Merge pull request #2565 from caleb-garrett/hmac

STM32 HMAC
This commit is contained in:
Dario Nieuwenhuis 2024-02-13 20:47:42 +01:00 committed by GitHub
commit 4c7ed5e055
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 110 additions and 17 deletions

View file

@ -100,8 +100,9 @@ pub enum DataType {
/// Stores the state of the HASH peripheral for suspending/resuming /// Stores the state of the HASH peripheral for suspending/resuming
/// digest calculation. /// digest calculation.
pub struct Context { pub struct Context<'c> {
first_word_sent: bool, first_word_sent: bool,
key_sent: bool,
buffer: [u8; HASH_BUFFER_LEN], buffer: [u8; HASH_BUFFER_LEN],
buflen: usize, buflen: usize,
algo: Algorithm, algo: Algorithm,
@ -110,8 +111,11 @@ pub struct Context {
str: u32, str: u32,
cr: u32, cr: u32,
csr: [u32; NUM_CONTEXT_REGS], csr: [u32; NUM_CONTEXT_REGS],
key: HmacKey<'c>,
} }
type HmacKey<'k> = Option<&'k [u8]>;
/// HASH driver. /// HASH driver.
pub struct Hash<'d, T: Instance, D = NoDma> { pub struct Hash<'d, T: Instance, D = NoDma> {
_peripheral: PeripheralRef<'d, T>, _peripheral: PeripheralRef<'d, T>,
@ -140,10 +144,11 @@ impl<'d, T: Instance, D> Hash<'d, T, D> {
} }
/// Starts computation of a new hash and returns the saved peripheral state. /// Starts computation of a new hash and returns the saved peripheral state.
pub fn start(&mut self, algorithm: Algorithm, format: DataType) -> Context { pub fn start<'c>(&mut self, algorithm: Algorithm, format: DataType, key: HmacKey<'c>) -> Context<'c> {
// Define a context for this new computation. // Define a context for this new computation.
let mut ctx = Context { let mut ctx = Context {
first_word_sent: false, first_word_sent: false,
key_sent: false,
buffer: [0; HASH_BUFFER_LEN], buffer: [0; HASH_BUFFER_LEN],
buflen: 0, buflen: 0,
algo: algorithm, algo: algorithm,
@ -152,6 +157,7 @@ impl<'d, T: Instance, D> Hash<'d, T, D> {
str: 0, str: 0,
cr: 0, cr: 0,
csr: [0; NUM_CONTEXT_REGS], csr: [0; NUM_CONTEXT_REGS],
key,
}; };
// Set the data type in the peripheral. // Set the data type in the peripheral.
@ -181,6 +187,14 @@ impl<'d, T: Instance, D> Hash<'d, T, D> {
#[cfg(any(hash_v3, hash_v4))] #[cfg(any(hash_v3, hash_v4))]
T::regs().cr().modify(|w| w.set_algo(ctx.algo as u8)); T::regs().cr().modify(|w| w.set_algo(ctx.algo as u8));
// Configure HMAC mode if a key is provided.
if let Some(key) = ctx.key {
T::regs().cr().modify(|w| w.set_mode(true));
if key.len() > 64 {
T::regs().cr().modify(|w| w.set_lkey(true));
}
}
T::regs().cr().modify(|w| w.set_init(true)); T::regs().cr().modify(|w| w.set_init(true));
// Store and return the state of the peripheral. // Store and return the state of the peripheral.
@ -191,18 +205,30 @@ impl<'d, T: Instance, D> Hash<'d, T, D> {
/// Restores the peripheral state using the given context, /// Restores the peripheral state using the given context,
/// then updates the state with the provided data. /// then updates the state with the provided data.
/// Peripheral state is saved upon return. /// Peripheral state is saved upon return.
pub fn update_blocking(&mut self, ctx: &mut Context, input: &[u8]) { pub fn update_blocking<'c>(&mut self, ctx: &mut Context<'c>, input: &[u8]) {
// Restore the peripheral state.
self.load_context(&ctx);
// Load the HMAC key if provided.
if !ctx.key_sent {
if let Some(key) = ctx.key {
self.accumulate_blocking(key);
T::regs().str().write(|w| w.set_dcal(true));
// Block waiting for digest.
while !T::regs().sr().read().dinis() {}
}
ctx.key_sent = true;
}
let mut data_waiting = input.len() + ctx.buflen; let mut data_waiting = input.len() + ctx.buflen;
if data_waiting < DIGEST_BLOCK_SIZE || (data_waiting < ctx.buffer.len() && !ctx.first_word_sent) { if data_waiting < DIGEST_BLOCK_SIZE || (data_waiting < ctx.buffer.len() && !ctx.first_word_sent) {
// There isn't enough data to digest a block, so append it to the buffer. // There isn't enough data to digest a block, so append it to the buffer.
ctx.buffer[ctx.buflen..ctx.buflen + input.len()].copy_from_slice(input); ctx.buffer[ctx.buflen..ctx.buflen + input.len()].copy_from_slice(input);
ctx.buflen += input.len(); ctx.buflen += input.len();
self.store_context(ctx);
return; return;
} }
// Restore the peripheral state.
self.load_context(&ctx);
let mut ilen_remaining = input.len(); let mut ilen_remaining = input.len();
let mut input_start = 0; let mut input_start = 0;
@ -261,21 +287,30 @@ impl<'d, T: Instance, D> Hash<'d, T, D> {
/// then updates the state with the provided data. /// then updates the state with the provided data.
/// Peripheral state is saved upon return. /// Peripheral state is saved upon return.
#[cfg(hash_v2)] #[cfg(hash_v2)]
pub async fn update(&mut self, ctx: &mut Context, input: &[u8]) pub async fn update<'c>(&mut self, ctx: &mut Context<'c>, input: &[u8])
where where
D: crate::hash::Dma<T>, D: crate::hash::Dma<T>,
{ {
// Restore the peripheral state.
self.load_context(&ctx);
// Load the HMAC key if provided.
if !ctx.key_sent {
if let Some(key) = ctx.key {
self.accumulate(key).await;
}
ctx.key_sent = true;
}
let data_waiting = input.len() + ctx.buflen; let data_waiting = input.len() + ctx.buflen;
if data_waiting < DIGEST_BLOCK_SIZE { if data_waiting < DIGEST_BLOCK_SIZE {
// There isn't enough data to digest a block, so append it to the buffer. // There isn't enough data to digest a block, so append it to the buffer.
ctx.buffer[ctx.buflen..ctx.buflen + input.len()].copy_from_slice(input); ctx.buffer[ctx.buflen..ctx.buflen + input.len()].copy_from_slice(input);
ctx.buflen += input.len(); ctx.buflen += input.len();
self.store_context(ctx);
return; return;
} }
// Restore the peripheral state.
self.load_context(&ctx);
// Enable multiple DMA transfers. // Enable multiple DMA transfers.
T::regs().cr().modify(|w| w.set_mdmat(true)); T::regs().cr().modify(|w| w.set_mdmat(true));
@ -319,7 +354,7 @@ impl<'d, T: Instance, D> Hash<'d, T, D> {
/// The digest buffer must be large enough to accomodate a digest for the selected algorithm. /// The digest buffer must be large enough to accomodate a digest for the selected algorithm.
/// The largest returned digest size is 128 bytes for SHA-512. /// The largest returned digest size is 128 bytes for SHA-512.
/// Panics if the supplied digest buffer is too short. /// Panics if the supplied digest buffer is too short.
pub fn finish_blocking(&mut self, mut ctx: Context, digest: &mut [u8]) -> usize { pub fn finish_blocking<'c>(&mut self, mut ctx: Context<'c>, digest: &mut [u8]) -> usize {
// Restore the peripheral state. // Restore the peripheral state.
self.load_context(&ctx); self.load_context(&ctx);
@ -330,7 +365,14 @@ impl<'d, T: Instance, D> Hash<'d, T, D> {
//Start the digest calculation. //Start the digest calculation.
T::regs().str().write(|w| w.set_dcal(true)); T::regs().str().write(|w| w.set_dcal(true));
// Block waiting for digest. // Load the HMAC key if provided.
if let Some(key) = ctx.key {
while !T::regs().sr().read().dinis() {}
self.accumulate_blocking(key);
T::regs().str().write(|w| w.set_dcal(true));
}
// Block until digest computation is complete.
while !T::regs().sr().read().dcis() {} while !T::regs().sr().read().dcis() {}
// Return the digest. // Return the digest.
@ -370,7 +412,7 @@ impl<'d, T: Instance, D> Hash<'d, T, D> {
/// The largest returned digest size is 128 bytes for SHA-512. /// The largest returned digest size is 128 bytes for SHA-512.
/// Panics if the supplied digest buffer is too short. /// Panics if the supplied digest buffer is too short.
#[cfg(hash_v2)] #[cfg(hash_v2)]
pub async fn finish(&mut self, mut ctx: Context, digest: &mut [u8]) -> usize pub async fn finish<'c>(&mut self, mut ctx: Context<'c>, digest: &mut [u8]) -> usize
where where
D: crate::hash::Dma<T>, D: crate::hash::Dma<T>,
{ {
@ -384,6 +426,11 @@ impl<'d, T: Instance, D> Hash<'d, T, D> {
self.accumulate(&ctx.buffer[0..ctx.buflen]).await; self.accumulate(&ctx.buffer[0..ctx.buflen]).await;
ctx.buflen = 0; ctx.buflen = 0;
// Load the HMAC key if provided.
if let Some(key) = ctx.key {
self.accumulate(key).await;
}
// Wait for completion. // Wait for completion.
poll_fn(|cx| { poll_fn(|cx| {
// Check if already done. // Check if already done.
@ -484,7 +531,7 @@ impl<'d, T: Instance, D> Hash<'d, T, D> {
} }
/// Save the peripheral state to a context. /// Save the peripheral state to a context.
fn store_context(&mut self, ctx: &mut Context) { fn store_context<'c>(&mut self, ctx: &mut Context<'c>) {
// Block waiting for data in ready. // Block waiting for data in ready.
while !T::regs().sr().read().dinis() {} while !T::regs().sr().read().dinis() {}

View file

@ -29,6 +29,7 @@ critical-section = "1.1"
embedded-storage = "0.3.1" embedded-storage = "0.3.1"
static_cell = "2" static_cell = "2"
sha2 = { version = "0.10.8", default-features = false } sha2 = { version = "0.10.8", default-features = false }
hmac = "0.12.1"
[profile.release] [profile.release]
debug = 2 debug = 2

View file

@ -6,9 +6,12 @@ use embassy_executor::Spawner;
use embassy_stm32::hash::*; use embassy_stm32::hash::*;
use embassy_stm32::{bind_interrupts, hash, peripherals, Config}; use embassy_stm32::{bind_interrupts, hash, peripherals, Config};
use embassy_time::Instant; use embassy_time::Instant;
use hmac::{Hmac, Mac};
use sha2::{Digest, Sha256}; use sha2::{Digest, Sha256};
use {defmt_rtt as _, panic_probe as _}; use {defmt_rtt as _, panic_probe as _};
type HmacSha256 = Hmac<Sha256>;
bind_interrupts!(struct Irqs { bind_interrupts!(struct Irqs {
HASH_RNG => hash::InterruptHandler<peripherals::HASH>; HASH_RNG => hash::InterruptHandler<peripherals::HASH>;
}); });
@ -26,7 +29,7 @@ async fn main(_spawner: Spawner) -> ! {
let hw_start_time = Instant::now(); let hw_start_time = Instant::now();
// Compute a digest in hardware. // Compute a digest in hardware.
let mut context = hw_hasher.start(Algorithm::SHA256, DataType::Width8); let mut context = hw_hasher.start(Algorithm::SHA256, DataType::Width8, None);
hw_hasher.update(&mut context, test_1).await; hw_hasher.update(&mut context, test_1).await;
hw_hasher.update(&mut context, test_2).await; hw_hasher.update(&mut context, test_2).await;
let mut hw_digest: [u8; 32] = [0; 32]; let mut hw_digest: [u8; 32] = [0; 32];
@ -52,5 +55,24 @@ async fn main(_spawner: Spawner) -> ! {
info!("Software Execution Time: {:?}", sw_execution_time); info!("Software Execution Time: {:?}", sw_execution_time);
assert_eq!(hw_digest, sw_digest[..]); assert_eq!(hw_digest, sw_digest[..]);
let hmac_key: [u8; 64] = [0x55; 64];
// Compute HMAC in hardware.
let mut sha256hmac_context = hw_hasher.start(Algorithm::SHA256, DataType::Width8, Some(&hmac_key));
hw_hasher.update(&mut sha256hmac_context, test_1).await;
hw_hasher.update(&mut sha256hmac_context, test_2).await;
let mut hw_hmac: [u8; 32] = [0; 32];
hw_hasher.finish(sha256hmac_context, &mut hw_hmac).await;
// Compute HMAC in software.
let mut sw_mac = HmacSha256::new_from_slice(&hmac_key).unwrap();
sw_mac.update(test_1);
sw_mac.update(test_2);
let sw_hmac = sw_mac.finalize().into_bytes();
info!("Hardware HMAC: {:?}", hw_hmac);
info!("Software HMAC: {:?}", sw_hmac[..]);
assert_eq!(hw_hmac, sw_hmac[..]);
loop {} loop {}
} }

View file

@ -76,6 +76,7 @@ portable-atomic = { version = "1.5", features = [] }
chrono = { version = "^0.4", default-features = false, optional = true} chrono = { version = "^0.4", default-features = false, optional = true}
sha2 = { version = "0.10.8", default-features = false } sha2 = { version = "0.10.8", default-features = false }
hmac = "0.12.1"
# BEGIN TESTS # BEGIN TESTS
# Generated by gen_test.py. DO NOT EDIT. # Generated by gen_test.py. DO NOT EDIT.

View file

@ -9,9 +9,12 @@ use embassy_executor::Spawner;
use embassy_stm32::dma::NoDma; use embassy_stm32::dma::NoDma;
use embassy_stm32::hash::*; use embassy_stm32::hash::*;
use embassy_stm32::{bind_interrupts, hash, peripherals}; use embassy_stm32::{bind_interrupts, hash, peripherals};
use hmac::{Hmac, Mac};
use sha2::{Digest, Sha224, Sha256}; use sha2::{Digest, Sha224, Sha256};
use {defmt_rtt as _, panic_probe as _}; use {defmt_rtt as _, panic_probe as _};
type HmacSha256 = Hmac<Sha256>;
#[cfg(any(feature = "stm32l4a6zg", feature = "stm32h755zi", feature = "stm32h753zi"))] #[cfg(any(feature = "stm32l4a6zg", feature = "stm32h755zi", feature = "stm32h753zi"))]
bind_interrupts!(struct Irqs { bind_interrupts!(struct Irqs {
HASH_RNG => hash::InterruptHandler<peripherals::HASH>; HASH_RNG => hash::InterruptHandler<peripherals::HASH>;
@ -38,11 +41,11 @@ async fn main(_spawner: Spawner) {
let test_3: &[u8] = b"a.ewtkluGWEBR.KAJRBTA,RMNRBG,FDMGB.kger.tkasjrbt.akrjtba.krjtba.ktmyna,nmbvtyliasd;gdrtba,sfvs.kgjzshd.gkbsr.tksejb.SDkfBSE.gkfgb>ESkfbSE>gkJSBESE>kbSE>fk"; let test_3: &[u8] = b"a.ewtkluGWEBR.KAJRBTA,RMNRBG,FDMGB.kger.tkasjrbt.akrjtba.krjtba.ktmyna,nmbvtyliasd;gdrtba,sfvs.kgjzshd.gkbsr.tksejb.SDkfBSE.gkfgb>ESkfbSE>gkJSBESE>kbSE>fk";
// Start an SHA-256 digest. // Start an SHA-256 digest.
let mut sha256context = hw_hasher.start(Algorithm::SHA256, DataType::Width8); let mut sha256context = hw_hasher.start(Algorithm::SHA256, DataType::Width8, None);
hw_hasher.update_blocking(&mut sha256context, test_1); hw_hasher.update_blocking(&mut sha256context, test_1);
// Interrupt the SHA-256 digest to compute an SHA-224 digest. // Interrupt the SHA-256 digest to compute an SHA-224 digest.
let mut sha224context = hw_hasher.start(Algorithm::SHA224, DataType::Width8); let mut sha224context = hw_hasher.start(Algorithm::SHA224, DataType::Width8, None);
hw_hasher.update_blocking(&mut sha224context, test_3); hw_hasher.update_blocking(&mut sha224context, test_3);
let mut sha224_digest_buffer: [u8; 28] = [0; 28]; let mut sha224_digest_buffer: [u8; 28] = [0; 28];
let _ = hw_hasher.finish_blocking(sha224context, &mut sha224_digest_buffer); let _ = hw_hasher.finish_blocking(sha224context, &mut sha224_digest_buffer);
@ -73,6 +76,25 @@ async fn main(_spawner: Spawner) {
info!("Software SHA-256 Digest: {:?}", sw_sha224_digest[..]); info!("Software SHA-256 Digest: {:?}", sw_sha224_digest[..]);
defmt::assert!(sha224_digest_buffer == sw_sha224_digest[..]); defmt::assert!(sha224_digest_buffer == sw_sha224_digest[..]);
let hmac_key: [u8; 64] = [0x55; 64];
// Compute HMAC in hardware.
let mut sha256hmac_context = hw_hasher.start(Algorithm::SHA256, DataType::Width8, Some(&hmac_key));
hw_hasher.update_blocking(&mut sha256hmac_context, test_1);
hw_hasher.update_blocking(&mut sha256hmac_context, test_2);
let mut hw_hmac: [u8; 32] = [0; 32];
hw_hasher.finish_blocking(sha256hmac_context, &mut hw_hmac);
// Compute HMAC in software.
let mut sw_mac = HmacSha256::new_from_slice(&hmac_key).unwrap();
sw_mac.update(test_1);
sw_mac.update(test_2);
let sw_hmac = sw_mac.finalize().into_bytes();
info!("Hardware HMAC: {:?}", hw_hmac);
info!("Software HMAC: {:?}", sw_hmac[..]);
defmt::assert!(hw_hmac == sw_hmac[..]);
info!("Test OK"); info!("Test OK");
cortex_m::asm::bkpt(); cortex_m::asm::bkpt();
} }