stm32/eth_v1: update to new embassy-net trait, remove PeripheralMutex.

This commit is contained in:
Dario Nieuwenhuis 2022-12-09 03:18:45 +01:00
parent e9219405ca
commit 8f30652109
6 changed files with 424 additions and 526 deletions

View file

@ -1,14 +1,131 @@
#![macro_use]
#![cfg_attr(not(feature = "embassy-net"), allow(unused))]
#[cfg(feature = "net")]
#[cfg_attr(any(eth_v1a, eth_v1b, eth_v1c), path = "v1/mod.rs")]
#[cfg_attr(eth_v2, path = "v2/mod.rs")]
mod _version;
pub mod generic_smi;
#[cfg(feature = "net")]
pub use _version::*;
use embassy_sync::waitqueue::AtomicWaker;
#[allow(unused)]
const MTU: usize = 1514;
const TX_BUFFER_SIZE: usize = 1514;
const RX_BUFFER_SIZE: usize = 1536;
#[repr(C, align(8))]
#[derive(Copy, Clone)]
pub(crate) struct Packet<const N: usize>([u8; N]);
pub struct PacketQueue<const TX: usize, const RX: usize> {
tx_desc: [TDes; TX],
rx_desc: [RDes; RX],
tx_buf: [Packet<TX_BUFFER_SIZE>; TX],
rx_buf: [Packet<RX_BUFFER_SIZE>; RX],
}
impl<const TX: usize, const RX: usize> PacketQueue<TX, RX> {
pub const fn new() -> Self {
const NEW_TDES: TDes = TDes::new();
const NEW_RDES: RDes = RDes::new();
Self {
tx_desc: [NEW_TDES; TX],
rx_desc: [NEW_RDES; RX],
tx_buf: [Packet([0; TX_BUFFER_SIZE]); TX],
rx_buf: [Packet([0; RX_BUFFER_SIZE]); RX],
}
}
}
static WAKER: AtomicWaker = AtomicWaker::new();
#[cfg(feature = "embassy-net")]
mod embassy_net_impl {
use core::task::Context;
use embassy_net::device::{Device, DeviceCapabilities, LinkState};
use super::*;
impl<'d, T: Instance, P: PHY> Device for Ethernet<'d, T, P> {
type RxToken<'a> = RxToken<'a, 'd> where Self: 'a;
type TxToken<'a> = TxToken<'a, 'd> where Self: 'a;
fn receive(&mut self, cx: &mut Context) -> Option<(Self::RxToken<'_>, Self::TxToken<'_>)> {
WAKER.register(cx.waker());
if self.rx.available().is_some() && self.tx.available().is_some() {
Some((RxToken { rx: &mut self.rx }, TxToken { tx: &mut self.tx }))
} else {
None
}
}
fn transmit(&mut self, cx: &mut Context) -> Option<Self::TxToken<'_>> {
WAKER.register(cx.waker());
if self.tx.available().is_some() {
Some(TxToken { tx: &mut self.tx })
} else {
None
}
}
fn capabilities(&self) -> DeviceCapabilities {
let mut caps = DeviceCapabilities::default();
caps.max_transmission_unit = MTU;
caps.max_burst_size = Some(self.tx.len());
caps
}
fn link_state(&mut self, cx: &mut Context) -> LinkState {
// TODO: wake cx.waker on link state change
cx.waker().wake_by_ref();
if P::poll_link(self) {
LinkState::Up
} else {
LinkState::Down
}
}
fn ethernet_address(&self) -> [u8; 6] {
self.mac_addr
}
}
pub struct RxToken<'a, 'd> {
rx: &'a mut RDesRing<'d>,
}
impl<'a, 'd> embassy_net::device::RxToken for RxToken<'a, 'd> {
fn consume<R, F>(self, f: F) -> R
where
F: FnOnce(&mut [u8]) -> R,
{
// NOTE(unwrap): we checked the queue wasn't full when creating the token.
let pkt = unwrap!(self.rx.available());
let r = f(pkt);
self.rx.pop_packet();
r
}
}
pub struct TxToken<'a, 'd> {
tx: &'a mut TDesRing<'d>,
}
impl<'a, 'd> embassy_net::device::TxToken for TxToken<'a, 'd> {
fn consume<R, F>(self, len: usize, f: F) -> R
where
F: FnOnce(&mut [u8]) -> R,
{
// NOTE(unwrap): we checked the queue wasn't full when creating the token.
let pkt = unwrap!(self.tx.available());
let r = f(&mut pkt[..len]);
self.tx.transmit(len);
r
}
}
}
/// Station Management Interface (SMI) on an ethernet PHY
///
/// # Safety

View file

@ -1,21 +0,0 @@
use crate::eth::_version::rx_desc::RDesRing;
use crate::eth::_version::tx_desc::TDesRing;
pub struct DescriptorRing<const T: usize, const R: usize> {
pub(crate) tx: TDesRing<T>,
pub(crate) rx: RDesRing<R>,
}
impl<const T: usize, const R: usize> DescriptorRing<T, R> {
pub const fn new() -> Self {
Self {
tx: TDesRing::new(),
rx: RDesRing::new(),
}
}
pub fn init(&mut self) {
self.tx.init();
self.rx.init();
}
}

View file

@ -1,14 +1,17 @@
// The v1c ethernet driver was ported to embassy from the awesome stm32-eth project (https://github.com/stm32-rs/stm32-eth).
use core::marker::PhantomData;
mod rx_desc;
mod tx_desc;
use core::sync::atomic::{fence, Ordering};
use core::task::Waker;
use embassy_cortex_m::peripheral::{PeripheralMutex, PeripheralState, StateStorage};
use embassy_cortex_m::interrupt::InterruptExt;
use embassy_hal_common::{into_ref, PeripheralRef};
use embassy_net::{Device, DeviceCapabilities, LinkState, PacketBuf, MTU};
use embassy_sync::waitqueue::AtomicWaker;
use stm32_metapac::eth::vals::{Apcs, Cr, Dm, DmaomrSr, Fes, Ftf, Ifg, MbProgress, Mw, Pbl, Rsf, St, Tsf};
pub(crate) use self::rx_desc::{RDes, RDesRing};
pub(crate) use self::tx_desc::{TDes, TDesRing};
use super::*;
use crate::gpio::sealed::{AFType, Pin as __GpioPin};
use crate::gpio::{AnyPin, Speed};
#[cfg(eth_v1a)]
@ -18,29 +21,16 @@ use crate::pac::SYSCFG;
use crate::pac::{ETH, RCC};
use crate::Peripheral;
mod descriptors;
mod rx_desc;
mod tx_desc;
pub struct Ethernet<'d, T: Instance, P: PHY> {
_peri: PeripheralRef<'d, T>,
pub(crate) tx: TDesRing<'d>,
pub(crate) rx: RDesRing<'d>,
use descriptors::DescriptorRing;
use stm32_metapac::eth::vals::{Apcs, Cr, Dm, DmaomrSr, Fes, Ftf, Ifg, MbProgress, Mw, Pbl, Rsf, St, Tsf};
use super::*;
pub struct State<'d, T: Instance, const TX: usize, const RX: usize>(StateStorage<Inner<'d, T, TX, RX>>);
impl<'d, T: Instance, const TX: usize, const RX: usize> State<'d, T, TX, RX> {
pub const fn new() -> Self {
Self(StateStorage::new())
}
}
pub struct Ethernet<'d, T: Instance, P: PHY, const TX: usize, const RX: usize> {
state: PeripheralMutex<'d, Inner<'d, T, TX, RX>>,
pins: [PeripheralRef<'d, AnyPin>; 9],
_phy: P,
clock_range: Cr,
phy_addr: u8,
mac_addr: [u8; 6],
pub(crate) mac_addr: [u8; 6],
}
#[cfg(eth_v1a)]
@ -82,10 +72,10 @@ macro_rules! config_pins {
};
}
impl<'d, T: Instance, P: PHY, const TX: usize, const RX: usize> Ethernet<'d, T, P, TX, RX> {
impl<'d, T: Instance, P: PHY> Ethernet<'d, T, P> {
/// safety: the returned instance is not leak-safe
pub unsafe fn new(
state: &'d mut State<'d, T, TX, RX>,
pub fn new<const TX: usize, const RX: usize>(
queue: &'d mut PacketQueue<TX, RX>,
peri: impl Peripheral<P = T> + 'd,
interrupt: impl Peripheral<P = crate::interrupt::ETH> + 'd,
ref_clk: impl Peripheral<P = impl RefClkPin<T>> + 'd,
@ -101,134 +91,131 @@ impl<'d, T: Instance, P: PHY, const TX: usize, const RX: usize> Ethernet<'d, T,
mac_addr: [u8; 6],
phy_addr: u8,
) -> Self {
into_ref!(interrupt, ref_clk, mdio, mdc, crs, rx_d0, rx_d1, tx_d0, tx_d1, tx_en);
into_ref!(peri, interrupt, ref_clk, mdio, mdc, crs, rx_d0, rx_d1, tx_d0, tx_d1, tx_en);
// Enable the necessary Clocks
// NOTE(unsafe) We have exclusive access to the registers
#[cfg(eth_v1a)]
critical_section::with(|_| {
RCC.apb2enr().modify(|w| w.set_afioen(true));
unsafe {
// Enable the necessary Clocks
// NOTE(unsafe) We have exclusive access to the registers
#[cfg(eth_v1a)]
critical_section::with(|_| {
RCC.apb2enr().modify(|w| w.set_afioen(true));
// Select RMII (Reduced Media Independent Interface)
// Must be done prior to enabling peripheral clock
AFIO.mapr().modify(|w| w.set_mii_rmii_sel(true));
// Select RMII (Reduced Media Independent Interface)
// Must be done prior to enabling peripheral clock
AFIO.mapr().modify(|w| w.set_mii_rmii_sel(true));
RCC.ahbenr().modify(|w| {
w.set_ethen(true);
w.set_ethtxen(true);
w.set_ethrxen(true);
});
});
#[cfg(any(eth_v1b, eth_v1c))]
critical_section::with(|_| {
RCC.apb2enr().modify(|w| w.set_syscfgen(true));
RCC.ahb1enr().modify(|w| {
w.set_ethen(true);
w.set_ethtxen(true);
w.set_ethrxen(true);
RCC.ahbenr().modify(|w| {
w.set_ethen(true);
w.set_ethtxen(true);
w.set_ethrxen(true);
});
});
// RMII (Reduced Media Independent Interface)
SYSCFG.pmc().modify(|w| w.set_mii_rmii_sel(true));
});
#[cfg(any(eth_v1b, eth_v1c))]
critical_section::with(|_| {
RCC.apb2enr().modify(|w| w.set_syscfgen(true));
RCC.ahb1enr().modify(|w| {
w.set_ethen(true);
w.set_ethtxen(true);
w.set_ethrxen(true);
});
#[cfg(eth_v1a)]
{
config_in_pins!(ref_clk, rx_d0, rx_d1);
config_af_pins!(mdio, mdc, tx_d0, tx_d1, tx_en);
}
// RMII (Reduced Media Independent Interface)
SYSCFG.pmc().modify(|w| w.set_mii_rmii_sel(true));
});
#[cfg(any(eth_v1b, eth_v1c))]
config_pins!(ref_clk, mdio, mdc, crs, rx_d0, rx_d1, tx_d0, tx_d1, tx_en);
// NOTE(unsafe) We are ourselves not leak-safe.
let state = PeripheralMutex::new(interrupt, &mut state.0, || Inner::new(peri));
// NOTE(unsafe) We have exclusive access to the registers
let dma = ETH.ethernet_dma();
let mac = ETH.ethernet_mac();
// Reset and wait
dma.dmabmr().modify(|w| w.set_sr(true));
while dma.dmabmr().read().sr() {}
mac.maccr().modify(|w| {
w.set_ifg(Ifg::IFG96); // inter frame gap 96 bit times
w.set_apcs(Apcs::STRIP); // automatic padding and crc stripping
w.set_fes(Fes::FES100); // fast ethernet speed
w.set_dm(Dm::FULLDUPLEX); // full duplex
// TODO: Carrier sense ? ECRSFD
});
// Note: Writing to LR triggers synchronisation of both LR and HR into the MAC core,
// so the LR write must happen after the HR write.
mac.maca0hr()
.modify(|w| w.set_maca0h(u16::from(mac_addr[4]) | (u16::from(mac_addr[5]) << 8)));
mac.maca0lr().write(|w| {
w.set_maca0l(
u32::from(mac_addr[0])
| (u32::from(mac_addr[1]) << 8)
| (u32::from(mac_addr[2]) << 16)
| (u32::from(mac_addr[3]) << 24),
)
});
// pause time
mac.macfcr().modify(|w| w.set_pt(0x100));
// Transfer and Forward, Receive and Forward
dma.dmaomr().modify(|w| {
w.set_tsf(Tsf::STOREFORWARD);
w.set_rsf(Rsf::STOREFORWARD);
});
dma.dmabmr().modify(|w| {
w.set_pbl(Pbl::PBL32) // programmable burst length - 32 ?
});
// TODO MTU size setting not found for v1 ethernet, check if correct
// NOTE(unsafe) We got the peripheral singleton, which means that `rcc::init` was called
let hclk = crate::rcc::get_freqs().ahb1;
let hclk_mhz = hclk.0 / 1_000_000;
// Set the MDC clock frequency in the range 1MHz - 2.5MHz
let clock_range = match hclk_mhz {
0..=24 => panic!("Invalid HCLK frequency - should be at least 25 MHz."),
25..=34 => Cr::CR_20_35, // Divide by 16
35..=59 => Cr::CR_35_60, // Divide by 26
60..=99 => Cr::CR_60_100, // Divide by 42
100..=149 => Cr::CR_100_150, // Divide by 62
150..=216 => Cr::CR_150_168, // Divide by 102
_ => {
panic!("HCLK results in MDC clock > 2.5MHz even for the highest CSR clock divider")
#[cfg(eth_v1a)]
{
config_in_pins!(ref_clk, rx_d0, rx_d1);
config_af_pins!(mdio, mdc, tx_d0, tx_d1, tx_en);
}
};
let pins = [
ref_clk.map_into(),
mdio.map_into(),
mdc.map_into(),
crs.map_into(),
rx_d0.map_into(),
rx_d1.map_into(),
tx_d0.map_into(),
tx_d1.map_into(),
tx_en.map_into(),
];
#[cfg(any(eth_v1b, eth_v1c))]
config_pins!(ref_clk, mdio, mdc, crs, rx_d0, rx_d1, tx_d0, tx_d1, tx_en);
let mut this = Self {
state,
pins,
_phy: phy,
clock_range,
phy_addr,
mac_addr,
};
// NOTE(unsafe) We have exclusive access to the registers
let dma = ETH.ethernet_dma();
let mac = ETH.ethernet_mac();
this.state.with(|s| {
s.desc_ring.init();
// Reset and wait
dma.dmabmr().modify(|w| w.set_sr(true));
while dma.dmabmr().read().sr() {}
mac.maccr().modify(|w| {
w.set_ifg(Ifg::IFG96); // inter frame gap 96 bit times
w.set_apcs(Apcs::STRIP); // automatic padding and crc stripping
w.set_fes(Fes::FES100); // fast ethernet speed
w.set_dm(Dm::FULLDUPLEX); // full duplex
// TODO: Carrier sense ? ECRSFD
});
// Note: Writing to LR triggers synchronisation of both LR and HR into the MAC core,
// so the LR write must happen after the HR write.
mac.maca0hr()
.modify(|w| w.set_maca0h(u16::from(mac_addr[4]) | (u16::from(mac_addr[5]) << 8)));
mac.maca0lr().write(|w| {
w.set_maca0l(
u32::from(mac_addr[0])
| (u32::from(mac_addr[1]) << 8)
| (u32::from(mac_addr[2]) << 16)
| (u32::from(mac_addr[3]) << 24),
)
});
// pause time
mac.macfcr().modify(|w| w.set_pt(0x100));
// Transfer and Forward, Receive and Forward
dma.dmaomr().modify(|w| {
w.set_tsf(Tsf::STOREFORWARD);
w.set_rsf(Rsf::STOREFORWARD);
});
dma.dmabmr().modify(|w| {
w.set_pbl(Pbl::PBL32) // programmable burst length - 32 ?
});
// TODO MTU size setting not found for v1 ethernet, check if correct
// NOTE(unsafe) We got the peripheral singleton, which means that `rcc::init` was called
let hclk = crate::rcc::get_freqs().ahb1;
let hclk_mhz = hclk.0 / 1_000_000;
// Set the MDC clock frequency in the range 1MHz - 2.5MHz
let clock_range = match hclk_mhz {
0..=24 => panic!("Invalid HCLK frequency - should be at least 25 MHz."),
25..=34 => Cr::CR_20_35, // Divide by 16
35..=59 => Cr::CR_35_60, // Divide by 26
60..=99 => Cr::CR_60_100, // Divide by 42
100..=149 => Cr::CR_100_150, // Divide by 62
150..=216 => Cr::CR_150_168, // Divide by 102
_ => {
panic!("HCLK results in MDC clock > 2.5MHz even for the highest CSR clock divider")
}
};
let pins = [
ref_clk.map_into(),
mdio.map_into(),
mdc.map_into(),
crs.map_into(),
rx_d0.map_into(),
rx_d1.map_into(),
tx_d0.map_into(),
tx_d1.map_into(),
tx_en.map_into(),
];
let mut this = Self {
_peri: peri,
pins,
_phy: phy,
clock_range,
phy_addr,
mac_addr,
tx: TDesRing::new(&mut queue.tx_desc, &mut queue.tx_buf),
rx: RDesRing::new(&mut queue.rx_desc, &mut queue.rx_buf),
};
fence(Ordering::SeqCst);
@ -245,23 +232,45 @@ impl<'d, T: Instance, P: PHY, const TX: usize, const RX: usize> Ethernet<'d, T,
w.set_sr(DmaomrSr::STARTED); // start receiving channel
});
this.rx.demand_poll();
// Enable interrupts
dma.dmaier().modify(|w| {
w.set_nise(true);
w.set_rie(true);
w.set_tie(true);
});
});
P::phy_reset(&mut this);
P::phy_init(&mut this);
this
P::phy_reset(&mut this);
P::phy_init(&mut this);
interrupt.set_handler(Self::on_interrupt);
interrupt.enable();
this
}
}
fn on_interrupt(_cx: *mut ()) {
WAKER.wake();
// TODO: Check and clear more flags
unsafe {
let dma = ETH.ethernet_dma();
dma.dmasr().modify(|w| {
w.set_ts(true);
w.set_rs(true);
w.set_nis(true);
});
// Delay two peripheral's clock
dma.dmasr().read();
dma.dmasr().read();
}
}
}
unsafe impl<'d, T: Instance, P: PHY, const TX: usize, const RX: usize> StationManagement
for Ethernet<'d, T, P, TX, RX>
{
unsafe impl<'d, T: Instance, P: PHY> StationManagement for Ethernet<'d, T, P> {
fn smi_read(&mut self, reg: u8) -> u16 {
// NOTE(unsafe) These registers aren't used in the interrupt and we have `&mut self`
unsafe {
@ -297,44 +306,7 @@ unsafe impl<'d, T: Instance, P: PHY, const TX: usize, const RX: usize> StationMa
}
}
impl<'d, T: Instance, P: PHY, const TX: usize, const RX: usize> Device for Ethernet<'d, T, P, TX, RX> {
fn is_transmit_ready(&mut self) -> bool {
self.state.with(|s| s.desc_ring.tx.available())
}
fn transmit(&mut self, pkt: PacketBuf) {
self.state.with(|s| unwrap!(s.desc_ring.tx.transmit(pkt)));
}
fn receive(&mut self) -> Option<PacketBuf> {
self.state.with(|s| s.desc_ring.rx.pop_packet())
}
fn register_waker(&mut self, waker: &Waker) {
WAKER.register(waker);
}
fn capabilities(&self) -> DeviceCapabilities {
let mut caps = DeviceCapabilities::default();
caps.max_transmission_unit = MTU;
caps.max_burst_size = Some(TX.min(RX));
caps
}
fn link_state(&mut self) -> LinkState {
if P::poll_link(self) {
LinkState::Up
} else {
LinkState::Down
}
}
fn ethernet_address(&self) -> [u8; 6] {
self.mac_addr
}
}
impl<'d, T: Instance, P: PHY, const TX: usize, const RX: usize> Drop for Ethernet<'d, T, P, TX, RX> {
impl<'d, T: Instance, P: PHY> Drop for Ethernet<'d, T, P> {
fn drop(&mut self) {
// NOTE(unsafe) We have `&mut self` and the interrupt doesn't use this registers
unsafe {
@ -361,46 +333,3 @@ impl<'d, T: Instance, P: PHY, const TX: usize, const RX: usize> Drop for Etherne
})
}
}
//----------------------------------------------------------------------
struct Inner<'d, T: Instance, const TX: usize, const RX: usize> {
_peri: PhantomData<&'d mut T>,
desc_ring: DescriptorRing<TX, RX>,
}
impl<'d, T: Instance, const TX: usize, const RX: usize> Inner<'d, T, TX, RX> {
pub fn new(_peri: impl Peripheral<P = T> + 'd) -> Self {
Self {
_peri: PhantomData,
desc_ring: DescriptorRing::new(),
}
}
}
impl<'d, T: Instance, const TX: usize, const RX: usize> PeripheralState for Inner<'d, T, TX, RX> {
type Interrupt = crate::interrupt::ETH;
fn on_interrupt(&mut self) {
unwrap!(self.desc_ring.tx.on_interrupt());
self.desc_ring.rx.on_interrupt();
WAKER.wake();
// TODO: Check and clear more flags
unsafe {
let dma = ETH.ethernet_dma();
dma.dmasr().modify(|w| {
w.set_ts(true);
w.set_rs(true);
w.set_nis(true);
});
// Delay two peripheral's clock
dma.dmasr().read();
dma.dmasr().read();
}
}
}
static WAKER: AtomicWaker = AtomicWaker::new();

View file

@ -1,9 +1,9 @@
use core::sync::atomic::{compiler_fence, fence, Ordering};
use embassy_net::{Packet, PacketBox, PacketBoxExt, PacketBuf};
use stm32_metapac::eth::vals::{DmaomrSr, Rpd, Rps};
use stm32_metapac::eth::vals::{Rpd, Rps};
use vcell::VolatileCell;
use crate::eth::RX_BUFFER_SIZE;
use crate::pac::ETH;
mod rx_consts {
@ -28,6 +28,8 @@ mod rx_consts {
use rx_consts::*;
use super::Packet;
/// Receive Descriptor representation
///
/// * rdes0: OWN and Status
@ -35,7 +37,7 @@ use rx_consts::*;
/// * rdes2: data buffer address
/// * rdes3: next descriptor address
#[repr(C)]
struct RDes {
pub(crate) struct RDes {
rdes0: VolatileCell<u32>,
rdes1: VolatileCell<u32>,
rdes2: VolatileCell<u32>,
@ -54,7 +56,7 @@ impl RDes {
/// Return true if this RDes is acceptable to us
#[inline(always)]
pub fn valid(&self) -> bool {
fn valid(&self) -> bool {
// Write-back descriptor is valid if:
//
// Contains first buffer of packet AND contains last buf of
@ -64,15 +66,16 @@ impl RDes {
/// Return true if this RDes is not currently owned by the DMA
#[inline(always)]
pub fn available(&self) -> bool {
fn available(&self) -> bool {
self.rdes0.get() & RXDESC_0_OWN == 0 // Owned by us
}
/// Configures the reception buffer address and length and passed descriptor ownership to the DMA
#[inline(always)]
pub fn set_ready(&mut self, buf_addr: u32, buf_len: usize) {
self.rdes1.set(self.rdes1.get() | (buf_len as u32) & RXDESC_1_RBS_MASK);
self.rdes2.set(buf_addr);
fn set_ready(&self, buf: *mut u8) {
self.rdes1
.set(self.rdes1.get() | (RX_BUFFER_SIZE as u32) & RXDESC_1_RBS_MASK);
self.rdes2.set(buf as u32);
// "Preceding reads and writes cannot be moved past subsequent writes."
fence(Ordering::Release);
@ -88,12 +91,12 @@ impl RDes {
// points to next descriptor (RCH)
#[inline(always)]
fn set_buffer2(&mut self, buffer: *const u8) {
fn set_buffer2(&self, buffer: *const u8) {
self.rdes3.set(buffer as u32);
}
#[inline(always)]
fn set_end_of_ring(&mut self) {
fn set_end_of_ring(&self) {
self.rdes1.set(self.rdes1.get() | RXDESC_1_RER);
}
@ -102,7 +105,7 @@ impl RDes {
((self.rdes0.get() >> RXDESC_0_FL_SHIFT) & RXDESC_0_FL_MASK) as usize
}
pub fn setup(&mut self, next: Option<&Self>) {
fn setup(&self, next: Option<&Self>, buf: *mut u8) {
// Defer this initialization to this function, so we can have `RingEntry` on bss.
self.rdes1.set(self.rdes1.get() | RXDESC_1_RCH);
@ -113,8 +116,11 @@ impl RDes {
self.set_end_of_ring();
}
}
self.set_ready(buf);
}
}
/// Running state of the `RxRing`
#[derive(PartialEq, Eq, Debug)]
pub enum RunningState {
@ -123,116 +129,42 @@ pub enum RunningState {
Running,
}
impl RunningState {
/// whether self equals to `RunningState::Running`
pub fn is_running(&self) -> bool {
*self == RunningState::Running
}
}
/// Rx ring of descriptors and packets
///
/// This ring has three major locations that work in lock-step. The DMA will never write to the tail
/// index, so the `read_index` must never pass the tail index. The `next_tail_index` is always 1
/// slot ahead of the real tail index, and it must never pass the `read_index` or it could overwrite
/// a packet still to be passed to the application.
///
/// nt can't pass r (no alloc)
/// +---+---+---+---+ Read ok +---+---+---+---+ No Read +---+---+---+---+
/// | | | | | ------------> | | | | | ------------> | | | | |
/// +---+---+---+---+ Allocation ok +---+---+---+---+ +---+---+---+---+
/// ^ ^t ^t ^ ^t ^
/// |r |r |r
/// |nt |nt |nt
///
///
/// +---+---+---+---+ Read ok +---+---+---+---+ Can't read +---+---+---+---+
/// | | | | | ------------> | | | | | ------------> | | | | |
/// +---+---+---+---+ Allocation fail +---+---+---+---+ Allocation ok +---+---+---+---+
/// ^ ^t ^ ^t ^ ^ ^ ^t
/// |r | |r | | |r
/// |nt |nt |nt
///
pub(crate) struct RDesRing<const N: usize> {
descriptors: [RDes; N],
buffers: [Option<PacketBox>; N],
read_index: usize,
next_tail_index: usize,
pub(crate) struct RDesRing<'a> {
descriptors: &'a mut [RDes],
buffers: &'a mut [Packet<RX_BUFFER_SIZE>],
index: usize,
}
impl<const N: usize> RDesRing<N> {
pub const fn new() -> Self {
const RDES: RDes = RDes::new();
const BUFFERS: Option<PacketBox> = None;
impl<'a> RDesRing<'a> {
pub(crate) fn new(descriptors: &'a mut [RDes], buffers: &'a mut [Packet<RX_BUFFER_SIZE>]) -> Self {
assert!(descriptors.len() > 1);
assert!(descriptors.len() == buffers.len());
Self {
descriptors: [RDES; N],
buffers: [BUFFERS; N],
read_index: 0,
next_tail_index: 0,
}
}
pub(crate) fn init(&mut self) {
assert!(N > 1);
let mut last_index = 0;
for (index, buf) in self.buffers.iter_mut().enumerate() {
let pkt = match PacketBox::new(Packet::new()) {
Some(p) => p,
None => {
if index == 0 {
panic!("Could not allocate at least one buffer for Ethernet receiving");
} else {
break;
}
}
};
self.descriptors[index].set_ready(pkt.as_ptr() as u32, pkt.len());
*buf = Some(pkt);
last_index = index;
}
self.next_tail_index = (last_index + 1) % N;
// not sure if this is supposed to span all of the descriptor or just those that contain buffers
{
let mut previous: Option<&mut RDes> = None;
for entry in self.descriptors.iter_mut() {
if let Some(prev) = &mut previous {
prev.setup(Some(entry));
}
previous = Some(entry);
}
if let Some(entry) = &mut previous {
entry.setup(None);
}
for (i, entry) in descriptors.iter().enumerate() {
entry.setup(descriptors.get(i + 1), buffers[i].0.as_mut_ptr());
}
// Register txdescriptor start
// Register rx descriptor start
// NOTE (unsafe) Used for atomic writes
unsafe {
ETH.ethernet_dma()
.dmardlar()
.write(|w| w.0 = &self.descriptors as *const _ as u32);
.write(|w| w.0 = descriptors.as_ptr() as u32);
};
// We already have fences in `set_owned`, which is called in `setup`
// Start receive
unsafe { ETH.ethernet_dma().dmaomr().modify(|w| w.set_sr(DmaomrSr::STARTED)) };
self.demand_poll();
Self {
descriptors,
buffers,
index: 0,
}
}
fn demand_poll(&self) {
pub(crate) fn demand_poll(&self) {
unsafe { ETH.ethernet_dma().dmarpdr().write(|w| w.set_rpd(Rpd::POLL)) };
}
pub(crate) fn on_interrupt(&mut self) {
// XXX: Do we need to do anything here ? Maybe we should try to advance the tail ptr, but it
// would soon hit the read ptr anyway, and we will wake smoltcp's stack on the interrupt
// which should try to pop a packet...
}
/// Get current `RunningState`
fn running_state(&self) -> RunningState {
match unsafe { ETH.ethernet_dma().dmasr().read().rps() } {
@ -252,52 +184,52 @@ impl<const N: usize> RDesRing<N> {
}
}
pub(crate) fn pop_packet(&mut self) -> Option<PacketBuf> {
if !self.running_state().is_running() {
/// Get a received packet if any, or None.
pub(crate) fn available(&mut self) -> Option<&mut [u8]> {
if self.running_state() != RunningState::Running {
self.demand_poll();
}
// Not sure if the contents of the write buffer on the M7 can affects reads, so we are using
// a DMB here just in case, it also serves as a hint to the compiler that we're syncing the
// buffer (I think .-.)
fence(Ordering::SeqCst);
let read_available = self.descriptors[self.read_index].available();
let tail_index = (self.next_tail_index + N - 1) % N;
let pkt = if read_available && self.read_index != tail_index {
let pkt = self.buffers[self.read_index].take();
let len = self.descriptors[self.read_index].packet_len();
assert!(pkt.is_some());
let valid = self.descriptors[self.read_index].valid();
self.read_index = (self.read_index + 1) % N;
if valid {
pkt.map(|p| p.slice(0..len))
} else {
None
// We might have to process many packets, in case some have been rx'd but are invalid.
loop {
let descriptor = &mut self.descriptors[self.index];
if !descriptor.available() {
return None;
}
} else {
None
};
// Try to advance the tail_index
if self.next_tail_index != self.read_index {
match PacketBox::new(Packet::new()) {
Some(b) => {
let addr = b.as_ptr() as u32;
let buffer_len = b.len();
self.buffers[self.next_tail_index].replace(b);
self.descriptors[self.next_tail_index].set_ready(addr, buffer_len);
// "Preceding reads and writes cannot be moved past subsequent writes."
fence(Ordering::Release);
self.next_tail_index = (self.next_tail_index + 1) % N;
}
None => {}
// If packet is invalid, pop it and try again.
if !descriptor.valid() {
warn!("invalid packet: {:08x}", descriptor.rdes0.get());
self.pop_packet();
continue;
}
break;
}
let descriptor = &mut self.descriptors[self.index];
let len = descriptor.packet_len();
return Some(&mut self.buffers[self.index].0[..len]);
}
/// Pop the packet previously returned by `available`.
pub(crate) fn pop_packet(&mut self) {
let descriptor = &mut self.descriptors[self.index];
assert!(descriptor.available());
self.descriptors[self.index].set_ready(self.buffers[self.index].0.as_mut_ptr());
self.demand_poll();
// Increment index.
self.index += 1;
if self.index == self.descriptors.len() {
self.index = 0
}
pkt
}
}

View file

@ -1,20 +1,10 @@
use core::sync::atomic::{compiler_fence, fence, Ordering};
use embassy_net::PacketBuf;
use stm32_metapac::eth::vals::St;
use vcell::VolatileCell;
use crate::eth::TX_BUFFER_SIZE;
use crate::pac::ETH;
#[non_exhaustive]
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
NoBufferAvailable,
// TODO: Break down this error into several others
TransmissionError,
}
/// Transmit and Receive Descriptor fields
#[allow(dead_code)]
mod tx_consts {
@ -37,6 +27,8 @@ mod tx_consts {
}
use tx_consts::*;
use super::Packet;
/// Transmit Descriptor representation
///
/// * tdes0: control
@ -44,7 +36,7 @@ use tx_consts::*;
/// * tdes2: data buffer address
/// * tdes3: next descriptor address
#[repr(C)]
struct TDes {
pub(crate) struct TDes {
tdes0: VolatileCell<u32>,
tdes1: VolatileCell<u32>,
tdes2: VolatileCell<u32>,
@ -62,7 +54,7 @@ impl TDes {
}
/// Return true if this TDes is not currently owned by the DMA
pub fn available(&self) -> bool {
fn available(&self) -> bool {
(self.tdes0.get() & TXDESC_0_OWN) == 0
}
@ -79,26 +71,26 @@ impl TDes {
fence(Ordering::SeqCst);
}
fn set_buffer1(&mut self, buffer: *const u8) {
fn set_buffer1(&self, buffer: *const u8) {
self.tdes2.set(buffer as u32);
}
fn set_buffer1_len(&mut self, len: usize) {
fn set_buffer1_len(&self, len: usize) {
self.tdes1
.set((self.tdes1.get() & !TXDESC_1_TBS_MASK) | ((len as u32) << TXDESC_1_TBS_SHIFT));
}
// points to next descriptor (RCH)
fn set_buffer2(&mut self, buffer: *const u8) {
fn set_buffer2(&self, buffer: *const u8) {
self.tdes3.set(buffer as u32);
}
fn set_end_of_ring(&mut self) {
fn set_end_of_ring(&self) {
self.tdes0.set(self.tdes0.get() | TXDESC_0_TER);
}
// set up as a part fo the ring buffer - configures the tdes
pub fn setup(&mut self, next: Option<&Self>) {
fn setup(&self, next: Option<&Self>) {
// Defer this initialization to this function, so we can have `RingEntry` on bss.
self.tdes0.set(TXDESC_0_TCH | TXDESC_0_IOC | TXDESC_0_FS | TXDESC_0_LS);
match next {
@ -111,85 +103,58 @@ impl TDes {
}
}
pub(crate) struct TDesRing<const N: usize> {
descriptors: [TDes; N],
buffers: [Option<PacketBuf>; N],
next_entry: usize,
pub(crate) struct TDesRing<'a> {
descriptors: &'a mut [TDes],
buffers: &'a mut [Packet<TX_BUFFER_SIZE>],
index: usize,
}
impl<const N: usize> TDesRing<N> {
pub const fn new() -> Self {
const TDES: TDes = TDes::new();
const BUFFERS: Option<PacketBuf> = None;
Self {
descriptors: [TDES; N],
buffers: [BUFFERS; N],
next_entry: 0,
}
}
impl<'a> TDesRing<'a> {
/// Initialise this TDesRing. Assume TDesRing is corrupt
///
/// The current memory address of the buffers inside this TDesRing
/// will be stored in the descriptors, so ensure the TDesRing is
/// not moved after initialisation.
pub(crate) fn init(&mut self) {
assert!(N > 0);
pub(crate) fn new(descriptors: &'a mut [TDes], buffers: &'a mut [Packet<TX_BUFFER_SIZE>]) -> Self {
assert!(descriptors.len() > 0);
assert!(descriptors.len() == buffers.len());
{
let mut previous: Option<&mut TDes> = None;
for entry in self.descriptors.iter_mut() {
if let Some(prev) = &mut previous {
prev.setup(Some(entry));
}
previous = Some(entry);
}
if let Some(entry) = &mut previous {
entry.setup(None);
}
for (i, entry) in descriptors.iter().enumerate() {
entry.setup(descriptors.get(i + 1));
}
self.next_entry = 0;
// Register txdescriptor start
// NOTE (unsafe) Used for atomic writes
unsafe {
ETH.ethernet_dma()
.dmatdlar()
.write(|w| w.0 = &self.descriptors as *const _ as u32);
.write(|w| w.0 = descriptors.as_ptr() as u32);
}
// "Preceding reads and writes cannot be moved past subsequent writes."
#[cfg(feature = "fence")]
fence(Ordering::Release);
// We don't need a compiler fence here because all interactions with `Descriptor` are
// volatiles
// Start transmission
unsafe { ETH.ethernet_dma().dmaomr().modify(|w| w.set_st(St::STARTED)) };
}
/// Return true if a TDes is available for use
pub(crate) fn available(&self) -> bool {
self.descriptors[self.next_entry].available()
}
pub(crate) fn transmit(&mut self, pkt: PacketBuf) -> Result<(), Error> {
if !self.available() {
return Err(Error::NoBufferAvailable);
Self {
descriptors,
buffers,
index: 0,
}
}
let descriptor = &mut self.descriptors[self.next_entry];
pub(crate) fn len(&self) -> usize {
self.descriptors.len()
}
let pkt_len = pkt.len();
let address = pkt.as_ptr() as *const u8;
/// Return the next available packet buffer for transmitting, or None
pub(crate) fn available(&mut self) -> Option<&mut [u8]> {
let descriptor = &mut self.descriptors[self.index];
if descriptor.available() {
Some(&mut self.buffers[self.index].0)
} else {
None
}
}
descriptor.set_buffer1(address);
descriptor.set_buffer1_len(pkt_len);
/// Transmit the packet written in a buffer returned by `available`.
pub(crate) fn transmit(&mut self, len: usize) {
let descriptor = &mut self.descriptors[self.index];
assert!(descriptor.available());
self.buffers[self.next_entry].replace(pkt);
descriptor.set_buffer1(self.buffers[self.index].0.as_ptr());
descriptor.set_buffer1_len(len);
descriptor.set_owned();
@ -198,36 +163,12 @@ impl<const N: usize> TDesRing<N> {
// "Preceding reads and writes cannot be moved past subsequent writes."
fence(Ordering::Release);
// Move the tail pointer (TPR) to the next descriptor
self.next_entry = (self.next_entry + 1) % N;
// Move the index to the next descriptor
self.index += 1;
if self.index == self.descriptors.len() {
self.index = 0
}
// Request the DMA engine to poll the latest tx descriptor
unsafe { ETH.ethernet_dma().dmatpdr().modify(|w| w.0 = 1) }
Ok(())
}
pub(crate) fn on_interrupt(&mut self) -> Result<(), Error> {
let previous = (self.next_entry + N - 1) % N;
let td = &self.descriptors[previous];
// DMB to ensure that we are reading an updated value, probably not needed at the hardware
// level, but this is also a hint to the compiler that we're syncing on the buffer.
fence(Ordering::SeqCst);
let tdes0 = td.tdes0.get();
if tdes0 & TXDESC_0_OWN != 0 {
// Transmission isn't done yet, probably a receive interrupt that fired this
return Ok(());
}
// Release the buffer
self.buffers[previous].take();
if tdes0 & TXDESC_0_ES != 0 {
Err(Error::TransmissionError)
} else {
Ok(())
}
}
}

View file

@ -7,7 +7,7 @@ use embassy_executor::Spawner;
use embassy_net::tcp::TcpSocket;
use embassy_net::{Ipv4Address, Stack, StackResources};
use embassy_stm32::eth::generic_smi::GenericSMI;
use embassy_stm32::eth::{Ethernet, State};
use embassy_stm32::eth::{Ethernet, PacketQueue};
use embassy_stm32::peripherals::ETH;
use embassy_stm32::rng::Rng;
use embassy_stm32::time::mhz;
@ -22,11 +22,12 @@ macro_rules! singleton {
($val:expr) => {{
type T = impl Sized;
static STATIC_CELL: StaticCell<T> = StaticCell::new();
STATIC_CELL.init_with(move || $val)
let (x,) = STATIC_CELL.init(($val,));
x
}};
}
type Device = Ethernet<'static, ETH, GenericSMI, 4, 4>;
type Device = Ethernet<'static, ETH, GenericSMI>;
#[embassy_executor::task]
async fn net_task(stack: &'static Stack<Device>) -> ! {
@ -50,25 +51,23 @@ async fn main(spawner: Spawner) -> ! {
let eth_int = interrupt::take!(ETH);
let mac_addr = [0x00, 0x00, 0xDE, 0xAD, 0xBE, 0xEF];
let device = unsafe {
Ethernet::new(
singleton!(State::new()),
p.ETH,
eth_int,
p.PA1,
p.PA2,
p.PC1,
p.PA7,
p.PC4,
p.PC5,
p.PG13,
p.PB13,
p.PG11,
GenericSMI,
mac_addr,
0,
)
};
let device = Ethernet::new(
singleton!(PacketQueue::<16, 16>::new()),
p.ETH,
eth_int,
p.PA1,
p.PA2,
p.PC1,
p.PA7,
p.PC4,
p.PC5,
p.PG13,
p.PB13,
p.PG11,
GenericSMI,
mac_addr,
0,
);
let config = embassy_net::ConfigStrategy::Dhcp;
//let config = embassy_net::ConfigStrategy::Static(embassy_net::Config {
@ -91,8 +90,8 @@ async fn main(spawner: Spawner) -> ! {
info!("Network task initialized");
// Then we can use it!
let mut rx_buffer = [0; 1024];
let mut tx_buffer = [0; 1024];
let mut rx_buffer = [0; 4096];
let mut tx_buffer = [0; 4096];
loop {
let mut socket = TcpSocket::new(&stack, &mut rx_buffer, &mut tx_buffer);
@ -107,8 +106,9 @@ async fn main(spawner: Spawner) -> ! {
continue;
}
info!("connected!");
let buf = [0; 1024];
loop {
let r = socket.write_all(b"Hello\n").await;
let r = socket.write_all(&buf).await;
if let Err(e) = r {
info!("write error: {:?}", e);
return;