Merge pull request #2742 from sgoll/i2c-async-transaction

stm32/i2c(v1): Implement asynchronous transactions
This commit is contained in:
Dario Nieuwenhuis 2024-04-04 21:43:21 +00:00 committed by GitHub
commit a0439479f7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 418 additions and 374 deletions

View file

@ -6,6 +6,7 @@
mod _version; mod _version;
use core::future::Future; use core::future::Future;
use core::iter;
use core::marker::PhantomData; use core::marker::PhantomData;
use embassy_hal_internal::{into_ref, Peripheral, PeripheralRef}; use embassy_hal_internal::{into_ref, Peripheral, PeripheralRef};
@ -332,8 +333,142 @@ impl<'d, T: Instance, TXDMA: TxDma<T>, RXDMA: RxDma<T>> embedded_hal_async::i2c:
address: u8, address: u8,
operations: &mut [embedded_hal_1::i2c::Operation<'_>], operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> { ) -> Result<(), Self::Error> {
let _ = address; self.transaction(address, operations).await
let _ = operations;
todo!()
} }
} }
/// Frame type in I2C transaction.
///
/// This tells each method what kind of framing to use, to generate a (repeated) start condition (ST
/// or SR), and/or a stop condition (SP). For read operations, this also controls whether to send an
/// ACK or NACK after the last byte received.
///
/// For write operations, the following options are identical because they differ only in the (N)ACK
/// treatment relevant for read operations:
///
/// - `FirstFrame` and `FirstAndNextFrame`
/// - `NextFrame` and `LastFrameNoStop`
///
/// Abbreviations used below:
///
/// - `ST` = start condition
/// - `SR` = repeated start condition
/// - `SP` = stop condition
/// - `ACK`/`NACK` = last byte in read operation
#[derive(Copy, Clone)]
#[allow(dead_code)]
enum FrameOptions {
/// `[ST/SR]+[NACK]+[SP]` First frame (of this type) in transaction and also last frame overall.
FirstAndLastFrame,
/// `[ST/SR]+[NACK]` First frame of this type in transaction, last frame in a read operation but
/// not the last frame overall.
FirstFrame,
/// `[ST/SR]+[ACK]` First frame of this type in transaction, neither last frame overall nor last
/// frame in a read operation.
FirstAndNextFrame,
/// `[ACK]` Middle frame in a read operation (neither first nor last).
NextFrame,
/// `[NACK]+[SP]` Last frame overall in this transaction but not the first frame.
LastFrame,
/// `[NACK]` Last frame in a read operation but not last frame overall in this transaction.
LastFrameNoStop,
}
#[allow(dead_code)]
impl FrameOptions {
/// Sends start or repeated start condition before transfer.
fn send_start(self) -> bool {
match self {
Self::FirstAndLastFrame | Self::FirstFrame | Self::FirstAndNextFrame => true,
Self::NextFrame | Self::LastFrame | Self::LastFrameNoStop => false,
}
}
/// Sends stop condition after transfer.
fn send_stop(self) -> bool {
match self {
Self::FirstAndLastFrame | Self::LastFrame => true,
Self::FirstFrame | Self::FirstAndNextFrame | Self::NextFrame | Self::LastFrameNoStop => false,
}
}
/// Sends NACK after last byte received, indicating end of read operation.
fn send_nack(self) -> bool {
match self {
Self::FirstAndLastFrame | Self::FirstFrame | Self::LastFrame | Self::LastFrameNoStop => true,
Self::FirstAndNextFrame | Self::NextFrame => false,
}
}
}
/// Iterates over operations in transaction.
///
/// Returns necessary frame options for each operation to uphold the [transaction contract] and have
/// the right start/stop/(N)ACK conditions on the wire.
///
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
#[allow(dead_code)]
fn operation_frames<'a, 'b: 'a>(
operations: &'a mut [embedded_hal_1::i2c::Operation<'b>],
) -> Result<impl IntoIterator<Item = (&'a mut embedded_hal_1::i2c::Operation<'b>, FrameOptions)>, Error> {
use embedded_hal_1::i2c::Operation::{Read, Write};
// Check empty read buffer before starting transaction. Otherwise, we would risk halting with an
// error in the middle of the transaction.
//
// In principle, we could allow empty read frames within consecutive read operations, as long as
// at least one byte remains in the final (merged) read operation, but that makes the logic more
// complicated and error-prone.
if operations.iter().any(|op| match op {
Read(read) => read.is_empty(),
Write(_) => false,
}) {
return Err(Error::Overrun);
}
let mut operations = operations.iter_mut().peekable();
let mut next_first_frame = true;
Ok(iter::from_fn(move || {
let Some(op) = operations.next() else {
return None;
};
// Is `op` first frame of its type?
let first_frame = next_first_frame;
let next_op = operations.peek();
// Get appropriate frame options as combination of the following properties:
//
// - For each first operation of its type, generate a (repeated) start condition.
// - For the last operation overall in the entire transaction, generate a stop condition.
// - For read operations, check the next operation: if it is also a read operation, we merge
// these and send ACK for all bytes in the current operation; send NACK only for the final
// read operation's last byte (before write or end of entire transaction) to indicate last
// byte read and release the bus for transmission of the bus master's next byte (or stop).
//
// We check the third property unconditionally, i.e. even for write opeartions. This is okay
// because the resulting frame options are identical for write operations.
let frame = match (first_frame, next_op) {
(true, None) => FrameOptions::FirstAndLastFrame,
(true, Some(Read(_))) => FrameOptions::FirstAndNextFrame,
(true, Some(Write(_))) => FrameOptions::FirstFrame,
//
(false, None) => FrameOptions::LastFrame,
(false, Some(Read(_))) => FrameOptions::NextFrame,
(false, Some(Write(_))) => FrameOptions::LastFrameNoStop,
};
// Pre-calculate if `next_op` is the first operation of its type. We do this here and not at
// the beginning of the loop because we hand out `op` as iterator value and cannot access it
// anymore in the next iteration.
next_first_frame = match (&op, next_op) {
(_, None) => false,
(Read(_), Some(Write(_))) | (Write(_), Some(Read(_))) => true,
(Read(_), Some(Read(_))) | (Write(_), Some(Write(_))) => false,
};
Some((op, frame))
}))
}

View file

@ -41,68 +41,6 @@ pub unsafe fn on_interrupt<T: Instance>() {
}); });
} }
/// Frame type in I2C transaction.
///
/// This tells each method what kind of framing to use, to generate a (repeated) start condition (ST
/// or SR), and/or a stop condition (SP). For read operations, this also controls whether to send an
/// ACK or NACK after the last byte received.
///
/// For write operations, the following options are identical because they differ only in the (N)ACK
/// treatment relevant for read operations:
///
/// - `FirstFrame` and `FirstAndNextFrame`
/// - `NextFrame` and `LastFrameNoStop`
///
/// Abbreviations used below:
///
/// - `ST` = start condition
/// - `SR` = repeated start condition
/// - `SP` = stop condition
#[derive(Copy, Clone)]
enum FrameOptions {
/// `[ST/SR]+[NACK]+[SP]` First frame (of this type) in operation and last frame overall in this
/// transaction.
FirstAndLastFrame,
/// `[ST/SR]+[NACK]` First frame of this type in transaction, last frame in a read operation but
/// not the last frame overall.
FirstFrame,
/// `[ST/SR]+[ACK]` First frame of this type in transaction, neither last frame overall nor last
/// frame in a read operation.
FirstAndNextFrame,
/// `[ACK]` Middle frame in a read operation (neither first nor last).
NextFrame,
/// `[NACK]+[SP]` Last frame overall in this transaction but not the first frame.
LastFrame,
/// `[NACK]` Last frame in a read operation but not last frame overall in this transaction.
LastFrameNoStop,
}
impl FrameOptions {
/// Sends start or repeated start condition before transfer.
fn send_start(self) -> bool {
match self {
Self::FirstAndLastFrame | Self::FirstFrame | Self::FirstAndNextFrame => true,
Self::NextFrame | Self::LastFrame | Self::LastFrameNoStop => false,
}
}
/// Sends stop condition after transfer.
fn send_stop(self) -> bool {
match self {
Self::FirstAndLastFrame | Self::LastFrame => true,
Self::FirstFrame | Self::FirstAndNextFrame | Self::NextFrame | Self::LastFrameNoStop => false,
}
}
/// Sends NACK after last byte received, indicating end of read operation.
fn send_nack(self) -> bool {
match self {
Self::FirstAndLastFrame | Self::FirstFrame | Self::LastFrame | Self::LastFrameNoStop => true,
Self::FirstAndNextFrame | Self::NextFrame => false,
}
}
}
impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> { impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
pub(crate) fn init(&mut self, freq: Hertz, _config: Config) { pub(crate) fn init(&mut self, freq: Hertz, _config: Config) {
T::regs().cr1().modify(|reg| { T::regs().cr1().modify(|reg| {
@ -199,17 +137,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
timeout.check()?; timeout.check()?;
} }
// Also wait until signalled we're master and everything is waiting for us // Check if we were the ones to generate START
while { if T::regs().cr1().read().start() || !T::regs().sr2().read().msl() {
Self::check_and_clear_error_flags()?; return Err(Error::Arbitration);
let sr2 = T::regs().sr2().read();
!sr2.msl() && !sr2.busy()
} {
timeout.check()?;
} }
// Set up current address, we're trying to talk to // Set up current address we're trying to talk to
T::regs().dr().write(|reg| reg.set_dr(addr << 1)); T::regs().dr().write(|reg| reg.set_dr(addr << 1));
// Wait until address was sent // Wait until address was sent
@ -231,10 +164,6 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
if frame.send_stop() { if frame.send_stop() {
// Send a STOP condition // Send a STOP condition
T::regs().cr1().modify(|reg| reg.set_stop(true)); T::regs().cr1().modify(|reg| reg.set_stop(true));
// Wait for STOP condition to transmit.
while T::regs().cr1().read().stop() {
timeout.check()?;
}
} }
// Fallthrough is success // Fallthrough is success
@ -301,15 +230,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
timeout.check()?; timeout.check()?;
} }
// Also wait until signalled we're master and everything is waiting for us // Check if we were the ones to generate START
while { if T::regs().cr1().read().start() || !T::regs().sr2().read().msl() {
let sr2 = T::regs().sr2().read(); return Err(Error::Arbitration);
!sr2.msl() && !sr2.busy()
} {
timeout.check()?;
} }
// Set up current address, we're trying to talk to // Set up current address we're trying to talk to
T::regs().dr().write(|reg| reg.set_dr((addr << 1) + 1)); T::regs().dr().write(|reg| reg.set_dr((addr << 1) + 1));
// Wait until address was sent // Wait until address was sent
@ -340,13 +266,6 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Receive last byte // Receive last byte
*last = self.recv_byte(timeout)?; *last = self.recv_byte(timeout)?;
if frame.send_stop() {
// Wait for the STOP to be sent.
while T::regs().cr1().read().stop() {
timeout.check()?;
}
}
// Fallthrough is success // Fallthrough is success
Ok(()) Ok(())
} }
@ -386,64 +305,13 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
/// ///
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction /// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
pub fn blocking_transaction(&mut self, addr: u8, operations: &mut [Operation<'_>]) -> Result<(), Error> { pub fn blocking_transaction(&mut self, addr: u8, operations: &mut [Operation<'_>]) -> Result<(), Error> {
// Check empty read buffer before starting transaction. Otherwise, we would not generate the
// stop condition below.
if operations.iter().any(|op| match op {
Operation::Read(read) => read.is_empty(),
Operation::Write(_) => false,
}) {
return Err(Error::Overrun);
}
let timeout = self.timeout(); let timeout = self.timeout();
let mut operations = operations.iter_mut(); for (op, frame) in operation_frames(operations)? {
let mut prev_op: Option<&mut Operation<'_>> = None;
let mut next_op = operations.next();
while let Some(op) = next_op {
next_op = operations.next();
// Check if this is the first frame of this type. This is the case for the first overall
// frame in the transaction and whenever the type of operation changes.
let first_frame =
match (prev_op.as_ref(), &op) {
(None, _) => true,
(Some(Operation::Read(_)), Operation::Write(_))
| (Some(Operation::Write(_)), Operation::Read(_)) => true,
(Some(Operation::Read(_)), Operation::Read(_))
| (Some(Operation::Write(_)), Operation::Write(_)) => false,
};
let frame = match (first_frame, next_op.as_ref()) {
// If this is the first frame of this type, we generate a (repeated) start condition
// but have to consider the next operation: if it is the last, we generate the final
// stop condition. Otherwise, we branch on the operation: with read operations, only
// the last byte overall (before a write operation or the end of the transaction) is
// to be NACK'd, i.e. if another read operation follows, we must ACK this last byte.
(true, None) => FrameOptions::FirstAndLastFrame,
// Make sure to keep sending ACK for last byte in read operation when it is followed
// by another consecutive read operation. If the current operation is write, this is
// identical to `FirstFrame`.
(true, Some(Operation::Read(_))) => FrameOptions::FirstAndNextFrame,
// Otherwise, send NACK for last byte (in read operation). (For write, this does not
// matter and could also be `FirstAndNextFrame`.)
(true, Some(Operation::Write(_))) => FrameOptions::FirstFrame,
// If this is not the first frame of its type, we do not generate a (repeated) start
// condition. Otherwise, we branch the same way as above.
(false, None) => FrameOptions::LastFrame,
(false, Some(Operation::Read(_))) => FrameOptions::NextFrame,
(false, Some(Operation::Write(_))) => FrameOptions::LastFrameNoStop,
};
match op { match op {
Operation::Read(read) => self.blocking_read_timeout(addr, read, timeout, frame)?, Operation::Read(read) => self.blocking_read_timeout(addr, read, timeout, frame)?,
Operation::Write(write) => self.write_bytes(addr, write, timeout, frame)?, Operation::Write(write) => self.write_bytes(addr, write, timeout, frame)?,
} }
prev_op = Some(op);
} }
Ok(()) Ok(())
@ -459,111 +327,110 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
}); });
} }
async fn write_with_stop(&mut self, address: u8, write: &[u8], send_stop: bool) -> Result<(), Error> async fn write_frame(&mut self, address: u8, write: &[u8], frame: FrameOptions) -> Result<(), Error>
where where
TXDMA: crate::i2c::TxDma<T>, TXDMA: crate::i2c::TxDma<T>,
{ {
let dma_transfer = unsafe { T::regs().cr2().modify(|w| {
let regs = T::regs(); // Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for
regs.cr2().modify(|w| { // reception.
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2 register. w.set_itbufen(false);
w.set_dmaen(true); // DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2
w.set_itbufen(false); // register.
}); w.set_dmaen(true);
// Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to this address from the memory after each TxE event. // Sending NACK is not necessary (nor possible) for write transfer.
let dst = regs.dr().as_ptr() as *mut u8; w.set_last(false);
});
let ch = &mut self.tx_dma;
let request = ch.request();
Transfer::new_write(ch, request, write, dst, Default::default())
};
// Sentinel to disable transfer when an error occurs or future is canceled.
// TODO: Generate STOP condition on cancel?
let on_drop = OnDrop::new(|| { let on_drop = OnDrop::new(|| {
let regs = T::regs(); T::regs().cr2().modify(|w| {
regs.cr2().modify(|w| {
w.set_dmaen(false); w.set_dmaen(false);
w.set_iterren(false); w.set_iterren(false);
w.set_itevten(false); w.set_itevten(false);
}) })
}); });
Self::enable_interrupts();
// Send a START condition
T::regs().cr1().modify(|reg| {
reg.set_start(true);
});
let state = T::state(); let state = T::state();
// Wait until START condition was generated if frame.send_start() {
poll_fn(|cx| { // Send a START condition
state.waker.register(cx.waker()); T::regs().cr1().modify(|reg| {
reg.set_start(true);
});
match Self::check_and_clear_error_flags() { // Wait until START condition was generated
Err(e) => Poll::Ready(Err(e)), poll_fn(|cx| {
Ok(sr1) => { state.waker.register(cx.waker());
if sr1.start() {
Poll::Ready(Ok(())) match Self::check_and_clear_error_flags() {
} else { Err(e) => Poll::Ready(Err(e)),
Poll::Pending Ok(sr1) => {
if sr1.start() {
Poll::Ready(Ok(()))
} else {
// When pending, (re-)enable interrupts to wake us up.
Self::enable_interrupts();
Poll::Pending
}
} }
} }
})
.await?;
// Check if we were the ones to generate START
if T::regs().cr1().read().start() || !T::regs().sr2().read().msl() {
return Err(Error::Arbitration);
} }
})
.await?;
// Also wait until signalled we're master and everything is waiting for us // Set up current address we're trying to talk to
Self::enable_interrupts(); T::regs().dr().write(|reg| reg.set_dr(address << 1));
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() { // Wait for the address to be acknowledged
Err(e) => Poll::Ready(Err(e)), poll_fn(|cx| {
Ok(_) => { state.waker.register(cx.waker());
let sr2 = T::regs().sr2().read();
if !sr2.msl() && !sr2.busy() { match Self::check_and_clear_error_flags() {
Poll::Pending Err(e) => Poll::Ready(Err(e)),
} else { Ok(sr1) => {
Poll::Ready(Ok(())) if sr1.addr() {
Poll::Ready(Ok(()))
} else {
// When pending, (re-)enable interrupts to wake us up.
Self::enable_interrupts();
Poll::Pending
}
} }
} }
} })
}) .await?;
.await?;
// Set up current address, we're trying to talk to // Clear condition by reading SR2
Self::enable_interrupts(); T::regs().sr2().read();
T::regs().dr().write(|reg| reg.set_dr(address << 1)); }
poll_fn(|cx| { let dma_transfer = unsafe {
state.waker.register(cx.waker()); // Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to
match Self::check_and_clear_error_flags() { // this address from the memory after each TxE event.
Err(e) => Poll::Ready(Err(e)), let dst = T::regs().dr().as_ptr() as *mut u8;
Ok(sr1) => {
if sr1.addr() { let ch = &mut self.tx_dma;
// Clear the ADDR condition by reading SR2. let request = ch.request();
T::regs().sr2().read(); Transfer::new_write(ch, request, write, dst, Default::default())
Poll::Ready(Ok(())) };
} else {
// If we need to go around, then re-enable the interrupts, otherwise nothing // Wait for bytes to be sent, or an error to occur.
// can wake us up and we'll hang.
Self::enable_interrupts();
Poll::Pending
}
}
}
})
.await?;
Self::enable_interrupts();
let poll_error = poll_fn(|cx| { let poll_error = poll_fn(|cx| {
state.waker.register(cx.waker()); state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() { match Self::check_and_clear_error_flags() {
// Unclear why the Err turbofish is necessary here? The compiler didnt require it in the other Err(e) => Poll::Ready(Err::<(), Error>(e)),
// identical poll_fn check_and_clear matches. Ok(_) => {
Err(e) => Poll::Ready(Err::<T, Error>(e)), // When pending, (re-)enable interrupts to wake us up.
Ok(_) => Poll::Pending, Self::enable_interrupts();
Poll::Pending
}
} }
}); });
@ -573,38 +440,37 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
_ => Ok(()), _ => Ok(()),
}?; }?;
// The I2C transfer itself will take longer than the DMA transfer, so wait for that to finish too.
// 18.3.8 “Master transmitter: In the interrupt routine after the EOT interrupt, disable DMA
// requests then wait for a BTF event before programming the Stop condition.”
// TODO: If this has to be done “in the interrupt routine after the EOT interrupt”, where to put it?
T::regs().cr2().modify(|w| { T::regs().cr2().modify(|w| {
w.set_dmaen(false); w.set_dmaen(false);
}); });
Self::enable_interrupts(); if frame.send_stop() {
poll_fn(|cx| { // The I2C transfer itself will take longer than the DMA transfer, so wait for that to finish too.
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() { // 18.3.8 “Master transmitter: In the interrupt routine after the EOT interrupt, disable DMA
Err(e) => Poll::Ready(Err(e)), // requests then wait for a BTF event before programming the Stop condition.”
Ok(sr1) => { poll_fn(|cx| {
if sr1.btf() { state.waker.register(cx.waker());
if send_stop {
T::regs().cr1().modify(|w| { match Self::check_and_clear_error_flags() {
w.set_stop(true); Err(e) => Poll::Ready(Err(e)),
}); Ok(sr1) => {
if sr1.btf() {
Poll::Ready(Ok(()))
} else {
// When pending, (re-)enable interrupts to wake us up.
Self::enable_interrupts();
Poll::Pending
} }
Poll::Ready(Ok(()))
} else {
Poll::Pending
} }
} }
} })
}) .await?;
.await?;
T::regs().cr1().modify(|w| {
w.set_stop(true);
});
}
drop(on_drop); drop(on_drop);
@ -617,20 +483,8 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
where where
TXDMA: crate::i2c::TxDma<T>, TXDMA: crate::i2c::TxDma<T>,
{ {
self.write_with_stop(address, write, true).await?; self.write_frame(address, write, FrameOptions::FirstAndLastFrame)
.await?;
// Wait for STOP condition to transmit.
Self::enable_interrupts();
poll_fn(|cx| {
T::state().waker.register(cx.waker());
// TODO: error interrupts are enabled here, should we additional check for and return errors?
if T::regs().cr1().read().stop() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
})
.await?;
Ok(()) Ok(())
} }
@ -640,135 +494,151 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
where where
RXDMA: crate::i2c::RxDma<T>, RXDMA: crate::i2c::RxDma<T>,
{ {
let state = T::state(); self.read_frame(address, buffer, FrameOptions::FirstAndLastFrame)
let buffer_len = buffer.len(); .await?;
let dma_transfer = unsafe { Ok(())
let regs = T::regs(); }
regs.cr2().modify(|w| {
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2 register.
w.set_itbufen(false);
w.set_dmaen(true);
});
// Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to this address from the memory after each TxE event.
let src = regs.dr().as_ptr() as *mut u8;
let ch = &mut self.rx_dma; async fn read_frame(&mut self, address: u8, buffer: &mut [u8], frame: FrameOptions) -> Result<(), Error>
let request = ch.request(); where
Transfer::new_read(ch, request, src, buffer, Default::default()) RXDMA: crate::i2c::RxDma<T>,
}; {
if buffer.is_empty() {
return Err(Error::Overrun);
}
// Some branches below depend on whether the buffer contains only a single byte.
let single_byte = buffer.len() == 1;
T::regs().cr2().modify(|w| {
// Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for
// reception.
w.set_itbufen(false);
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2
// register.
w.set_dmaen(true);
// If, in the I2C_CR2 register, the LAST bit is set, I2C automatically sends a NACK
// after the next byte following EOT_1. The user can generate a Stop condition in
// the DMA Transfer Complete interrupt routine if enabled.
w.set_last(frame.send_nack() && !single_byte);
});
// Sentinel to disable transfer when an error occurs or future is canceled.
// TODO: Generate STOP condition on cancel?
let on_drop = OnDrop::new(|| { let on_drop = OnDrop::new(|| {
let regs = T::regs(); T::regs().cr2().modify(|w| {
regs.cr2().modify(|w| {
w.set_dmaen(false); w.set_dmaen(false);
w.set_iterren(false); w.set_iterren(false);
w.set_itevten(false); w.set_itevten(false);
}) })
}); });
Self::enable_interrupts(); let state = T::state();
// Send a START condition and set ACK bit if frame.send_start() {
T::regs().cr1().modify(|reg| { // Send a START condition and set ACK bit
reg.set_start(true); T::regs().cr1().modify(|reg| {
reg.set_ack(true); reg.set_start(true);
}); reg.set_ack(true);
});
// Wait until START condition was generated // Wait until START condition was generated
poll_fn(|cx| { poll_fn(|cx| {
state.waker.register(cx.waker()); state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() { match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)), Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => { Ok(sr1) => {
if sr1.start() { if sr1.start() {
Poll::Ready(Ok(())) Poll::Ready(Ok(()))
} else { } else {
Poll::Pending // When pending, (re-)enable interrupts to wake us up.
} Self::enable_interrupts();
} Poll::Pending
}
})
.await?;
// Also wait until signalled we're master and everything is waiting for us
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
// blocking read didnt have a check_and_clear call here, but blocking write did so
// Im adding it here in case that was an oversight.
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(_) => {
let sr2 = T::regs().sr2().read();
if !sr2.msl() && !sr2.busy() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
}
}
})
.await?;
// Set up current address, we're trying to talk to
T::regs().dr().write(|reg| reg.set_dr((address << 1) + 1));
// Wait for the address to be acknowledged
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.addr() {
// 18.3.8: When a single byte must be received: the NACK must be programmed during EV6
// event, i.e. program ACK=0 when ADDR=1, before clearing ADDR flag.
if buffer_len == 1 {
T::regs().cr1().modify(|w| {
w.set_ack(false);
});
} }
Poll::Ready(Ok(()))
} else {
Poll::Pending
} }
} }
})
.await?;
// Check if we were the ones to generate START
if T::regs().cr1().read().start() || !T::regs().sr2().read().msl() {
return Err(Error::Arbitration);
} }
})
.await?;
// Clear ADDR condition by reading SR2 // Set up current address we're trying to talk to
T::regs().sr2().read(); T::regs().dr().write(|reg| reg.set_dr((address << 1) + 1));
// 18.3.8: When a single byte must be received: [snip] Then the // Wait for the address to be acknowledged
// user can program the STOP condition either after clearing ADDR flag, or in the poll_fn(|cx| {
// DMA Transfer Complete interrupt routine. state.waker.register(cx.waker());
if buffer_len == 1 {
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.addr() {
Poll::Ready(Ok(()))
} else {
// When pending, (re-)enable interrupts to wake us up.
Self::enable_interrupts();
Poll::Pending
}
}
}
})
.await?;
// 18.3.8: When a single byte must be received: the NACK must be programmed during EV6
// event, i.e. program ACK=0 when ADDR=1, before clearing ADDR flag.
if frame.send_nack() && single_byte {
T::regs().cr1().modify(|w| {
w.set_ack(false);
});
}
// Clear condition by reading SR2
T::regs().sr2().read();
} else {
// Before starting reception of single byte (but without START condition, i.e. in case
// of continued frame), program NACK to emit at end of this byte.
if frame.send_nack() && single_byte {
T::regs().cr1().modify(|w| {
w.set_ack(false);
});
}
}
// 18.3.8: When a single byte must be received: [snip] Then the user can program the STOP
// condition either after clearing ADDR flag, or in the DMA Transfer Complete interrupt
// routine.
if frame.send_stop() && single_byte {
T::regs().cr1().modify(|w| { T::regs().cr1().modify(|w| {
w.set_stop(true); w.set_stop(true);
}); });
} else {
// If, in the I2C_CR2 register, the LAST bit is set, I2C
// automatically sends a NACK after the next byte following EOT_1. The user can
// generate a Stop condition in the DMA Transfer Complete interrupt routine if enabled.
T::regs().cr2().modify(|w| {
w.set_last(true);
})
} }
let dma_transfer = unsafe {
// Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved
// from this address from the memory after each RxE event.
let src = T::regs().dr().as_ptr() as *mut u8;
let ch = &mut self.rx_dma;
let request = ch.request();
Transfer::new_read(ch, request, src, buffer, Default::default())
};
// Wait for bytes to be received, or an error to occur. // Wait for bytes to be received, or an error to occur.
Self::enable_interrupts();
let poll_error = poll_fn(|cx| { let poll_error = poll_fn(|cx| {
state.waker.register(cx.waker()); state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() { match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err::<T, Error>(e)), Err(e) => Poll::Ready(Err::<(), Error>(e)),
_ => Poll::Pending, _ => {
// When pending, (re-)enable interrupts to wake us up.
Self::enable_interrupts();
Poll::Pending
}
} }
}); });
@ -777,18 +647,16 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
_ => Ok(()), _ => Ok(()),
}?; }?;
// Wait for the STOP to be sent (STOP bit cleared). T::regs().cr2().modify(|w| {
Self::enable_interrupts(); w.set_dmaen(false);
poll_fn(|cx| { });
state.waker.register(cx.waker());
// TODO: error interrupts are enabled here, should we additional check for and return errors? if frame.send_stop() && !single_byte {
if T::regs().cr1().read().stop() { T::regs().cr1().modify(|w| {
Poll::Pending w.set_stop(true);
} else { });
Poll::Ready(Ok(())) }
}
})
.await?;
drop(on_drop); drop(on_drop);
// Fallthrough is success // Fallthrough is success
@ -801,8 +669,34 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
RXDMA: crate::i2c::RxDma<T>, RXDMA: crate::i2c::RxDma<T>,
TXDMA: crate::i2c::TxDma<T>, TXDMA: crate::i2c::TxDma<T>,
{ {
self.write_with_stop(address, write, false).await?; // Check empty read buffer before starting transaction. Otherwise, we would not generate the
self.read(address, read).await // stop condition below.
if read.is_empty() {
return Err(Error::Overrun);
}
self.write_frame(address, write, FrameOptions::FirstFrame).await?;
self.read_frame(address, read, FrameOptions::FirstAndLastFrame).await
}
/// Transaction with operations.
///
/// Consecutive operations of same type are merged. See [transaction contract] for details.
///
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
pub async fn transaction(&mut self, addr: u8, operations: &mut [Operation<'_>]) -> Result<(), Error>
where
RXDMA: crate::i2c::RxDma<T>,
TXDMA: crate::i2c::TxDma<T>,
{
for (op, frame) in operation_frames(operations)? {
match op {
Operation::Read(read) => self.read_frame(addr, read, frame).await?,
Operation::Write(write) => self.write_frame(addr, write, frame).await?,
}
}
Ok(())
} }
} }

View file

@ -557,6 +557,21 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(()) Ok(())
} }
/// Transaction with operations.
///
/// Consecutive operations of same type are merged. See [transaction contract] for details.
///
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
pub async fn transaction(&mut self, addr: u8, operations: &mut [Operation<'_>]) -> Result<(), Error>
where
RXDMA: crate::i2c::RxDma<T>,
TXDMA: crate::i2c::TxDma<T>,
{
let _ = addr;
let _ = operations;
todo!()
}
// ========================= // =========================
// Blocking public API // Blocking public API