973: Rework STM32 BufferedUart internals so we can split into Rx and Tx like embassy-nrf r=lulf a=guillaume-michel

Context:
On STM32, BufferedUart is not splittable into Rx and Tx part like the non buffered version. On embassy-nrf, a RefCell is used to make BufferedUarte splittable.

Description:
This PR add the possibility to split BufferedUart into Rx and Tx without adding breaking changes.

Hope somebody find it useful

Co-authored-by: Guillaume MICHEL <guillaume@squaremind.io>
This commit is contained in:
bors[bot] 2022-09-26 19:30:15 +00:00 committed by GitHub
commit 86fd480672
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -1,3 +1,4 @@
use core::cell::RefCell;
use core::future::{poll_fn, Future}; use core::future::{poll_fn, Future};
use core::task::Poll; use core::task::Poll;
@ -29,7 +30,15 @@ unsafe impl<'d, T: BasicInstance> Send for StateInner<'d, T> {}
unsafe impl<'d, T: BasicInstance> Sync for StateInner<'d, T> {} unsafe impl<'d, T: BasicInstance> Sync for StateInner<'d, T> {}
pub struct BufferedUart<'d, T: BasicInstance> { pub struct BufferedUart<'d, T: BasicInstance> {
inner: PeripheralMutex<'d, StateInner<'d, T>>, inner: RefCell<PeripheralMutex<'d, StateInner<'d, T>>>,
}
pub struct BufferedUartTx<'u, 'd, T: BasicInstance> {
inner: &'u BufferedUart<'d, T>,
}
pub struct BufferedUartRx<'u, 'd, T: BasicInstance> {
inner: &'u BufferedUart<'d, T>,
} }
impl<'d, T: BasicInstance> Unpin for BufferedUart<'d, T> {} impl<'d, T: BasicInstance> Unpin for BufferedUart<'d, T> {}
@ -53,14 +62,124 @@ impl<'d, T: BasicInstance> BufferedUart<'d, T> {
} }
Self { Self {
inner: PeripheralMutex::new(irq, &mut state.0, move || StateInner { inner: RefCell::new(PeripheralMutex::new(irq, &mut state.0, move || StateInner {
phantom: PhantomData, phantom: PhantomData,
tx: RingBuffer::new(tx_buffer), tx: RingBuffer::new(tx_buffer),
tx_waker: WakerRegistration::new(), tx_waker: WakerRegistration::new(),
rx: RingBuffer::new(rx_buffer), rx: RingBuffer::new(rx_buffer),
rx_waker: WakerRegistration::new(), rx_waker: WakerRegistration::new(),
}), })),
}
}
pub fn split<'u>(&'u mut self) -> (BufferedUartRx<'u, 'd, T>, BufferedUartTx<'u, 'd, T>) {
(BufferedUartRx { inner: self }, BufferedUartTx { inner: self })
}
async fn inner_read<'a>(&'a self, buf: &'a mut [u8]) -> Result<usize, Error> {
poll_fn(move |cx| {
let mut do_pend = false;
let mut inner = self.inner.borrow_mut();
let res = inner.with(|state| {
compiler_fence(Ordering::SeqCst);
// We have data ready in buffer? Return it.
let data = state.rx.pop_buf();
if !data.is_empty() {
let len = data.len().min(buf.len());
buf[..len].copy_from_slice(&data[..len]);
if state.rx.is_full() {
do_pend = true;
}
state.rx.pop(len);
return Poll::Ready(Ok(len));
}
state.rx_waker.register(cx.waker());
Poll::Pending
});
if do_pend {
inner.pend();
}
res
})
.await
}
async fn inner_write<'a>(&'a self, buf: &'a [u8]) -> Result<usize, Error> {
poll_fn(move |cx| {
let mut inner = self.inner.borrow_mut();
let (poll, empty) = inner.with(|state| {
let empty = state.tx.is_empty();
let tx_buf = state.tx.push_buf();
if tx_buf.is_empty() {
state.tx_waker.register(cx.waker());
return (Poll::Pending, empty);
}
let n = core::cmp::min(tx_buf.len(), buf.len());
tx_buf[..n].copy_from_slice(&buf[..n]);
state.tx.push(n);
(Poll::Ready(Ok(n)), empty)
});
if empty {
inner.pend();
}
poll
})
.await
}
async fn inner_flush<'a>(&'a self) -> Result<(), Error> {
poll_fn(move |cx| {
self.inner.borrow_mut().with(|state| {
if !state.tx.is_empty() {
state.tx_waker.register(cx.waker());
return Poll::Pending;
}
Poll::Ready(Ok(()))
})
})
.await
}
async fn inner_fill_buf<'a>(&'a self) -> Result<&'a [u8], Error> {
poll_fn(move |cx| {
self.inner.borrow_mut().with(|state| {
compiler_fence(Ordering::SeqCst);
// We have data ready in buffer? Return it.
let buf = state.rx.pop_buf();
if !buf.is_empty() {
let buf: &[u8] = buf;
// Safety: buffer lives as long as uart
let buf: &[u8] = unsafe { core::mem::transmute(buf) };
return Poll::Ready(Ok(buf));
}
state.rx_waker.register(cx.waker());
Poll::<Result<&[u8], Error>>::Pending
})
})
.await
}
fn inner_consume(&self, amt: usize) {
let mut inner = self.inner.borrow_mut();
let signal = inner.with(|state| {
let full = state.rx.is_full();
state.rx.pop(amt);
full
});
if signal {
inner.pend();
} }
} }
} }
@ -155,41 +274,31 @@ impl<'d, T: BasicInstance> embedded_io::Io for BufferedUart<'d, T> {
type Error = Error; type Error = Error;
} }
impl<'u, 'd, T: BasicInstance> embedded_io::Io for BufferedUartRx<'u, 'd, T> {
type Error = Error;
}
impl<'u, 'd, T: BasicInstance> embedded_io::Io for BufferedUartTx<'u, 'd, T> {
type Error = Error;
}
impl<'d, T: BasicInstance> embedded_io::asynch::Read for BufferedUart<'d, T> { impl<'d, T: BasicInstance> embedded_io::asynch::Read for BufferedUart<'d, T> {
type ReadFuture<'a> = impl Future<Output = Result<usize, Self::Error>> type ReadFuture<'a> = impl Future<Output = Result<usize, Self::Error>>
where where
Self: 'a; Self: 'a;
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> { fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
poll_fn(move |cx| { self.inner_read(buf)
let mut do_pend = false; }
let res = self.inner.with(|state| { }
compiler_fence(Ordering::SeqCst);
// We have data ready in buffer? Return it. impl<'u, 'd, T: BasicInstance> embedded_io::asynch::Read for BufferedUartRx<'u, 'd, T> {
let data = state.rx.pop_buf(); type ReadFuture<'a> = impl Future<Output = Result<usize, Self::Error>>
if !data.is_empty() { where
let len = data.len().min(buf.len()); Self: 'a;
buf[..len].copy_from_slice(&data[..len]);
if state.rx.is_full() { fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
do_pend = true; self.inner.inner_read(buf)
}
state.rx.pop(len);
return Poll::Ready(Ok(len));
}
state.rx_waker.register(cx.waker());
Poll::Pending
});
if do_pend {
self.inner.pend();
}
res
})
} }
} }
@ -199,34 +308,25 @@ impl<'d, T: BasicInstance> embedded_io::asynch::BufRead for BufferedUart<'d, T>
Self: 'a; Self: 'a;
fn fill_buf<'a>(&'a mut self) -> Self::FillBufFuture<'a> { fn fill_buf<'a>(&'a mut self) -> Self::FillBufFuture<'a> {
poll_fn(move |cx| { self.inner_fill_buf()
self.inner.with(|state| {
compiler_fence(Ordering::SeqCst);
// We have data ready in buffer? Return it.
let buf = state.rx.pop_buf();
if !buf.is_empty() {
let buf: &[u8] = buf;
// Safety: buffer lives as long as uart
let buf: &[u8] = unsafe { core::mem::transmute(buf) };
return Poll::Ready(Ok(buf));
}
state.rx_waker.register(cx.waker());
Poll::<Result<&[u8], Self::Error>>::Pending
})
})
} }
fn consume(&mut self, amt: usize) { fn consume(&mut self, amt: usize) {
let signal = self.inner.with(|state| { self.inner_consume(amt)
let full = state.rx.is_full(); }
state.rx.pop(amt); }
full
}); impl<'u, 'd, T: BasicInstance> embedded_io::asynch::BufRead for BufferedUartRx<'u, 'd, T> {
if signal { type FillBufFuture<'a> = impl Future<Output = Result<&'a [u8], Self::Error>>
self.inner.pend(); where
} Self: 'a;
fn fill_buf<'a>(&'a mut self) -> Self::FillBufFuture<'a> {
self.inner.inner_fill_buf()
}
fn consume(&mut self, amt: usize) {
self.inner.inner_consume(amt)
} }
} }
@ -236,26 +336,7 @@ impl<'d, T: BasicInstance> embedded_io::asynch::Write for BufferedUart<'d, T> {
Self: 'a; Self: 'a;
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> { fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
poll_fn(move |cx| { self.inner_write(buf)
let (poll, empty) = self.inner.with(|state| {
let empty = state.tx.is_empty();
let tx_buf = state.tx.push_buf();
if tx_buf.is_empty() {
state.tx_waker.register(cx.waker());
return (Poll::Pending, empty);
}
let n = core::cmp::min(tx_buf.len(), buf.len());
tx_buf[..n].copy_from_slice(&buf[..n]);
state.tx.push(n);
(Poll::Ready(Ok(n)), empty)
});
if empty {
self.inner.pend();
}
poll
})
} }
type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>> type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>>
@ -263,15 +344,24 @@ impl<'d, T: BasicInstance> embedded_io::asynch::Write for BufferedUart<'d, T> {
Self: 'a; Self: 'a;
fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> { fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
poll_fn(move |cx| { self.inner_flush()
self.inner.with(|state| { }
if !state.tx.is_empty() { }
state.tx_waker.register(cx.waker());
return Poll::Pending; impl<'u, 'd, T: BasicInstance> embedded_io::asynch::Write for BufferedUartTx<'u, 'd, T> {
} type WriteFuture<'a> = impl Future<Output = Result<usize, Self::Error>>
where
Poll::Ready(Ok(())) Self: 'a;
})
}) fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
self.inner.inner_write(buf)
}
type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>>
where
Self: 'a;
fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
self.inner.inner_flush()
} }
} }