop_and_reset(&self);
fn start(&self);
fn counter(&self) -> u16;
fn ppre(clocks: &Clocks) -> u8;
fn pclk(clocks: &Clocks) -> u32;
}
#[allow(unused_macros)]
macro_rules! impl_timer {
($module:ident: ($TYPE:ident, $INT:ident, $apbenr:ident, $enrbit:expr, $apbrstr:ident, $rstrbit:expr, $ppre:ident, $pclk: ident), 3) => {
mod $module {
use super::*;
use crate::hal::pac::{$TYPE, RCC};
impl sealed::Sealed for $TYPE {}
impl Instance for $TYPE {
type Interrupt = interrupt::$INT;
const REAL_ALARM_COUNT: usize = 3;
fn enable_clock(&self) {
// NOTE(unsafe) It will only be used for atomic operations
unsafe {
let rcc = &*RCC::ptr();
bb::set(&rcc.$apbenr, $enrbit);
bb::set(&rcc.$apbrstr, $rstrbit);
bb::clear(&rcc.$apbrstr, $rstrbit);
}
}
fn set_compare(&self, n: usize, value: u16) {
// NOTE(unsafe) these registers accept all the range of u16 values
match n {
0 => self.ccr1.write(|w| unsafe { w.bits(value.into()) }),
1 => self.ccr2.write(|w| unsafe { w.bits(value.into()) }),
2 => self.ccr3.write(|w| unsafe { w.bits(value.into()) }),
3 => self.ccr4.write(|w| unsafe { w.bits(value.into()) }),
_ => {}
}
}
fn set_compare_interrupt(&self, n: usize, enable: bool) {
if n > 3 {
return;
}
let bit = n as u8 + 1;
unsafe {
if enable {
bb::set(&self.dier, bit);
} else {
bb::clear(&self.dier, bit);
}
}
}
fn compare_interrupt_status(&self, n: usize) -> bool {
let status = self.sr.read();
match n {
0 => status.cc1if().bit_is_set(),
1 => status.cc2if().bit_is_set(),
2 => status.cc3if().bit_is_set(),
3 => status.cc4if().bit_is_set(),
_ => false,
}
}
fn compare_clear_flag(&self, n: usize) {
if n > 3 {
return;
}
let bit = n as u8 + 1;
unsafe {
bb::clear(&self.sr, bit);
}
}
fn overflow_interrupt_status(&self) -> bool {
self.sr.read().uif().bit_is_set()
}
fn overflow_clear_flag(&self) {
unsafe {
bb::clear(&self.sr, 0);
}
}
fn set_psc_arr(&self, psc: u16, arr: u16) {
// NOTE(unsafe) All u16 values are valid
self.psc.write(|w| unsafe { w.bits(psc.into()) });
self.arr.write(|w| unsafe { w.bits(arr.into()) });
unsafe {
// Set URS, generate update, clear URS
bb::set(&self.cr1, 2);
self.egr.write(|w| w.ug().set_bit());
bb::clear(&self.cr1, 2);
}
}
fn stop_and_reset(&self) {
unsafe {
bb::clear(&self.cr1, 0);
}
self.cnt.reset();
}
fn start(&self) {
unsafe { bb::set(&self.cr1, 0) }
}
fn counter(&self) -> u16 {
self.cnt.read().bits() as u16
}
fn ppre(clocks: &Clocks) -> u8 {
clocks.$ppre()
}
fn pclk(clocks: &Clocks) -> u32 {
clocks.$pclk().0
}
}
}
};
($module:ident: ($TYPE:ident, $INT:ident, $apbenr:ident, $enrbit:expr, $apbrstr:ident, $rstrbit:expr, $ppre:ident, $pclk: ident), 1) => {
mod $module {
use super::*;
use crate::hal::pac::{$TYPE, RCC};
impl sealed::Sealed for $TYPE {}
impl Instance for $TYPE {
type Interrupt = interrupt::$INT;
const REAL_ALARM_COUNT: usize = 1;
fn enable_clock(&self) {
// NOTE(unsafe) It will only be used for atomic operations
unsafe {
let rcc = &*RCC::ptr();
bb::set(&rcc.$apbenr, $enrbit);
bb::set(&rcc.$apbrstr, $rstrbit);
bb::clear(&rcc.$apbrstr, $rstrbit);
}
}
fn set_compare(&self, n: usize, value: u16) {
// NOTE(unsafe) these registers accept all the range of u16 values
match n {
0 => self.ccr1.write(|w| unsafe { w.bits(value.into()) }),
1 => self.ccr2.write(|w| unsafe { w.bits(value.into()) }),
_ => {}
}
}
fn set_compare_interrupt(&self, n: usize, enable: bool) {
if n > 1 {
return;
}
let bit = n as u8 + 1;
unsafe {
if enable {
bb::set(&self.dier, bit);
} else {
bb::clear(&self.dier, bit);
}
}
}
fn compare_interrupt_status(&self, n: usize) -> bool {
let status = self.sr.read();
match n {
0 => status.cc1if().bit_is_set(),
1 => status.cc2if().bit_is_set(),
_ => false,
}
}
fn compare_clear_flag(&self, n: usize) {
if n > 1 {
return;
}
let bit = n as u8 + 1;
unsafe {
bb::clear(&self.sr, bit);
}
}
fn overflow_interrupt_status(&self) -> bool {
self.sr.read().uif().bit_is_set()
}
fn overflow_clear_flag(&self) {
unsafe {
bb::clear(&self.sr, 0);
}
}
fn set_psc_arr(&self, psc: u16, arr: u16) {
// NOTE(unsafe) All u16 values are valid
self.psc.write(|w| unsafe { w.bits(psc.into()) });
self.arr.write(|w| unsafe { w.bits(arr.into()) });
unsafe {
// Set URS, generate update, clear URS
bb::set(&self.cr1, 2);
self.egr.write(|w| w.ug().set_bit());
bb::clear(&self.cr1, 2);
}
}
fn stop_and_reset(&self) {
unsafe {
bb::clear(&self.cr1, 0);
}
self.cnt.reset();
}
fn start(&self) {
unsafe { bb::set(&self.cr1, 0) }
}
fn counter(&self) -> u16 {
self.cnt.read().bits() as u16
}
fn ppre(clocks: &Clocks) -> u8 {
clocks.$ppre()
}
fn pclk(clocks: &Clocks) -> u32 {
clocks.$pclk().0
}
}
}
};
}
#[cfg(not(feature = "stm32f410"))]
impl_timer!(tim2: (TIM2, TIM2, apb1enr, 0, apb1rstr, 0, ppre1, pclk1), 3);
#[cfg(not(feature = "stm32f410"))]
impl_timer!(tim3: (TIM3, TIM3, apb1enr, 1, apb1rstr, 1, ppre1, pclk1), 3);
#[cfg(not(feature = "stm32f410"))]
impl_timer!(tim4: (TIM4, TIM4, apb1enr, 2, apb1rstr, 2, ppre1, pclk1), 3);
impl_timer!(tim5: (TIM5, TIM5, apb1enr, 3, apb1rstr, 3, ppre1, pclk1), 3);
impl_timer!(tim9: (TIM9, TIM1_BRK_TIM9, apb2enr, 16, apb2rstr, 16, ppre2, pclk2), 1);
#[cfg(not(any(feature = "stm32f401", feature = "stm32f410", feature = "stm32f411")))]
impl_timer!(tim12: (TIM12, TIM8_BRK_TIM12, apb1enr, 6, apb1rstr, 6, ppre1, pclk1), 1);