stm32 adc v3 read_async

This commit is contained in:
Andres Vahter 2024-06-26 23:50:12 +03:00
parent 70061e74b2
commit 5e2fd8623a

View file

@ -1,8 +1,10 @@
use cfg_if::cfg_if;
use embassy_hal_internal::into_ref;
use super::blocking_delay_us;
use crate::adc::{Adc, AdcChannel, Instance, Resolution, SampleTime};
use super::{
blocking_delay_us, Adc, AdcChannel, AnyAdcChannel, Instance, Resolution, RxDma, SampleTime, SealedAdcChannel,
};
use crate::dma::Transfer;
use crate::{rcc, Peripheral};
/// Default VREF voltage used for sample conversion to millivolts.
@ -12,7 +14,7 @@ pub const VREF_CALIB_MV: u32 = 3000;
pub struct VrefInt;
impl<T: Instance> AdcChannel<T> for VrefInt {}
impl<T: Instance> super::SealedAdcChannel<T> for VrefInt {
impl<T: Instance> SealedAdcChannel<T> for VrefInt {
fn channel(&self) -> u8 {
cfg_if! {
if #[cfg(adc_g0)] {
@ -31,7 +33,7 @@ impl<T: Instance> super::SealedAdcChannel<T> for VrefInt {
pub struct Temperature;
impl<T: Instance> AdcChannel<T> for Temperature {}
impl<T: Instance> super::SealedAdcChannel<T> for Temperature {
impl<T: Instance> SealedAdcChannel<T> for Temperature {
fn channel(&self) -> u8 {
cfg_if! {
if #[cfg(adc_g0)] {
@ -50,7 +52,7 @@ impl<T: Instance> super::SealedAdcChannel<T> for Temperature {
pub struct Vbat;
impl<T: Instance> AdcChannel<T> for Vbat {}
impl<T: Instance> super::SealedAdcChannel<T> for Vbat {
impl<T: Instance> SealedAdcChannel<T> for Vbat {
fn channel(&self) -> u8 {
cfg_if! {
if #[cfg(adc_g0)] {
@ -101,6 +103,7 @@ impl<'d, T: Instance> Adc<'d, T> {
reg.set_advregen(true);
});
// If this is false then each ADC_CHSELR bit enables an input channel.
#[cfg(any(adc_g0, adc_u0))]
T::regs().cfgr1().modify(|reg| {
reg.set_chselrmod(false);
@ -124,6 +127,28 @@ impl<'d, T: Instance> Adc<'d, T> {
}
}
// Enable ADC only when it is not already running.
fn enable(&mut self) {
// Make sure bits are off
while T::regs().cr().read().addis() {
// spin
}
if !T::regs().cr().read().aden() {
// Enable ADC
T::regs().isr().modify(|reg| {
reg.set_adrdy(true);
});
T::regs().cr().modify(|reg| {
reg.set_aden(true);
});
while !T::regs().isr().read().adrdy() {
// spin
}
}
}
pub fn enable_vrefint(&self) -> VrefInt {
#[cfg(not(any(adc_g0, adc_u0)))]
T::common_regs().ccr().modify(|reg| {
@ -181,10 +206,17 @@ impl<'d, T: Instance> Adc<'d, T> {
Vbat {}
}
/// Set the ADC sample time.
pub fn set_sample_time(&mut self, sample_time: SampleTime) {
self.sample_time = sample_time;
}
/// Get the ADC sample time.
pub fn sample_time(&self) -> SampleTime {
self.sample_time
}
/// Set the ADC resolution.
pub fn set_resolution(&mut self, resolution: Resolution) {
#[cfg(not(any(adc_g0, adc_u0)))]
T::regs().cfgr().modify(|reg| reg.set_res(resolution.into()));
@ -220,24 +252,139 @@ impl<'d, T: Instance> Adc<'d, T> {
T::regs().dr().read().0 as u16
}
/// Read an ADC channel.
pub fn read(&mut self, channel: &mut impl AdcChannel<T>) -> u16 {
// Make sure bits are off
while T::regs().cr().read().addis() {
// spin
self.read_channel(channel)
}
// Enable ADC
/// Asynchronously read from sequence of ADC channels.
pub async fn read_async(
&mut self,
rx_dma: &mut impl RxDma<T>,
sequence: impl ExactSizeIterator<Item = (&mut AnyAdcChannel<T>, SampleTime)>,
data: &mut [u16],
) {
assert!(sequence.len() != 0, "Asynchronous read sequence cannot be empty");
assert!(
sequence.len() <= 16,
"Asynchronous read sequence cannot be more than 16 in length"
);
// Ensure no conversions are ongoing and ADC is enabled.
Self::cancel_conversions();
self.enable();
// Set sequence length
#[cfg(not(any(adc_g0, adc_u0)))]
T::regs().sqr1().modify(|w| {
w.set_l(sequence.len() as u8 - 1);
});
#[cfg(any(adc_g0, adc_u0))]
let mut channel_mask = 0;
// Configure channels and ranks
for (_i, (channel, sample_time)) in sequence.enumerate() {
Self::configure_channel(channel, sample_time);
// Each channel is sampled according to sequence
#[cfg(not(any(adc_g0, adc_u0)))]
match _i {
0..=3 => {
T::regs().sqr1().modify(|w| {
w.set_sq(_i, channel.channel());
});
}
4..=8 => {
T::regs().sqr2().modify(|w| {
w.set_sq(_i - 4, channel.channel());
});
}
9..=13 => {
T::regs().sqr3().modify(|w| {
w.set_sq(_i - 9, channel.channel());
});
}
14..=15 => {
T::regs().sqr4().modify(|w| {
w.set_sq(_i - 14, channel.channel());
});
}
_ => unreachable!(),
}
#[cfg(any(adc_g0, adc_u0))]
{
channel_mask |= 1 << channel.channel();
}
}
// On G0 and U0 enabled channels are sampled from 0 to last channel.
// It is possible to add up to 8 sequences if CHSELRMOD = 1.
// However for supporting more than 8 channels alternative CHSELRMOD = 0 approach is used.
#[cfg(any(adc_g0, adc_u0))]
T::regs().chselr().modify(|reg| {
reg.set_chsel(channel_mask);
});
// Set continuous mode with oneshot dma.
// Clear overrun flag before starting transfer.
T::regs().isr().modify(|reg| {
reg.set_adrdy(true);
});
T::regs().cr().modify(|reg| {
reg.set_aden(true);
reg.set_ovr(true);
});
while !T::regs().isr().read().adrdy() {
// spin
#[cfg(not(any(adc_g0, adc_u0)))]
T::regs().cfgr().modify(|reg| {
reg.set_discen(false);
reg.set_cont(true);
// Oneshot mode
reg.set_dmacfg(false);
reg.set_dmaen(true);
});
#[cfg(any(adc_g0, adc_u0))]
T::regs().cfgr1().modify(|reg| {
reg.set_discen(false);
reg.set_cont(true);
// Oneshot mode
reg.set_dmacfg(false);
reg.set_dmaen(true);
});
let request = rx_dma.request();
let transfer = unsafe {
Transfer::new_read(
rx_dma,
request,
T::regs().dr().as_ptr() as *mut u16,
data,
Default::default(),
)
};
// Start conversion
T::regs().cr().modify(|reg| {
reg.set_adstart(true);
});
// Wait for conversion sequence to finish.
transfer.await;
// Ensure conversions are finished.
Self::cancel_conversions();
// Reset configuration.
#[cfg(not(any(adc_g0, adc_u0)))]
T::regs().cfgr().modify(|reg| {
reg.set_cont(false);
});
#[cfg(any(adc_g0, adc_u0))]
T::regs().cfgr1().modify(|reg| {
reg.set_cont(false);
});
}
fn configure_channel(channel: &mut impl AdcChannel<T>, sample_time: SampleTime) {
// RM0492, RM0481, etc.
// "This option bit must be set to 1 when ADCx_INP0 or ADCx_INN1 channel is selected."
#[cfg(adc_h5)]
@ -246,7 +393,12 @@ impl<'d, T: Instance> Adc<'d, T> {
}
// Configure channel
Self::set_channel_sample_time(channel.channel(), self.sample_time);
Self::set_channel_sample_time(channel.channel(), sample_time);
}
fn read_channel(&mut self, channel: &mut impl AdcChannel<T>) -> u16 {
self.enable();
Self::configure_channel(channel, self.sample_time);
// Select channel
#[cfg(not(any(adc_g0, adc_u0)))]
@ -262,7 +414,6 @@ impl<'d, T: Instance> Adc<'d, T> {
// STM32G4: Section 2.7.3
#[cfg(any(rcc_l4, rcc_g4))]
let _ = self.convert();
let val = self.convert();
T::regs().cr().modify(|reg| reg.set_addis(true));
@ -294,4 +445,13 @@ impl<'d, T: Instance> Adc<'d, T> {
}
}
}
fn cancel_conversions() {
if T::regs().cr().read().adstart() && !T::regs().cr().read().addis() {
T::regs().cr().modify(|reg| {
reg.set_adstp(true);
});
while T::regs().cr().read().adstart() {}
}
}
}