CCM mode functional.

This commit is contained in:
Caleb Garrett 2024-02-20 11:54:39 -05:00
parent fec26e8960
commit 690b2118c6

View file

@ -1,6 +1,6 @@
//! Crypto Accelerator (CRYP)
use core::cmp::min;
use core::marker::PhantomData;
use embassy_hal_internal::{into_ref, PeripheralRef};
use crate::pac;
@ -21,7 +21,7 @@ pub trait Cipher<'c> {
const REQUIRES_PADDING: bool = false;
/// Returns the symmetric key.
fn key(&self) -> &'c [u8];
fn key(&self) -> &[u8];
/// Returns the initialization vector.
fn iv(&self) -> &[u8];
@ -36,10 +36,25 @@ pub trait Cipher<'c> {
fn init_phase(&self, _p: &pac::cryp::Cryp) {}
/// Called prior to processing the last data block for cipher-specific operations.
fn pre_final_block(&self, _p: &pac::cryp::Cryp) {}
fn pre_final_block(&self, _p: &pac::cryp::Cryp, _dir: Direction) -> [u32; 4] {
return [0; 4];
}
/// Called after processing the last data block for cipher-specific operations.
fn post_final_block(&self, _p: &pac::cryp::Cryp, _dir: Direction, _int_data: &[u8; AES_BLOCK_SIZE]) {}
fn post_final_block(
&self,
_p: &pac::cryp::Cryp,
_dir: Direction,
_int_data: &[u8; AES_BLOCK_SIZE],
_temp1: [u32; 4],
_padding_mask: [u8; 16],
) {
}
/// Called prior to processing the first associated data block for cipher-specific operations.
fn get_header_block(&self) -> &[u8] {
return [0; 0].as_slice();
}
}
/// This trait enables restriction of ciphers to specific key sizes.
@ -204,17 +219,27 @@ impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesGcm<'c, KEY_SIZE> {
while p.cr().read().crypen() {}
}
fn pre_final_block(&self, p: &pac::cryp::Cryp) {
fn pre_final_block(&self, p: &pac::cryp::Cryp, dir: Direction) -> [u32; 4] {
//Handle special GCM partial block process.
p.cr().modify(|w| w.set_crypen(false));
p.cr().modify(|w| w.set_algomode3(false));
p.cr().modify(|w| w.set_algomode0(6));
let iv1r = p.csgcmccmr(7).read() - 1;
p.init(1).ivrr().write_value(iv1r);
p.cr().modify(|w| w.set_crypen(true));
if dir == Direction::Encrypt {
p.cr().modify(|w| w.set_crypen(false));
p.cr().modify(|w| w.set_algomode3(false));
p.cr().modify(|w| w.set_algomode0(6));
let iv1r = p.csgcmccmr(7).read() - 1;
p.init(1).ivrr().write_value(iv1r);
p.cr().modify(|w| w.set_crypen(true));
}
[0; 4]
}
fn post_final_block(&self, p: &pac::cryp::Cryp, dir: Direction, int_data: &[u8; AES_BLOCK_SIZE]) {
fn post_final_block(
&self,
p: &pac::cryp::Cryp,
dir: Direction,
int_data: &[u8; AES_BLOCK_SIZE],
_temp1: [u32; 4],
_padding_mask: [u8; 16],
) {
if dir == Direction::Encrypt {
//Handle special GCM partial block process.
p.cr().modify(|w| w.set_crypen(false));
@ -281,17 +306,27 @@ impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesGmac<'c, KEY_SIZE> {
while p.cr().read().crypen() {}
}
fn pre_final_block(&self, p: &pac::cryp::Cryp) {
fn pre_final_block(&self, p: &pac::cryp::Cryp, dir: Direction) -> [u32; 4] {
//Handle special GCM partial block process.
p.cr().modify(|w| w.set_crypen(false));
p.cr().modify(|w| w.set_algomode3(false));
p.cr().modify(|w| w.set_algomode0(6));
let iv1r = p.csgcmccmr(7).read() - 1;
p.init(1).ivrr().write_value(iv1r);
p.cr().modify(|w| w.set_crypen(true));
if dir == Direction::Encrypt {
p.cr().modify(|w| w.set_crypen(false));
p.cr().modify(|w| w.set_algomode3(false));
p.cr().modify(|w| w.set_algomode0(6));
let iv1r = p.csgcmccmr(7).read() - 1;
p.init(1).ivrr().write_value(iv1r);
p.cr().modify(|w| w.set_crypen(true));
}
[0; 4]
}
fn post_final_block(&self, p: &pac::cryp::Cryp, dir: Direction, int_data: &[u8; AES_BLOCK_SIZE]) {
fn post_final_block(
&self,
p: &pac::cryp::Cryp,
dir: Direction,
int_data: &[u8; AES_BLOCK_SIZE],
_temp1: [u32; 4],
_padding_mask: [u8; 16],
) {
if dir == Direction::Encrypt {
//Handle special GCM partial block process.
p.cr().modify(|w| w.set_crypen(false));
@ -320,49 +355,180 @@ impl<'c> CipherSized for AesGmac<'c, { 192 / 8 }> {}
impl<'c> CipherSized for AesGmac<'c, { 256 / 8 }> {}
impl<'c, const KEY_SIZE: usize> CipherAuthenticated for AesGmac<'c, KEY_SIZE> {}
// struct AesCcm<'c, const KEY_SIZE: usize> {
// iv: &'c [u8],
// key: &'c [u8; KEY_SIZE],
// aad_len: usize,
// payload_len: usize,
// }
pub struct AesCcm<'c, const KEY_SIZE: usize> {
key: &'c [u8; KEY_SIZE],
aad_header: [u8; 6],
aad_header_len: usize,
block0: [u8; 16],
ctr: [u8; 16],
}
// impl<'c, const KEY_SIZE: usize> AesCcm<'c, KEY_SIZE> {
// pub fn new(&self, key: &[u8; KEY_SIZE], iv: &[u8], aad_len: usize, payload_len: usize) {
// if iv.len() > 13 {
// panic!("CCM IV length must be 13 bytes or less.");
// }
// self.key = key;
// self.iv = iv;
// self.aad_len = aad_len;
// self.payload_len = payload_len;
// }
// }
impl<'c, const KEY_SIZE: usize> AesCcm<'c, KEY_SIZE> {
pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8], aad_len: usize, payload_len: usize, tag_len: u8) -> Self {
if (iv.len()) > 13 || (iv.len() < 7) {
panic!("CCM IV length must be 7-13 bytes.");
}
if (tag_len < 4) || (tag_len > 16) {
panic!("Tag length must be between 4 and 16 bytes.");
}
if tag_len % 2 > 0 {
panic!("Tag length must be a multiple of 2 bytes.");
}
// impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesCcm<'c, KEY_SIZE> {
// const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
let mut aad_header: [u8; 6] = [0; 6];
let mut aad_header_len = 0;
let mut block0: [u8; 16] = [0; 16];
if aad_len != 0 {
if aad_len < 65280 {
aad_header[0] = (aad_len >> 8) as u8 & 0xFF;
aad_header[1] = aad_len as u8 & 0xFF;
aad_header_len = 2;
} else {
aad_header[0] = 0xFF;
aad_header[1] = 0xFE;
let aad_len_bytes: [u8; 4] = aad_len.to_be_bytes();
aad_header[2] = aad_len_bytes[0];
aad_header[3] = aad_len_bytes[1];
aad_header[4] = aad_len_bytes[2];
aad_header[5] = aad_len_bytes[3];
aad_header_len = 6;
}
}
let total_aad_len = aad_header_len + aad_len;
let mut aad_padding_len = 16 - (total_aad_len % 16);
if aad_padding_len == 16 {
aad_padding_len = 0;
}
aad_header_len += aad_padding_len;
let total_aad_len_padded = aad_header_len + aad_len;
if total_aad_len_padded > 0 {
block0[0] = 0x40;
}
block0[0] |= (((tag_len - 2) >> 1) & 0x07) << 3;
block0[0] |= ((15 - (iv.len() as u8)) - 1) & 0x07;
block0[1..1 + iv.len()].copy_from_slice(iv);
let payload_len_bytes: [u8; 4] = payload_len.to_be_bytes();
if iv.len() <= 11 {
block0[12] = payload_len_bytes[0];
} else if payload_len_bytes[0] > 0 {
panic!("Message is too large for given IV size.");
}
if iv.len() <= 12 {
block0[13] = payload_len_bytes[1];
} else if payload_len_bytes[1] > 0 {
panic!("Message is too large for given IV size.");
}
block0[14] = payload_len_bytes[2];
block0[15] = payload_len_bytes[3];
let mut ctr: [u8; 16] = [0; 16];
ctr[0] = block0[0] & 0x07;
ctr[1..1 + iv.len()].copy_from_slice(&block0[1..1 + iv.len()]);
ctr[15] = 0x01;
// fn key(&self) -> &'c [u8] {
// self.key
// }
return Self {
key: key,
aad_header: aad_header,
aad_header_len: aad_header_len,
block0: block0,
ctr: ctr,
};
}
}
// fn iv(&self) -> &'c [u8] {
// self.iv
// }
impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesCcm<'c, KEY_SIZE> {
const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
// fn set_algomode(&self, p: &pac::cryp::Cryp) {
// p.cr().modify(|w| w.set_algomode0(1));
// p.cr().modify(|w| w.set_algomode3(true));
// }
fn key(&self) -> &'c [u8] {
self.key
}
// fn init_phase(&self, p: &pac::cryp::Cryp) {
// todo!();
// }
// }
fn iv(&self) -> &[u8] {
self.ctr.as_slice()
}
// impl<'c> CipherSized for AesCcm<'c, { 128 / 8 }> {}
// impl<'c> CipherSized for AesCcm<'c, { 192 / 8 }> {}
// impl<'c> CipherSized for AesCcm<'c, { 256 / 8 }> {}
fn set_algomode(&self, p: &pac::cryp::Cryp) {
p.cr().modify(|w| w.set_algomode0(1));
p.cr().modify(|w| w.set_algomode3(true));
}
fn init_phase(&self, p: &pac::cryp::Cryp) {
p.cr().modify(|w| w.set_gcm_ccmph(0));
let mut index = 0;
let end_index = index + Self::BLOCK_SIZE;
// Write block in
while index < end_index {
let mut in_word: [u8; 4] = [0; 4];
in_word.copy_from_slice(&self.block0[index..index + 4]);
p.din().write_value(u32::from_ne_bytes(in_word));
index += 4;
}
p.cr().modify(|w| w.set_crypen(true));
while p.cr().read().crypen() {}
}
fn get_header_block(&self) -> &[u8] {
return &self.aad_header[0..self.aad_header_len];
}
fn pre_final_block(&self, p: &pac::cryp::Cryp, dir: Direction) -> [u32; 4] {
//Handle special CCM partial block process.
let mut temp1 = [0; 4];
if dir == Direction::Decrypt {
p.cr().modify(|w| w.set_crypen(false));
let iv1temp = p.init(1).ivrr().read();
temp1[0] = p.csgcmccmr(0).read();
temp1[1] = p.csgcmccmr(1).read();
temp1[2] = p.csgcmccmr(2).read();
temp1[3] = p.csgcmccmr(3).read();
p.init(1).ivrr().write_value(iv1temp);
p.cr().modify(|w| w.set_algomode3(false));
p.cr().modify(|w| w.set_algomode0(6));
p.cr().modify(|w| w.set_crypen(true));
}
return temp1;
}
fn post_final_block(
&self,
p: &pac::cryp::Cryp,
dir: Direction,
int_data: &[u8; AES_BLOCK_SIZE],
temp1: [u32; 4],
padding_mask: [u8; 16],
) {
if dir == Direction::Decrypt {
//Handle special CCM partial block process.
let mut intdata_o: [u32; 4] = [0; 4];
for i in 0..intdata_o.len() {
intdata_o[i] = p.dout().read();
}
let mut temp2 = [0; 4];
temp2[0] = p.csgcmccmr(0).read();
temp2[1] = p.csgcmccmr(1).read();
temp2[2] = p.csgcmccmr(2).read();
temp2[3] = p.csgcmccmr(3).read();
p.cr().write(|w| w.set_algomode3(true));
p.cr().write(|w| w.set_algomode0(1));
p.cr().modify(|w| w.set_gcm_ccmph(3));
// Header phase
p.cr().modify(|w| w.set_gcm_ccmph(1));
let mut in_data: [u32; 4] = [0; 4];
for i in 0..in_data.len() {
let mut mask_bytes: [u8; 4] = [0; 4];
mask_bytes.copy_from_slice(&padding_mask[(i * 4)..(i * 4) + 4]);
let mask_word = u32::from_le_bytes(mask_bytes);
in_data[i] = intdata_o[i] & mask_word;
in_data[i] = in_data[i] ^ temp1[i] ^ temp2[i];
}
}
}
}
impl<'c> CipherSized for AesCcm<'c, { 128 / 8 }> {}
impl<'c> CipherSized for AesCcm<'c, { 192 / 8 }> {}
impl<'c> CipherSized for AesCcm<'c, { 256 / 8 }> {}
impl<'c, const KEY_SIZE: usize> CipherAuthenticated for AesCcm<'c, KEY_SIZE> {}
/// Holds the state information for a cipher operation.
/// Allows suspending/resuming of cipher operations.
@ -371,6 +537,7 @@ pub struct Context<'c, C: Cipher<'c> + CipherSized> {
cipher: &'c C,
dir: Direction,
last_block_processed: bool,
header_processed: bool,
aad_complete: bool,
cr: u32,
iv: [u32; 4],
@ -378,6 +545,8 @@ pub struct Context<'c, C: Cipher<'c> + CipherSized> {
csgcm: [u32; 8],
header_len: u64,
payload_len: u64,
aad_buffer: [u8; 16],
aad_buffer_len: usize,
}
/// Selects whether the crypto processor operates in encryption or decryption mode.
@ -420,6 +589,9 @@ impl<'d, T: Instance> Cryp<'d, T> {
payload_len: 0,
cipher: cipher,
phantom_data: PhantomData,
header_processed: false,
aad_buffer: [0; 16],
aad_buffer_len: 0,
};
T::regs().cr().modify(|w| w.set_crypen(false));
@ -492,16 +664,9 @@ impl<'d, T: Instance> Cryp<'d, T> {
) {
self.load_context(ctx);
let last_block_remainder = aad.len() % C::BLOCK_SIZE;
// Perform checks for correctness.
if ctx.aad_complete {
panic!("Cannot update AAD after calling 'update'!")
}
if !last_aad_block {
if last_block_remainder != 0 {
panic!("Input length must be a multiple of {} bytes.", C::BLOCK_SIZE);
}
panic!("Cannot update AAD after starting payload!")
}
ctx.header_len += aad.len() as u64;
@ -511,11 +676,49 @@ impl<'d, T: Instance> Cryp<'d, T> {
T::regs().cr().modify(|w| w.set_gcm_ccmph(1));
T::regs().cr().modify(|w| w.set_crypen(true));
// Load data into core, block by block.
let num_full_blocks = aad.len() / C::BLOCK_SIZE;
for block in 0..num_full_blocks {
let mut index = block * C::BLOCK_SIZE;
let end_index = index + C::BLOCK_SIZE;
// First write the header B1 block if not yet written.
if !ctx.header_processed {
ctx.header_processed = true;
let header = ctx.cipher.get_header_block();
ctx.aad_buffer[0..header.len()].copy_from_slice(header);
ctx.aad_buffer_len += header.len();
}
// Fill the header block to make a full block.
let len_to_copy = min(aad.len(), C::BLOCK_SIZE - ctx.aad_buffer_len);
ctx.aad_buffer[ctx.aad_buffer_len..ctx.aad_buffer_len + len_to_copy].copy_from_slice(&aad[..len_to_copy]);
ctx.aad_buffer_len += len_to_copy;
ctx.aad_buffer[ctx.aad_buffer_len..].fill(0);
let mut aad_len_remaining = aad.len() - len_to_copy;
if ctx.aad_buffer_len < C::BLOCK_SIZE {
// The buffer isn't full and this is the last buffer, so process it as is (already padded).
if last_aad_block {
let mut index = 0;
let end_index = C::BLOCK_SIZE;
// Write block in
while index < end_index {
let mut in_word: [u8; 4] = [0; 4];
in_word.copy_from_slice(&aad[index..index + 4]);
T::regs().din().write_value(u32::from_ne_bytes(in_word));
index += 4;
}
// Block until input FIFO is empty.
while !T::regs().sr().read().ifem() {}
// Switch to payload phase.
ctx.aad_complete = true;
T::regs().cr().modify(|w| w.set_crypen(false));
T::regs().cr().modify(|w| w.set_gcm_ccmph(2));
T::regs().cr().modify(|w| w.fflush());
} else {
// Just return because we don't yet have a full block to process.
return;
}
} else {
// Load the full block from the buffer.
let mut index = 0;
let end_index = C::BLOCK_SIZE;
// Write block in
while index < end_index {
let mut in_word: [u8; 4] = [0; 4];
@ -527,20 +730,26 @@ impl<'d, T: Instance> Cryp<'d, T> {
while !T::regs().sr().read().ifem() {}
}
// Handle the final block, which is incomplete.
if last_block_remainder > 0 {
let mut last_block: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
last_block[..last_block_remainder].copy_from_slice(&aad[aad.len() - last_block_remainder..aad.len()]);
let mut index = 0;
let end_index = C::BLOCK_SIZE;
// Handle a partial block that is passed in.
ctx.aad_buffer_len = 0;
let leftovers = aad_len_remaining % C::BLOCK_SIZE;
ctx.aad_buffer[..leftovers].copy_from_slice(&aad[aad.len() - leftovers..aad.len()]);
aad_len_remaining -= leftovers;
assert_eq!(aad_len_remaining % C::BLOCK_SIZE, 0);
// Load full data blocks into core.
let num_full_blocks = aad_len_remaining / C::BLOCK_SIZE;
for _ in 0..num_full_blocks {
let mut index = len_to_copy;
let end_index = len_to_copy + C::BLOCK_SIZE;
// Write block in
while index < end_index {
let mut in_word: [u8; 4] = [0; 4];
in_word.copy_from_slice(&last_block[index..index + 4]);
in_word.copy_from_slice(&aad[index..index + 4]);
T::regs().din().write_value(u32::from_ne_bytes(in_word));
index += 4;
}
// Block until input FIFO is empty
// Block until input FIFO is empty.
while !T::regs().sr().read().ifem() {}
}
@ -630,7 +839,7 @@ impl<'d, T: Instance> Cryp<'d, T> {
// Handle the final block, which is incomplete.
if last_block_remainder > 0 {
ctx.cipher.pre_final_block(&T::regs());
let temp1 = ctx.cipher.pre_final_block(&T::regs(), ctx.dir);
let mut intermediate_data: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
let mut last_block: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
@ -660,10 +869,15 @@ impl<'d, T: Instance> Cryp<'d, T> {
output[output_len - last_block_remainder..output_len]
.copy_from_slice(&intermediate_data[0..last_block_remainder]);
ctx.cipher.post_final_block(&T::regs(), ctx.dir, &intermediate_data);
let mut mask: [u8; 16] = [0; 16];
mask[..last_block_remainder].fill(0xFF);
ctx.cipher
.post_final_block(&T::regs(), ctx.dir, &intermediate_data, temp1, mask);
}
ctx.payload_len += input.len() as u64;
self.store_context(ctx);
}
/// This function only needs to be called for GCM, CCM, and GMAC modes to