Add embedded_hal_async support for embassy-rp

This commit adds support for embedded-hal-async to the Embassy
Raspberry PI crate.
This commit is contained in:
Daniel Bevenius 2022-07-10 06:47:08 +02:00
parent 5318fe404b
commit 8979959dd1
5 changed files with 489 additions and 1 deletions

View file

@ -38,6 +38,7 @@ log = { version = "0.4.14", optional = true }
cortex-m-rt = ">=0.6.15,<0.8" cortex-m-rt = ">=0.6.15,<0.8"
cortex-m = "0.7.3" cortex-m = "0.7.3"
critical-section = "0.2.5" critical-section = "0.2.5"
futures = { version = "0.3.17", default-features = false, features = ["async-await"] }
rp2040-pac2 = { git = "https://github.com/embassy-rs/rp2040-pac2", rev="9ad7223a48a065e612bc7dc7be5bf5bd0b41cfc4", features = ["rt"] } rp2040-pac2 = { git = "https://github.com/embassy-rs/rp2040-pac2", rev="9ad7223a48a065e612bc7dc7be5bf5bd0b41cfc4", features = ["rt"] }
#rp2040-pac2 = { path = "../../rp/rp2040-pac2", features = ["rt"] } #rp2040-pac2 = { path = "../../rp/rp2040-pac2", features = ["rt"] }

View file

@ -1,11 +1,20 @@
use core::convert::Infallible; use core::convert::Infallible;
use core::future::Future;
use core::marker::PhantomData; use core::marker::PhantomData;
use core::pin::Pin as FuturePin;
use core::task::{Context, Poll};
use embassy::waitqueue::AtomicWaker;
use embassy_cortex_m::interrupt::{Interrupt, InterruptExt};
use embassy_hal_common::{unborrow, unsafe_impl_unborrow}; use embassy_hal_common::{unborrow, unsafe_impl_unborrow};
use crate::pac::common::{Reg, RW}; use crate::pac::common::{Reg, RW};
use crate::pac::SIO; use crate::pac::SIO;
use crate::{pac, peripherals, Unborrow}; use crate::{interrupt, pac, peripherals, Unborrow};
const PIN_COUNT: usize = 30;
const NEW_AW: AtomicWaker = AtomicWaker::new();
static INTERRUPT_WAKERS: [AtomicWaker; PIN_COUNT] = [NEW_AW; PIN_COUNT];
/// Represents a digital input or output level. /// Represents a digital input or output level.
#[derive(Debug, Eq, PartialEq)] #[derive(Debug, Eq, PartialEq)]
@ -75,6 +84,204 @@ impl<'d, T: Pin> Input<'d, T> {
pub fn get_level(&self) -> Level { pub fn get_level(&self) -> Level {
self.pin.get_level() self.pin.get_level()
} }
pub async fn wait_for_high<'a>(&mut self) {
self.pin.wait_for_high().await;
}
pub async fn wait_for_low<'a>(&mut self) {
self.pin.wait_for_low().await;
}
pub async fn wait_for_rising_edge<'a>(&mut self) {
self.pin.wait_for_rising_edge().await;
}
pub async fn wait_for_falling_edge<'a>(&mut self) {
self.pin.wait_for_falling_edge().await;
}
pub async fn wait_for_any_edge<'a>(&mut self) {
self.pin.wait_for_any_edge().await;
}
}
/// Interrupt trigger levels.
#[derive(Debug, Eq, PartialEq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum InterruptTrigger {
LevelLow,
LevelHigh,
EdgeLow,
EdgeHigh,
AnyEdge,
}
impl InterruptTrigger {
fn from_u32(value: u32) -> Option<InterruptTrigger> {
match value {
1 => Some(InterruptTrigger::LevelLow),
2 => Some(InterruptTrigger::LevelHigh),
3 => Some(InterruptTrigger::EdgeLow),
4 => Some(InterruptTrigger::EdgeHigh),
_ => None,
}
}
}
#[interrupt]
unsafe fn IO_IRQ_BANK0() {
let cpu = SIO.cpuid().read() as usize;
// There are two sets of interrupt registers, one for cpu0 and one for cpu1
// and here we are selecting the set that belongs to the currently executing
// cpu.
let proc_intx: pac::io::Int = pac::IO_BANK0.int_proc(cpu);
for pin in 0..PIN_COUNT {
// There are 4 raw interrupt status registers, PROCx_INTS0, PROCx_INTS1,
// PROCx_INTS2, and PROCx_INTS3, and we are selecting the one that the
// current pin belongs to.
let intsx = proc_intx.ints(pin / 8);
// The status register is divided into groups of four, one group for
// each pin. Each group consists of four trigger levels LEVEL_LOW,
// LEVEL_HIGH, EDGE_LOW, and EDGE_HIGH for each pin.
let pin_group = (pin % 8) as usize;
let event = (intsx.read().0 >> pin_group * 4) & 0xf as u32;
if let Some(trigger) = InterruptTrigger::from_u32(event) {
proc_intx.inte(pin / 8).write(|w| match trigger {
InterruptTrigger::AnyEdge => {
w.set_edge_high(pin_group, false);
w.set_edge_low(pin_group, false);
}
InterruptTrigger::LevelHigh => {
debug!("IO_IRQ_BANK0 pin {} LevelHigh triggered\n", pin);
w.set_level_high(pin_group, false);
}
InterruptTrigger::LevelLow => {
w.set_level_low(pin_group, false);
}
InterruptTrigger::EdgeHigh => {
w.set_edge_high(pin_group, false);
}
InterruptTrigger::EdgeLow => {
w.set_edge_low(pin_group, false);
}
});
INTERRUPT_WAKERS[pin as usize].wake();
}
}
}
struct InputFuture<'a, T: Pin> {
pin: &'a mut T,
level: InterruptTrigger,
phantom: PhantomData<&'a mut AnyPin>,
}
impl<'d, T: Pin> InputFuture<'d, T> {
pub fn new(pin: &'d mut T, level: InterruptTrigger) -> Self {
unsafe {
let irq = interrupt::IO_IRQ_BANK0::steal();
irq.disable();
irq.set_priority(interrupt::Priority::P6);
// Each INTR register is divided into 8 groups, one group for each
// pin, and each group consists of LEVEL_LOW, LEVEL_HIGH, EDGE_LOW,
// and EGDE_HIGH.
let pin_group = (pin.pin() % 8) as usize;
pin.int_proc().inte((pin.pin() / 8) as usize).write(|w| match level {
InterruptTrigger::LevelHigh => {
debug!("InputFuture::new enable LevelHigh for pin {} \n", pin.pin());
w.set_level_high(pin_group, true);
}
InterruptTrigger::LevelLow => {
w.set_level_low(pin_group, true);
}
InterruptTrigger::EdgeHigh => {
w.set_edge_high(pin_group, true);
}
InterruptTrigger::EdgeLow => {
w.set_edge_low(pin_group, true);
}
InterruptTrigger::AnyEdge => {
// noop
}
});
irq.enable();
}
Self {
pin,
level,
phantom: PhantomData,
}
}
}
impl<'d, T: Pin> Future for InputFuture<'d, T> {
type Output = ();
fn poll(self: FuturePin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
// We need to register/re-register the waker for each poll because any
// calls to wake will deregister the waker.
INTERRUPT_WAKERS[self.pin.pin() as usize].register(cx.waker());
// self.int_proc() will get the register offset for the current cpu,
// then we want to access the interrupt enable register for our
// pin (there are 4 of these PROC0_INTE0, PROC0_INTE1, PROC0_INTE2, and
// PROC0_INTE3 per cpu).
let inte: pac::io::regs::Int = unsafe { self.pin.int_proc().inte((self.pin.pin() / 8) as usize).read() };
// The register is divided into groups of four, one group for
// each pin. Each group consists of four trigger levels LEVEL_LOW,
// LEVEL_HIGH, EDGE_LOW, and EDGE_HIGH for each pin.
let pin_group = (self.pin.pin() % 8) as usize;
// This should check the the level of the interrupt trigger level of
// the pin and if it has been disabled that means it was done by the
// interrupt service routine, so we then know that the event/trigger
// happened and Poll::Ready will be returned.
debug!("{:?} for pin {}\n", self.level, self.pin.pin());
match self.level {
InterruptTrigger::AnyEdge => {
if !inte.edge_high(pin_group) && !inte.edge_low(pin_group) {
#[rustfmt::skip]
debug!("{:?} for pin {} was cleared, return Poll::Ready\n", self.level, self.pin.pin());
return Poll::Ready(());
}
}
InterruptTrigger::LevelHigh => {
if !inte.level_high(pin_group) {
#[rustfmt::skip]
debug!("{:?} for pin {} was cleared, return Poll::Ready\n", self.level, self.pin.pin());
return Poll::Ready(());
}
}
InterruptTrigger::LevelLow => {
if !inte.level_low(pin_group) {
#[rustfmt::skip]
debug!("{:?} for pin {} was cleared, return Poll::Ready\n", self.level, self.pin.pin());
return Poll::Ready(());
}
}
InterruptTrigger::EdgeHigh => {
if !inte.edge_high(pin_group) {
#[rustfmt::skip]
debug!("{:?} for pin {} was cleared, return Poll::Ready\n", self.level, self.pin.pin());
return Poll::Ready(());
}
}
InterruptTrigger::EdgeLow => {
if !inte.edge_low(pin_group) {
#[rustfmt::skip]
debug!("{:?} for pin {} was cleared, return Poll::Ready\n", self.level, self.pin.pin());
return Poll::Ready(());
}
}
}
debug!("InputFuture::poll return Poll::Pending\n");
Poll::Pending
}
} }
pub struct Output<'d, T: Pin> { pub struct Output<'d, T: Pin> {
@ -340,6 +547,32 @@ impl<'d, T: Pin> Flex<'d, T> {
pub fn toggle(&mut self) { pub fn toggle(&mut self) {
unsafe { self.pin.sio_out().value_xor().write_value(self.bit()) } unsafe { self.pin.sio_out().value_xor().write_value(self.bit()) }
} }
pub async fn wait_for_high<'a>(&mut self) {
InputFuture::new(&mut self.pin, InterruptTrigger::LevelHigh).await;
}
pub async fn wait_for_low<'a>(&mut self) {
InputFuture::new(&mut self.pin, InterruptTrigger::LevelLow).await;
}
pub async fn wait_for_rising_edge<'a>(&mut self) {
self.wait_for_low().await;
self.wait_for_high().await;
}
pub async fn wait_for_falling_edge<'a>(&mut self) {
self.wait_for_high().await;
self.wait_for_low().await;
}
pub async fn wait_for_any_edge<'a>(&mut self) {
if self.is_high() {
self.wait_for_low().await;
} else {
self.wait_for_high().await;
}
}
} }
impl<'d, T: Pin> Drop for Flex<'d, T> { impl<'d, T: Pin> Drop for Flex<'d, T> {
@ -401,6 +634,15 @@ pub(crate) mod sealed {
fn sio_in(&self) -> Reg<u32, RW> { fn sio_in(&self) -> Reg<u32, RW> {
SIO.gpio_in(self.bank() as _) SIO.gpio_in(self.bank() as _)
} }
fn int_proc(&self) -> pac::io::Int {
let io_block = match self.bank() {
Bank::Bank0 => crate::pac::IO_BANK0,
Bank::Qspi => crate::pac::IO_QSPI,
};
let proc = unsafe { SIO.cpuid().read() };
io_block.int_proc(proc as _)
}
} }
} }
@ -478,6 +720,8 @@ impl_pin!(PIN_QSPI_SD3, Bank::Qspi, 5);
// ==================== // ====================
mod eh02 { mod eh02 {
use futures::FutureExt;
use super::*; use super::*;
impl<'d, T: Pin> embedded_hal_02::digital::v2::InputPin for Input<'d, T> { impl<'d, T: Pin> embedded_hal_02::digital::v2::InputPin for Input<'d, T> {
@ -595,6 +839,62 @@ mod eh02 {
Ok(self.toggle()) Ok(self.toggle())
} }
} }
use core::convert::Infallible;
impl<'d, T: Pin> embedded_hal_async::digital::Wait for Flex<'d, T> {
type WaitForHighFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn wait_for_high<'a>(&'a mut self) -> Self::WaitForHighFuture<'a> {
self.wait_for_high().map(Ok)
}
type WaitForLowFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn wait_for_low<'a>(&'a mut self) -> Self::WaitForLowFuture<'a> {
self.wait_for_low().map(Ok)
}
type WaitForRisingEdgeFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn wait_for_rising_edge<'a>(&'a mut self) -> Self::WaitForRisingEdgeFuture<'a> {
self.wait_for_rising_edge().map(Ok)
}
type WaitForFallingEdgeFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn wait_for_falling_edge<'a>(&'a mut self) -> Self::WaitForFallingEdgeFuture<'a> {
self.wait_for_falling_edge().map(Ok)
}
type WaitForAnyEdgeFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn wait_for_any_edge<'a>(&'a mut self) -> Self::WaitForAnyEdgeFuture<'a> {
self.wait_for_any_edge().map(Ok)
}
}
impl<'d, T: Pin> embedded_hal_async::digital::Wait for Input<'d, T> {
type WaitForHighFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn wait_for_high<'a>(&'a mut self) -> Self::WaitForHighFuture<'a> {
self.wait_for_high().map(Ok)
}
type WaitForLowFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn wait_for_low<'a>(&'a mut self) -> Self::WaitForLowFuture<'a> {
self.wait_for_low().map(Ok)
}
type WaitForRisingEdgeFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn wait_for_rising_edge<'a>(&'a mut self) -> Self::WaitForRisingEdgeFuture<'a> {
self.wait_for_rising_edge().map(Ok)
}
type WaitForFallingEdgeFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn wait_for_falling_edge<'a>(&'a mut self) -> Self::WaitForFallingEdgeFuture<'a> {
self.wait_for_falling_edge().map(Ok)
}
type WaitForAnyEdgeFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn wait_for_any_edge<'a>(&'a mut self) -> Self::WaitForAnyEdgeFuture<'a> {
self.wait_for_any_edge().map(Ok)
}
}
} }
#[cfg(feature = "unstable-traits")] #[cfg(feature = "unstable-traits")]

View file

@ -0,0 +1,38 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use defmt::*;
use embassy::executor::Spawner;
use embassy::time::{Duration, Timer};
use embassy_rp::{gpio, Peripherals};
use gpio::{Input, Level, Output, Pull};
use {defmt_rtt as _, panic_probe as _};
/// This example shows how async gpio can be used with a RP2040.
///
/// It requires an external signal to be manually triggered on PIN 16. For
/// example, this could be accomplished using an external power source with a
/// button so that it is possible to toggle the signal from low to high.
///
/// This example will begin with turning on the LED on the board and wait for a
/// high signal on PIN 16. Once the high event/signal occurs the program will
/// continue and turn off the LED, and then wait for 2 seconds before completing
/// the loop and starting over again.
#[embassy::main]
async fn main(_spawner: Spawner, p: Peripherals) {
let mut led = Output::new(p.PIN_25, Level::Low);
let mut async_input = Input::new(p.PIN_16, Pull::None);
loop {
info!("wait_for_high. Turn on LED");
led.set_high();
async_input.wait_for_high().await;
info!("done wait_for_high. Turn off LED");
led.set_low();
Timer::after(Duration::from_secs(2)).await;
}
}

View file

@ -16,6 +16,7 @@ embedded-hal = "0.2.6"
embedded-hal-1 = { package = "embedded-hal", version = "1.0.0-alpha.8" } embedded-hal-1 = { package = "embedded-hal", version = "1.0.0-alpha.8" }
embedded-hal-async = { version = "0.1.0-alpha.1" } embedded-hal-async = { version = "0.1.0-alpha.1" }
panic-probe = { version = "0.3.0", features = ["print-defmt"] } panic-probe = { version = "0.3.0", features = ["print-defmt"] }
futures = { version = "0.3.17", default-features = false, features = ["async-await"] }
[profile.dev] [profile.dev]
debug = 2 debug = 2

View file

@ -0,0 +1,148 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use defmt::{assert, *};
use embassy::executor::Spawner;
use embassy::time::{Duration, Instant, Timer};
use embassy_rp::gpio::{Input, Level, Output, Pull};
use embassy_rp::Peripherals;
use futures::future::join;
use {defmt_rtt as _, panic_probe as _};
#[embassy::main]
async fn main(_spawner: Spawner, p: Peripherals) {
info!("embassy-rp gpio_async test");
// On the CI device the following pins are connected with each other.
let (mut output_pin, mut input_pin) = (p.PIN_0, p.PIN_1);
{
info!("test wait_for_high");
let mut output = Output::new(&mut output_pin, Level::Low);
let mut input = Input::new(&mut input_pin, Pull::None);
assert!(input.is_low(), "input was expected to be low");
let set_high_future = async {
// Allow time for wait_for_high_future to await wait_for_high().
Timer::after(Duration::from_millis(10)).await;
output.set_high();
};
let wait_for_high_future = async {
let start = Instant::now();
input.wait_for_high().await;
assert_duration(start);
};
join(set_high_future, wait_for_high_future).await;
info!("test wait_for_high: OK\n");
}
{
info!("test wait_for_low");
let mut output = Output::new(&mut output_pin, Level::High);
let mut input = Input::new(&mut input_pin, Pull::None);
assert!(input.is_high(), "input was expected to be high");
let set_low_future = async {
Timer::after(Duration::from_millis(10)).await;
output.set_low();
};
let wait_for_low_future = async {
let start = Instant::now();
input.wait_for_low().await;
assert_duration(start);
};
join(set_low_future, wait_for_low_future).await;
info!("test wait_for_low: OK\n");
}
{
info!("test wait_for_rising_edge");
let mut output = Output::new(&mut output_pin, Level::Low);
let mut input = Input::new(&mut input_pin, Pull::None);
assert!(input.is_low(), "input was expected to be low");
let set_high_future = async {
Timer::after(Duration::from_millis(10)).await;
output.set_high();
};
let wait_for_rising_edge_future = async {
let start = Instant::now();
input.wait_for_rising_edge().await;
assert_duration(start);
};
join(set_high_future, wait_for_rising_edge_future).await;
info!("test wait_for_rising_edge: OK\n");
}
{
info!("test wait_for_falling_edge");
let mut output = Output::new(&mut output_pin, Level::High);
let mut input = Input::new(&mut input_pin, Pull::None);
assert!(input.is_high(), "input was expected to be high");
let set_low_future = async {
Timer::after(Duration::from_millis(10)).await;
output.set_low();
};
let wait_for_falling_edge_future = async {
let start = Instant::now();
input.wait_for_falling_edge().await;
assert_duration(start);
};
join(set_low_future, wait_for_falling_edge_future).await;
info!("test wait_for_falling_edge: OK\n");
}
{
info!("test wait_for_any_edge (falling)");
let mut output = Output::new(&mut output_pin, Level::High);
let mut input = Input::new(&mut input_pin, Pull::None);
assert!(input.is_high(), "input was expected to be high");
let set_low_future = async {
Timer::after(Duration::from_millis(10)).await;
output.set_low();
};
let wait_for_any_edge_future = async {
let start = Instant::now();
input.wait_for_any_edge().await;
assert_duration(start);
};
join(set_low_future, wait_for_any_edge_future).await;
info!("test wait_for_any_edge (falling): OK\n");
}
{
info!("test wait_for_any_edge (rising)");
let mut output = Output::new(&mut output_pin, Level::Low);
let mut input = Input::new(&mut input_pin, Pull::None);
assert!(input.is_low(), "input was expected to be low");
let set_high_future = async {
Timer::after(Duration::from_millis(10)).await;
output.set_high();
};
let wait_for_any_edge_future = async {
let start = Instant::now();
input.wait_for_any_edge().await;
assert_duration(start);
};
join(set_high_future, wait_for_any_edge_future).await;
info!("test wait_for_any_edge (rising): OK\n");
}
info!("Test OK");
cortex_m::asm::bkpt();
fn assert_duration(start: Instant) {
let dur = Instant::now() - start;
assert!(dur >= Duration::from_millis(10) && dur < Duration::from_millis(11));
}
}