Merge pull request #2742 from sgoll/i2c-async-transaction
stm32/i2c(v1): Implement asynchronous transactions
This commit is contained in:
commit
a0439479f7
3 changed files with 418 additions and 374 deletions
|
@ -6,6 +6,7 @@
|
|||
mod _version;
|
||||
|
||||
use core::future::Future;
|
||||
use core::iter;
|
||||
use core::marker::PhantomData;
|
||||
|
||||
use embassy_hal_internal::{into_ref, Peripheral, PeripheralRef};
|
||||
|
@ -332,8 +333,142 @@ impl<'d, T: Instance, TXDMA: TxDma<T>, RXDMA: RxDma<T>> embedded_hal_async::i2c:
|
|||
address: u8,
|
||||
operations: &mut [embedded_hal_1::i2c::Operation<'_>],
|
||||
) -> Result<(), Self::Error> {
|
||||
let _ = address;
|
||||
let _ = operations;
|
||||
todo!()
|
||||
self.transaction(address, operations).await
|
||||
}
|
||||
}
|
||||
|
||||
/// Frame type in I2C transaction.
|
||||
///
|
||||
/// This tells each method what kind of framing to use, to generate a (repeated) start condition (ST
|
||||
/// or SR), and/or a stop condition (SP). For read operations, this also controls whether to send an
|
||||
/// ACK or NACK after the last byte received.
|
||||
///
|
||||
/// For write operations, the following options are identical because they differ only in the (N)ACK
|
||||
/// treatment relevant for read operations:
|
||||
///
|
||||
/// - `FirstFrame` and `FirstAndNextFrame`
|
||||
/// - `NextFrame` and `LastFrameNoStop`
|
||||
///
|
||||
/// Abbreviations used below:
|
||||
///
|
||||
/// - `ST` = start condition
|
||||
/// - `SR` = repeated start condition
|
||||
/// - `SP` = stop condition
|
||||
/// - `ACK`/`NACK` = last byte in read operation
|
||||
#[derive(Copy, Clone)]
|
||||
#[allow(dead_code)]
|
||||
enum FrameOptions {
|
||||
/// `[ST/SR]+[NACK]+[SP]` First frame (of this type) in transaction and also last frame overall.
|
||||
FirstAndLastFrame,
|
||||
/// `[ST/SR]+[NACK]` First frame of this type in transaction, last frame in a read operation but
|
||||
/// not the last frame overall.
|
||||
FirstFrame,
|
||||
/// `[ST/SR]+[ACK]` First frame of this type in transaction, neither last frame overall nor last
|
||||
/// frame in a read operation.
|
||||
FirstAndNextFrame,
|
||||
/// `[ACK]` Middle frame in a read operation (neither first nor last).
|
||||
NextFrame,
|
||||
/// `[NACK]+[SP]` Last frame overall in this transaction but not the first frame.
|
||||
LastFrame,
|
||||
/// `[NACK]` Last frame in a read operation but not last frame overall in this transaction.
|
||||
LastFrameNoStop,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl FrameOptions {
|
||||
/// Sends start or repeated start condition before transfer.
|
||||
fn send_start(self) -> bool {
|
||||
match self {
|
||||
Self::FirstAndLastFrame | Self::FirstFrame | Self::FirstAndNextFrame => true,
|
||||
Self::NextFrame | Self::LastFrame | Self::LastFrameNoStop => false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Sends stop condition after transfer.
|
||||
fn send_stop(self) -> bool {
|
||||
match self {
|
||||
Self::FirstAndLastFrame | Self::LastFrame => true,
|
||||
Self::FirstFrame | Self::FirstAndNextFrame | Self::NextFrame | Self::LastFrameNoStop => false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Sends NACK after last byte received, indicating end of read operation.
|
||||
fn send_nack(self) -> bool {
|
||||
match self {
|
||||
Self::FirstAndLastFrame | Self::FirstFrame | Self::LastFrame | Self::LastFrameNoStop => true,
|
||||
Self::FirstAndNextFrame | Self::NextFrame => false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Iterates over operations in transaction.
|
||||
///
|
||||
/// Returns necessary frame options for each operation to uphold the [transaction contract] and have
|
||||
/// the right start/stop/(N)ACK conditions on the wire.
|
||||
///
|
||||
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
|
||||
#[allow(dead_code)]
|
||||
fn operation_frames<'a, 'b: 'a>(
|
||||
operations: &'a mut [embedded_hal_1::i2c::Operation<'b>],
|
||||
) -> Result<impl IntoIterator<Item = (&'a mut embedded_hal_1::i2c::Operation<'b>, FrameOptions)>, Error> {
|
||||
use embedded_hal_1::i2c::Operation::{Read, Write};
|
||||
|
||||
// Check empty read buffer before starting transaction. Otherwise, we would risk halting with an
|
||||
// error in the middle of the transaction.
|
||||
//
|
||||
// In principle, we could allow empty read frames within consecutive read operations, as long as
|
||||
// at least one byte remains in the final (merged) read operation, but that makes the logic more
|
||||
// complicated and error-prone.
|
||||
if operations.iter().any(|op| match op {
|
||||
Read(read) => read.is_empty(),
|
||||
Write(_) => false,
|
||||
}) {
|
||||
return Err(Error::Overrun);
|
||||
}
|
||||
|
||||
let mut operations = operations.iter_mut().peekable();
|
||||
|
||||
let mut next_first_frame = true;
|
||||
|
||||
Ok(iter::from_fn(move || {
|
||||
let Some(op) = operations.next() else {
|
||||
return None;
|
||||
};
|
||||
|
||||
// Is `op` first frame of its type?
|
||||
let first_frame = next_first_frame;
|
||||
let next_op = operations.peek();
|
||||
|
||||
// Get appropriate frame options as combination of the following properties:
|
||||
//
|
||||
// - For each first operation of its type, generate a (repeated) start condition.
|
||||
// - For the last operation overall in the entire transaction, generate a stop condition.
|
||||
// - For read operations, check the next operation: if it is also a read operation, we merge
|
||||
// these and send ACK for all bytes in the current operation; send NACK only for the final
|
||||
// read operation's last byte (before write or end of entire transaction) to indicate last
|
||||
// byte read and release the bus for transmission of the bus master's next byte (or stop).
|
||||
//
|
||||
// We check the third property unconditionally, i.e. even for write opeartions. This is okay
|
||||
// because the resulting frame options are identical for write operations.
|
||||
let frame = match (first_frame, next_op) {
|
||||
(true, None) => FrameOptions::FirstAndLastFrame,
|
||||
(true, Some(Read(_))) => FrameOptions::FirstAndNextFrame,
|
||||
(true, Some(Write(_))) => FrameOptions::FirstFrame,
|
||||
//
|
||||
(false, None) => FrameOptions::LastFrame,
|
||||
(false, Some(Read(_))) => FrameOptions::NextFrame,
|
||||
(false, Some(Write(_))) => FrameOptions::LastFrameNoStop,
|
||||
};
|
||||
|
||||
// Pre-calculate if `next_op` is the first operation of its type. We do this here and not at
|
||||
// the beginning of the loop because we hand out `op` as iterator value and cannot access it
|
||||
// anymore in the next iteration.
|
||||
next_first_frame = match (&op, next_op) {
|
||||
(_, None) => false,
|
||||
(Read(_), Some(Write(_))) | (Write(_), Some(Read(_))) => true,
|
||||
(Read(_), Some(Read(_))) | (Write(_), Some(Write(_))) => false,
|
||||
};
|
||||
|
||||
Some((op, frame))
|
||||
}))
|
||||
}
|
||||
|
|
|
@ -41,68 +41,6 @@ pub unsafe fn on_interrupt<T: Instance>() {
|
|||
});
|
||||
}
|
||||
|
||||
/// Frame type in I2C transaction.
|
||||
///
|
||||
/// This tells each method what kind of framing to use, to generate a (repeated) start condition (ST
|
||||
/// or SR), and/or a stop condition (SP). For read operations, this also controls whether to send an
|
||||
/// ACK or NACK after the last byte received.
|
||||
///
|
||||
/// For write operations, the following options are identical because they differ only in the (N)ACK
|
||||
/// treatment relevant for read operations:
|
||||
///
|
||||
/// - `FirstFrame` and `FirstAndNextFrame`
|
||||
/// - `NextFrame` and `LastFrameNoStop`
|
||||
///
|
||||
/// Abbreviations used below:
|
||||
///
|
||||
/// - `ST` = start condition
|
||||
/// - `SR` = repeated start condition
|
||||
/// - `SP` = stop condition
|
||||
#[derive(Copy, Clone)]
|
||||
enum FrameOptions {
|
||||
/// `[ST/SR]+[NACK]+[SP]` First frame (of this type) in operation and last frame overall in this
|
||||
/// transaction.
|
||||
FirstAndLastFrame,
|
||||
/// `[ST/SR]+[NACK]` First frame of this type in transaction, last frame in a read operation but
|
||||
/// not the last frame overall.
|
||||
FirstFrame,
|
||||
/// `[ST/SR]+[ACK]` First frame of this type in transaction, neither last frame overall nor last
|
||||
/// frame in a read operation.
|
||||
FirstAndNextFrame,
|
||||
/// `[ACK]` Middle frame in a read operation (neither first nor last).
|
||||
NextFrame,
|
||||
/// `[NACK]+[SP]` Last frame overall in this transaction but not the first frame.
|
||||
LastFrame,
|
||||
/// `[NACK]` Last frame in a read operation but not last frame overall in this transaction.
|
||||
LastFrameNoStop,
|
||||
}
|
||||
|
||||
impl FrameOptions {
|
||||
/// Sends start or repeated start condition before transfer.
|
||||
fn send_start(self) -> bool {
|
||||
match self {
|
||||
Self::FirstAndLastFrame | Self::FirstFrame | Self::FirstAndNextFrame => true,
|
||||
Self::NextFrame | Self::LastFrame | Self::LastFrameNoStop => false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Sends stop condition after transfer.
|
||||
fn send_stop(self) -> bool {
|
||||
match self {
|
||||
Self::FirstAndLastFrame | Self::LastFrame => true,
|
||||
Self::FirstFrame | Self::FirstAndNextFrame | Self::NextFrame | Self::LastFrameNoStop => false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Sends NACK after last byte received, indicating end of read operation.
|
||||
fn send_nack(self) -> bool {
|
||||
match self {
|
||||
Self::FirstAndLastFrame | Self::FirstFrame | Self::LastFrame | Self::LastFrameNoStop => true,
|
||||
Self::FirstAndNextFrame | Self::NextFrame => false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
pub(crate) fn init(&mut self, freq: Hertz, _config: Config) {
|
||||
T::regs().cr1().modify(|reg| {
|
||||
|
@ -199,17 +137,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
timeout.check()?;
|
||||
}
|
||||
|
||||
// Also wait until signalled we're master and everything is waiting for us
|
||||
while {
|
||||
Self::check_and_clear_error_flags()?;
|
||||
|
||||
let sr2 = T::regs().sr2().read();
|
||||
!sr2.msl() && !sr2.busy()
|
||||
} {
|
||||
timeout.check()?;
|
||||
// Check if we were the ones to generate START
|
||||
if T::regs().cr1().read().start() || !T::regs().sr2().read().msl() {
|
||||
return Err(Error::Arbitration);
|
||||
}
|
||||
|
||||
// Set up current address, we're trying to talk to
|
||||
// Set up current address we're trying to talk to
|
||||
T::regs().dr().write(|reg| reg.set_dr(addr << 1));
|
||||
|
||||
// Wait until address was sent
|
||||
|
@ -231,10 +164,6 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
if frame.send_stop() {
|
||||
// Send a STOP condition
|
||||
T::regs().cr1().modify(|reg| reg.set_stop(true));
|
||||
// Wait for STOP condition to transmit.
|
||||
while T::regs().cr1().read().stop() {
|
||||
timeout.check()?;
|
||||
}
|
||||
}
|
||||
|
||||
// Fallthrough is success
|
||||
|
@ -301,15 +230,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
timeout.check()?;
|
||||
}
|
||||
|
||||
// Also wait until signalled we're master and everything is waiting for us
|
||||
while {
|
||||
let sr2 = T::regs().sr2().read();
|
||||
!sr2.msl() && !sr2.busy()
|
||||
} {
|
||||
timeout.check()?;
|
||||
// Check if we were the ones to generate START
|
||||
if T::regs().cr1().read().start() || !T::regs().sr2().read().msl() {
|
||||
return Err(Error::Arbitration);
|
||||
}
|
||||
|
||||
// Set up current address, we're trying to talk to
|
||||
// Set up current address we're trying to talk to
|
||||
T::regs().dr().write(|reg| reg.set_dr((addr << 1) + 1));
|
||||
|
||||
// Wait until address was sent
|
||||
|
@ -340,13 +266,6 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
// Receive last byte
|
||||
*last = self.recv_byte(timeout)?;
|
||||
|
||||
if frame.send_stop() {
|
||||
// Wait for the STOP to be sent.
|
||||
while T::regs().cr1().read().stop() {
|
||||
timeout.check()?;
|
||||
}
|
||||
}
|
||||
|
||||
// Fallthrough is success
|
||||
Ok(())
|
||||
}
|
||||
|
@ -386,64 +305,13 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
///
|
||||
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
|
||||
pub fn blocking_transaction(&mut self, addr: u8, operations: &mut [Operation<'_>]) -> Result<(), Error> {
|
||||
// Check empty read buffer before starting transaction. Otherwise, we would not generate the
|
||||
// stop condition below.
|
||||
if operations.iter().any(|op| match op {
|
||||
Operation::Read(read) => read.is_empty(),
|
||||
Operation::Write(_) => false,
|
||||
}) {
|
||||
return Err(Error::Overrun);
|
||||
}
|
||||
|
||||
let timeout = self.timeout();
|
||||
|
||||
let mut operations = operations.iter_mut();
|
||||
|
||||
let mut prev_op: Option<&mut Operation<'_>> = None;
|
||||
let mut next_op = operations.next();
|
||||
|
||||
while let Some(op) = next_op {
|
||||
next_op = operations.next();
|
||||
|
||||
// Check if this is the first frame of this type. This is the case for the first overall
|
||||
// frame in the transaction and whenever the type of operation changes.
|
||||
let first_frame =
|
||||
match (prev_op.as_ref(), &op) {
|
||||
(None, _) => true,
|
||||
(Some(Operation::Read(_)), Operation::Write(_))
|
||||
| (Some(Operation::Write(_)), Operation::Read(_)) => true,
|
||||
(Some(Operation::Read(_)), Operation::Read(_))
|
||||
| (Some(Operation::Write(_)), Operation::Write(_)) => false,
|
||||
};
|
||||
|
||||
let frame = match (first_frame, next_op.as_ref()) {
|
||||
// If this is the first frame of this type, we generate a (repeated) start condition
|
||||
// but have to consider the next operation: if it is the last, we generate the final
|
||||
// stop condition. Otherwise, we branch on the operation: with read operations, only
|
||||
// the last byte overall (before a write operation or the end of the transaction) is
|
||||
// to be NACK'd, i.e. if another read operation follows, we must ACK this last byte.
|
||||
(true, None) => FrameOptions::FirstAndLastFrame,
|
||||
// Make sure to keep sending ACK for last byte in read operation when it is followed
|
||||
// by another consecutive read operation. If the current operation is write, this is
|
||||
// identical to `FirstFrame`.
|
||||
(true, Some(Operation::Read(_))) => FrameOptions::FirstAndNextFrame,
|
||||
// Otherwise, send NACK for last byte (in read operation). (For write, this does not
|
||||
// matter and could also be `FirstAndNextFrame`.)
|
||||
(true, Some(Operation::Write(_))) => FrameOptions::FirstFrame,
|
||||
|
||||
// If this is not the first frame of its type, we do not generate a (repeated) start
|
||||
// condition. Otherwise, we branch the same way as above.
|
||||
(false, None) => FrameOptions::LastFrame,
|
||||
(false, Some(Operation::Read(_))) => FrameOptions::NextFrame,
|
||||
(false, Some(Operation::Write(_))) => FrameOptions::LastFrameNoStop,
|
||||
};
|
||||
|
||||
for (op, frame) in operation_frames(operations)? {
|
||||
match op {
|
||||
Operation::Read(read) => self.blocking_read_timeout(addr, read, timeout, frame)?,
|
||||
Operation::Write(write) => self.write_bytes(addr, write, timeout, frame)?,
|
||||
}
|
||||
|
||||
prev_op = Some(op);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
|
@ -459,43 +327,39 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
});
|
||||
}
|
||||
|
||||
async fn write_with_stop(&mut self, address: u8, write: &[u8], send_stop: bool) -> Result<(), Error>
|
||||
async fn write_frame(&mut self, address: u8, write: &[u8], frame: FrameOptions) -> Result<(), Error>
|
||||
where
|
||||
TXDMA: crate::i2c::TxDma<T>,
|
||||
{
|
||||
let dma_transfer = unsafe {
|
||||
let regs = T::regs();
|
||||
regs.cr2().modify(|w| {
|
||||
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2 register.
|
||||
w.set_dmaen(true);
|
||||
T::regs().cr2().modify(|w| {
|
||||
// Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for
|
||||
// reception.
|
||||
w.set_itbufen(false);
|
||||
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2
|
||||
// register.
|
||||
w.set_dmaen(true);
|
||||
// Sending NACK is not necessary (nor possible) for write transfer.
|
||||
w.set_last(false);
|
||||
});
|
||||
// Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to this address from the memory after each TxE event.
|
||||
let dst = regs.dr().as_ptr() as *mut u8;
|
||||
|
||||
let ch = &mut self.tx_dma;
|
||||
let request = ch.request();
|
||||
Transfer::new_write(ch, request, write, dst, Default::default())
|
||||
};
|
||||
|
||||
// Sentinel to disable transfer when an error occurs or future is canceled.
|
||||
// TODO: Generate STOP condition on cancel?
|
||||
let on_drop = OnDrop::new(|| {
|
||||
let regs = T::regs();
|
||||
regs.cr2().modify(|w| {
|
||||
T::regs().cr2().modify(|w| {
|
||||
w.set_dmaen(false);
|
||||
w.set_iterren(false);
|
||||
w.set_itevten(false);
|
||||
})
|
||||
});
|
||||
|
||||
Self::enable_interrupts();
|
||||
let state = T::state();
|
||||
|
||||
if frame.send_start() {
|
||||
// Send a START condition
|
||||
T::regs().cr1().modify(|reg| {
|
||||
reg.set_start(true);
|
||||
});
|
||||
|
||||
let state = T::state();
|
||||
|
||||
// Wait until START condition was generated
|
||||
poll_fn(|cx| {
|
||||
state.waker.register(cx.waker());
|
||||
|
@ -506,6 +370,8 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
if sr1.start() {
|
||||
Poll::Ready(Ok(()))
|
||||
} else {
|
||||
// When pending, (re-)enable interrupts to wake us up.
|
||||
Self::enable_interrupts();
|
||||
Poll::Pending
|
||||
}
|
||||
}
|
||||
|
@ -513,41 +379,25 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
})
|
||||
.await?;
|
||||
|
||||
// Also wait until signalled we're master and everything is waiting for us
|
||||
Self::enable_interrupts();
|
||||
poll_fn(|cx| {
|
||||
state.waker.register(cx.waker());
|
||||
// Check if we were the ones to generate START
|
||||
if T::regs().cr1().read().start() || !T::regs().sr2().read().msl() {
|
||||
return Err(Error::Arbitration);
|
||||
}
|
||||
|
||||
match Self::check_and_clear_error_flags() {
|
||||
Err(e) => Poll::Ready(Err(e)),
|
||||
Ok(_) => {
|
||||
let sr2 = T::regs().sr2().read();
|
||||
if !sr2.msl() && !sr2.busy() {
|
||||
Poll::Pending
|
||||
} else {
|
||||
Poll::Ready(Ok(()))
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
.await?;
|
||||
|
||||
// Set up current address, we're trying to talk to
|
||||
Self::enable_interrupts();
|
||||
// Set up current address we're trying to talk to
|
||||
T::regs().dr().write(|reg| reg.set_dr(address << 1));
|
||||
|
||||
// Wait for the address to be acknowledged
|
||||
poll_fn(|cx| {
|
||||
state.waker.register(cx.waker());
|
||||
|
||||
match Self::check_and_clear_error_flags() {
|
||||
Err(e) => Poll::Ready(Err(e)),
|
||||
Ok(sr1) => {
|
||||
if sr1.addr() {
|
||||
// Clear the ADDR condition by reading SR2.
|
||||
T::regs().sr2().read();
|
||||
Poll::Ready(Ok(()))
|
||||
} else {
|
||||
// If we need to go around, then re-enable the interrupts, otherwise nothing
|
||||
// can wake us up and we'll hang.
|
||||
// When pending, (re-)enable interrupts to wake us up.
|
||||
Self::enable_interrupts();
|
||||
Poll::Pending
|
||||
}
|
||||
|
@ -555,15 +405,32 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
}
|
||||
})
|
||||
.await?;
|
||||
Self::enable_interrupts();
|
||||
|
||||
// Clear condition by reading SR2
|
||||
T::regs().sr2().read();
|
||||
}
|
||||
|
||||
let dma_transfer = unsafe {
|
||||
// Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to
|
||||
// this address from the memory after each TxE event.
|
||||
let dst = T::regs().dr().as_ptr() as *mut u8;
|
||||
|
||||
let ch = &mut self.tx_dma;
|
||||
let request = ch.request();
|
||||
Transfer::new_write(ch, request, write, dst, Default::default())
|
||||
};
|
||||
|
||||
// Wait for bytes to be sent, or an error to occur.
|
||||
let poll_error = poll_fn(|cx| {
|
||||
state.waker.register(cx.waker());
|
||||
|
||||
match Self::check_and_clear_error_flags() {
|
||||
// Unclear why the Err turbofish is necessary here? The compiler didn’t require it in the other
|
||||
// identical poll_fn check_and_clear matches.
|
||||
Err(e) => Poll::Ready(Err::<T, Error>(e)),
|
||||
Ok(_) => Poll::Pending,
|
||||
Err(e) => Poll::Ready(Err::<(), Error>(e)),
|
||||
Ok(_) => {
|
||||
// When pending, (re-)enable interrupts to wake us up.
|
||||
Self::enable_interrupts();
|
||||
Poll::Pending
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
|
@ -573,17 +440,15 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
_ => Ok(()),
|
||||
}?;
|
||||
|
||||
// The I2C transfer itself will take longer than the DMA transfer, so wait for that to finish too.
|
||||
|
||||
// 18.3.8 “Master transmitter: In the interrupt routine after the EOT interrupt, disable DMA
|
||||
// requests then wait for a BTF event before programming the Stop condition.”
|
||||
|
||||
// TODO: If this has to be done “in the interrupt routine after the EOT interrupt”, where to put it?
|
||||
T::regs().cr2().modify(|w| {
|
||||
w.set_dmaen(false);
|
||||
});
|
||||
|
||||
Self::enable_interrupts();
|
||||
if frame.send_stop() {
|
||||
// The I2C transfer itself will take longer than the DMA transfer, so wait for that to finish too.
|
||||
|
||||
// 18.3.8 “Master transmitter: In the interrupt routine after the EOT interrupt, disable DMA
|
||||
// requests then wait for a BTF event before programming the Stop condition.”
|
||||
poll_fn(|cx| {
|
||||
state.waker.register(cx.waker());
|
||||
|
||||
|
@ -591,14 +456,10 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
Err(e) => Poll::Ready(Err(e)),
|
||||
Ok(sr1) => {
|
||||
if sr1.btf() {
|
||||
if send_stop {
|
||||
T::regs().cr1().modify(|w| {
|
||||
w.set_stop(true);
|
||||
});
|
||||
}
|
||||
|
||||
Poll::Ready(Ok(()))
|
||||
} else {
|
||||
// When pending, (re-)enable interrupts to wake us up.
|
||||
Self::enable_interrupts();
|
||||
Poll::Pending
|
||||
}
|
||||
}
|
||||
|
@ -606,6 +467,11 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
})
|
||||
.await?;
|
||||
|
||||
T::regs().cr1().modify(|w| {
|
||||
w.set_stop(true);
|
||||
});
|
||||
}
|
||||
|
||||
drop(on_drop);
|
||||
|
||||
// Fallthrough is success
|
||||
|
@ -617,19 +483,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
where
|
||||
TXDMA: crate::i2c::TxDma<T>,
|
||||
{
|
||||
self.write_with_stop(address, write, true).await?;
|
||||
|
||||
// Wait for STOP condition to transmit.
|
||||
Self::enable_interrupts();
|
||||
poll_fn(|cx| {
|
||||
T::state().waker.register(cx.waker());
|
||||
// TODO: error interrupts are enabled here, should we additional check for and return errors?
|
||||
if T::regs().cr1().read().stop() {
|
||||
Poll::Pending
|
||||
} else {
|
||||
Poll::Ready(Ok(()))
|
||||
}
|
||||
})
|
||||
self.write_frame(address, write, FrameOptions::FirstAndLastFrame)
|
||||
.await?;
|
||||
|
||||
Ok(())
|
||||
|
@ -640,35 +494,49 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
where
|
||||
RXDMA: crate::i2c::RxDma<T>,
|
||||
{
|
||||
let state = T::state();
|
||||
let buffer_len = buffer.len();
|
||||
self.read_frame(address, buffer, FrameOptions::FirstAndLastFrame)
|
||||
.await?;
|
||||
|
||||
let dma_transfer = unsafe {
|
||||
let regs = T::regs();
|
||||
regs.cr2().modify(|w| {
|
||||
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2 register.
|
||||
Ok(())
|
||||
}
|
||||
|
||||
async fn read_frame(&mut self, address: u8, buffer: &mut [u8], frame: FrameOptions) -> Result<(), Error>
|
||||
where
|
||||
RXDMA: crate::i2c::RxDma<T>,
|
||||
{
|
||||
if buffer.is_empty() {
|
||||
return Err(Error::Overrun);
|
||||
}
|
||||
|
||||
// Some branches below depend on whether the buffer contains only a single byte.
|
||||
let single_byte = buffer.len() == 1;
|
||||
|
||||
T::regs().cr2().modify(|w| {
|
||||
// Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for
|
||||
// reception.
|
||||
w.set_itbufen(false);
|
||||
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2
|
||||
// register.
|
||||
w.set_dmaen(true);
|
||||
// If, in the I2C_CR2 register, the LAST bit is set, I2C automatically sends a NACK
|
||||
// after the next byte following EOT_1. The user can generate a Stop condition in
|
||||
// the DMA Transfer Complete interrupt routine if enabled.
|
||||
w.set_last(frame.send_nack() && !single_byte);
|
||||
});
|
||||
// Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to this address from the memory after each TxE event.
|
||||
let src = regs.dr().as_ptr() as *mut u8;
|
||||
|
||||
let ch = &mut self.rx_dma;
|
||||
let request = ch.request();
|
||||
Transfer::new_read(ch, request, src, buffer, Default::default())
|
||||
};
|
||||
|
||||
// Sentinel to disable transfer when an error occurs or future is canceled.
|
||||
// TODO: Generate STOP condition on cancel?
|
||||
let on_drop = OnDrop::new(|| {
|
||||
let regs = T::regs();
|
||||
regs.cr2().modify(|w| {
|
||||
T::regs().cr2().modify(|w| {
|
||||
w.set_dmaen(false);
|
||||
w.set_iterren(false);
|
||||
w.set_itevten(false);
|
||||
})
|
||||
});
|
||||
|
||||
Self::enable_interrupts();
|
||||
let state = T::state();
|
||||
|
||||
if frame.send_start() {
|
||||
// Send a START condition and set ACK bit
|
||||
T::regs().cr1().modify(|reg| {
|
||||
reg.set_start(true);
|
||||
|
@ -685,40 +553,24 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
if sr1.start() {
|
||||
Poll::Ready(Ok(()))
|
||||
} else {
|
||||
Poll::Pending
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
.await?;
|
||||
|
||||
// Also wait until signalled we're master and everything is waiting for us
|
||||
// When pending, (re-)enable interrupts to wake us up.
|
||||
Self::enable_interrupts();
|
||||
poll_fn(|cx| {
|
||||
state.waker.register(cx.waker());
|
||||
|
||||
// blocking read didn’t have a check_and_clear call here, but blocking write did so
|
||||
// I’m adding it here in case that was an oversight.
|
||||
match Self::check_and_clear_error_flags() {
|
||||
Err(e) => Poll::Ready(Err(e)),
|
||||
Ok(_) => {
|
||||
let sr2 = T::regs().sr2().read();
|
||||
if !sr2.msl() && !sr2.busy() {
|
||||
Poll::Pending
|
||||
} else {
|
||||
Poll::Ready(Ok(()))
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
.await?;
|
||||
|
||||
// Set up current address, we're trying to talk to
|
||||
// Check if we were the ones to generate START
|
||||
if T::regs().cr1().read().start() || !T::regs().sr2().read().msl() {
|
||||
return Err(Error::Arbitration);
|
||||
}
|
||||
|
||||
// Set up current address we're trying to talk to
|
||||
T::regs().dr().write(|reg| reg.set_dr((address << 1) + 1));
|
||||
|
||||
// Wait for the address to be acknowledged
|
||||
|
||||
Self::enable_interrupts();
|
||||
poll_fn(|cx| {
|
||||
state.waker.register(cx.waker());
|
||||
|
||||
|
@ -726,15 +578,10 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
Err(e) => Poll::Ready(Err(e)),
|
||||
Ok(sr1) => {
|
||||
if sr1.addr() {
|
||||
// 18.3.8: When a single byte must be received: the NACK must be programmed during EV6
|
||||
// event, i.e. program ACK=0 when ADDR=1, before clearing ADDR flag.
|
||||
if buffer_len == 1 {
|
||||
T::regs().cr1().modify(|w| {
|
||||
w.set_ack(false);
|
||||
});
|
||||
}
|
||||
Poll::Ready(Ok(()))
|
||||
} else {
|
||||
// When pending, (re-)enable interrupts to wake us up.
|
||||
Self::enable_interrupts();
|
||||
Poll::Pending
|
||||
}
|
||||
}
|
||||
|
@ -742,33 +589,56 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
})
|
||||
.await?;
|
||||
|
||||
// Clear ADDR condition by reading SR2
|
||||
T::regs().sr2().read();
|
||||
// 18.3.8: When a single byte must be received: the NACK must be programmed during EV6
|
||||
// event, i.e. program ACK=0 when ADDR=1, before clearing ADDR flag.
|
||||
if frame.send_nack() && single_byte {
|
||||
T::regs().cr1().modify(|w| {
|
||||
w.set_ack(false);
|
||||
});
|
||||
}
|
||||
|
||||
// 18.3.8: When a single byte must be received: [snip] Then the
|
||||
// user can program the STOP condition either after clearing ADDR flag, or in the
|
||||
// DMA Transfer Complete interrupt routine.
|
||||
if buffer_len == 1 {
|
||||
// Clear condition by reading SR2
|
||||
T::regs().sr2().read();
|
||||
} else {
|
||||
// Before starting reception of single byte (but without START condition, i.e. in case
|
||||
// of continued frame), program NACK to emit at end of this byte.
|
||||
if frame.send_nack() && single_byte {
|
||||
T::regs().cr1().modify(|w| {
|
||||
w.set_ack(false);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// 18.3.8: When a single byte must be received: [snip] Then the user can program the STOP
|
||||
// condition either after clearing ADDR flag, or in the DMA Transfer Complete interrupt
|
||||
// routine.
|
||||
if frame.send_stop() && single_byte {
|
||||
T::regs().cr1().modify(|w| {
|
||||
w.set_stop(true);
|
||||
});
|
||||
} else {
|
||||
// If, in the I2C_CR2 register, the LAST bit is set, I2C
|
||||
// automatically sends a NACK after the next byte following EOT_1. The user can
|
||||
// generate a Stop condition in the DMA Transfer Complete interrupt routine if enabled.
|
||||
T::regs().cr2().modify(|w| {
|
||||
w.set_last(true);
|
||||
})
|
||||
}
|
||||
|
||||
let dma_transfer = unsafe {
|
||||
// Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved
|
||||
// from this address from the memory after each RxE event.
|
||||
let src = T::regs().dr().as_ptr() as *mut u8;
|
||||
|
||||
let ch = &mut self.rx_dma;
|
||||
let request = ch.request();
|
||||
Transfer::new_read(ch, request, src, buffer, Default::default())
|
||||
};
|
||||
|
||||
// Wait for bytes to be received, or an error to occur.
|
||||
Self::enable_interrupts();
|
||||
let poll_error = poll_fn(|cx| {
|
||||
state.waker.register(cx.waker());
|
||||
|
||||
match Self::check_and_clear_error_flags() {
|
||||
Err(e) => Poll::Ready(Err::<T, Error>(e)),
|
||||
_ => Poll::Pending,
|
||||
Err(e) => Poll::Ready(Err::<(), Error>(e)),
|
||||
_ => {
|
||||
// When pending, (re-)enable interrupts to wake us up.
|
||||
Self::enable_interrupts();
|
||||
Poll::Pending
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
|
@ -777,18 +647,16 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
_ => Ok(()),
|
||||
}?;
|
||||
|
||||
// Wait for the STOP to be sent (STOP bit cleared).
|
||||
Self::enable_interrupts();
|
||||
poll_fn(|cx| {
|
||||
state.waker.register(cx.waker());
|
||||
// TODO: error interrupts are enabled here, should we additional check for and return errors?
|
||||
if T::regs().cr1().read().stop() {
|
||||
Poll::Pending
|
||||
} else {
|
||||
Poll::Ready(Ok(()))
|
||||
T::regs().cr2().modify(|w| {
|
||||
w.set_dmaen(false);
|
||||
});
|
||||
|
||||
if frame.send_stop() && !single_byte {
|
||||
T::regs().cr1().modify(|w| {
|
||||
w.set_stop(true);
|
||||
});
|
||||
}
|
||||
})
|
||||
.await?;
|
||||
|
||||
drop(on_drop);
|
||||
|
||||
// Fallthrough is success
|
||||
|
@ -801,8 +669,34 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
RXDMA: crate::i2c::RxDma<T>,
|
||||
TXDMA: crate::i2c::TxDma<T>,
|
||||
{
|
||||
self.write_with_stop(address, write, false).await?;
|
||||
self.read(address, read).await
|
||||
// Check empty read buffer before starting transaction. Otherwise, we would not generate the
|
||||
// stop condition below.
|
||||
if read.is_empty() {
|
||||
return Err(Error::Overrun);
|
||||
}
|
||||
|
||||
self.write_frame(address, write, FrameOptions::FirstFrame).await?;
|
||||
self.read_frame(address, read, FrameOptions::FirstAndLastFrame).await
|
||||
}
|
||||
|
||||
/// Transaction with operations.
|
||||
///
|
||||
/// Consecutive operations of same type are merged. See [transaction contract] for details.
|
||||
///
|
||||
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
|
||||
pub async fn transaction(&mut self, addr: u8, operations: &mut [Operation<'_>]) -> Result<(), Error>
|
||||
where
|
||||
RXDMA: crate::i2c::RxDma<T>,
|
||||
TXDMA: crate::i2c::TxDma<T>,
|
||||
{
|
||||
for (op, frame) in operation_frames(operations)? {
|
||||
match op {
|
||||
Operation::Read(read) => self.read_frame(addr, read, frame).await?,
|
||||
Operation::Write(write) => self.write_frame(addr, write, frame).await?,
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -557,6 +557,21 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
|||
Ok(())
|
||||
}
|
||||
|
||||
/// Transaction with operations.
|
||||
///
|
||||
/// Consecutive operations of same type are merged. See [transaction contract] for details.
|
||||
///
|
||||
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
|
||||
pub async fn transaction(&mut self, addr: u8, operations: &mut [Operation<'_>]) -> Result<(), Error>
|
||||
where
|
||||
RXDMA: crate::i2c::RxDma<T>,
|
||||
TXDMA: crate::i2c::TxDma<T>,
|
||||
{
|
||||
let _ = addr;
|
||||
let _ = operations;
|
||||
todo!()
|
||||
}
|
||||
|
||||
// =========================
|
||||
// Blocking public API
|
||||
|
||||
|
|
Loading…
Reference in a new issue