Support CBC, ECB, CTR modes.
This commit is contained in:
parent
79e5e8b052
commit
a0a8a4ec86
1 changed files with 282 additions and 68 deletions
|
@ -1,23 +1,34 @@
|
|||
use embassy_hal_internal::{into_ref, PeripheralRef};
|
||||
use pac::cryp::Init;
|
||||
|
||||
use crate::pac;
|
||||
use crate::peripherals::CRYP;
|
||||
use crate::rcc::sealed::RccPeripheral;
|
||||
use crate::{interrupt, peripherals, Peripheral};
|
||||
use crate::{interrupt, Peripheral};
|
||||
|
||||
const DES_BLOCK_SIZE: usize = 8; // 64 bits
|
||||
const AES_BLOCK_SIZE: usize = 16; // 128 bits
|
||||
|
||||
pub struct Context<'c> {
|
||||
algo: Algorithm,
|
||||
mode: Mode,
|
||||
dir: Direction,
|
||||
last_block_processed: bool,
|
||||
aad_complete: bool,
|
||||
cr: u32,
|
||||
iv: [u32; 4],
|
||||
key: &'c [u8],
|
||||
csgcmccm: [u32; 8],
|
||||
csgcm: [u32; 8],
|
||||
}
|
||||
|
||||
#[derive(PartialEq)]
|
||||
#[derive(PartialEq, Clone, Copy)]
|
||||
pub enum Algorithm {
|
||||
AES,
|
||||
DES,
|
||||
TDES,
|
||||
}
|
||||
|
||||
#[derive(PartialEq)]
|
||||
#[derive(PartialEq, Clone, Copy)]
|
||||
pub enum Mode {
|
||||
ECB,
|
||||
CBC,
|
||||
|
@ -27,53 +38,55 @@ pub enum Mode {
|
|||
CCM,
|
||||
}
|
||||
|
||||
#[derive(PartialEq)]
|
||||
#[derive(PartialEq, Clone, Copy)]
|
||||
pub enum Direction {
|
||||
Encrypt,
|
||||
Decrypt,
|
||||
}
|
||||
|
||||
/// Crypto Accelerator Driver
|
||||
pub struct Cryp<'d, T: Instance, In, Out> {
|
||||
pub struct Cryp<'d, T: Instance> {
|
||||
_peripheral: PeripheralRef<'d, T>,
|
||||
indma: PeripheralRef<'d, In>,
|
||||
outdma: PeripheralRef<'d, Out>,
|
||||
}
|
||||
|
||||
type InitVector<'v> = Option<&'v [u8]>;
|
||||
|
||||
impl<'d, T: Instance, In, Out> Cryp<'d, T, In, Out> {
|
||||
impl<'d, T: Instance> Cryp<'d, T> {
|
||||
/// Create a new CRYP driver.
|
||||
pub fn new(
|
||||
peri: impl Peripheral<P = T> + 'd,
|
||||
indma: impl Peripheral<P = In> + 'd,
|
||||
outdma: impl Peripheral<P = Out> + 'd,
|
||||
) -> Self {
|
||||
pub fn new(peri: impl Peripheral<P = T> + 'd) -> Self {
|
||||
CRYP::enable_and_reset();
|
||||
into_ref!(peri, indma, outdma);
|
||||
let instance = Self {
|
||||
_peripheral: peri,
|
||||
indma: indma,
|
||||
outdma: outdma,
|
||||
};
|
||||
into_ref!(peri);
|
||||
let instance = Self { _peripheral: peri };
|
||||
instance
|
||||
}
|
||||
|
||||
/// Start a new cipher operation.
|
||||
/// Key size must be 128, 192, or 256 bits.
|
||||
pub fn start(key: &[u8], iv: InitVector, algo: Algorithm, mode: Mode, dir: Direction) -> Context {
|
||||
T::regs().cr().modify(|w| w.set_crypen(false));
|
||||
pub fn start<'c>(&self, key: &'c [u8], iv: InitVector, algo: Algorithm, mode: Mode, dir: Direction) -> Context<'c> {
|
||||
let mut ctx = Context {
|
||||
algo,
|
||||
mode,
|
||||
dir,
|
||||
last_block_processed: false,
|
||||
cr: 0,
|
||||
iv: [0; 4],
|
||||
key,
|
||||
csgcmccm: [0; 8],
|
||||
csgcm: [0; 8],
|
||||
aad_complete: false,
|
||||
};
|
||||
|
||||
let keylen = key.len() * 8;
|
||||
let ivlen;
|
||||
if let Some(iv) = iv {
|
||||
ivlen = iv.len() * 8;
|
||||
} else {
|
||||
ivlen = 0;
|
||||
}
|
||||
T::regs().cr().modify(|w| w.set_crypen(false));
|
||||
|
||||
// Checks for correctness
|
||||
if algo == Algorithm::AES {
|
||||
let keylen = key.len() * 8;
|
||||
let ivlen;
|
||||
if let Some(iv) = iv {
|
||||
ivlen = iv.len() * 8;
|
||||
} else {
|
||||
ivlen = 0;
|
||||
}
|
||||
match keylen {
|
||||
128 => T::regs().cr().write(|w| w.set_keysize(0)),
|
||||
192 => T::regs().cr().write(|w| w.set_keysize(1)),
|
||||
|
@ -96,49 +109,14 @@ impl<'d, T: Instance, In, Out> Cryp<'d, T, In, Out> {
|
|||
}
|
||||
}
|
||||
|
||||
// Load the key into the registers.
|
||||
let mut keyidx = 0;
|
||||
let mut keyword: [u8; 4] = [0; 4];
|
||||
if keylen > 192 {
|
||||
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
|
||||
keyidx += 4;
|
||||
T::regs().key(0).klr().write_value(u32::from_be_bytes(keyword));
|
||||
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
|
||||
keyidx += 4;
|
||||
T::regs().key(0).krr().write_value(u32::from_be_bytes(keyword));
|
||||
}
|
||||
if keylen > 128 {
|
||||
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
|
||||
keyidx += 4;
|
||||
T::regs().key(1).klr().write_value(u32::from_be_bytes(keyword));
|
||||
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
|
||||
keyidx += 4;
|
||||
T::regs().key(1).krr().write_value(u32::from_be_bytes(keyword));
|
||||
}
|
||||
if keylen > 64 {
|
||||
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
|
||||
keyidx += 4;
|
||||
T::regs().key(2).klr().write_value(u32::from_be_bytes(keyword));
|
||||
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
|
||||
keyidx += 4;
|
||||
T::regs().key(2).krr().write_value(u32::from_be_bytes(keyword));
|
||||
}
|
||||
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
|
||||
keyidx += 4;
|
||||
T::regs().key(3).klr().write_value(u32::from_be_bytes(keyword));
|
||||
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
|
||||
T::regs().key(3).krr().write_value(u32::from_be_bytes(keyword));
|
||||
self.load_key(key);
|
||||
|
||||
// Set data type to 8-bit. This will match software implementations.
|
||||
T::regs().cr().modify(|w| w.set_datatype(2));
|
||||
|
||||
if algo == Algorithm::AES {
|
||||
if (mode == Mode::ECB) || (mode == Mode::CBC) {
|
||||
T::regs().cr().modify(|w| w.set_algomode0(7));
|
||||
T::regs().cr().modify(|w| w.set_crypen(true));
|
||||
while T::regs().sr().read().busy() {}
|
||||
}
|
||||
self.prepare_key(&ctx);
|
||||
|
||||
if algo == Algorithm::AES {
|
||||
match mode {
|
||||
Mode::ECB => T::regs().cr().modify(|w| w.set_algomode0(4)),
|
||||
Mode::CBC => T::regs().cr().modify(|w| w.set_algomode0(5)),
|
||||
|
@ -192,10 +170,246 @@ impl<'d, T: Instance, In, Out> Cryp<'d, T, In, Out> {
|
|||
// Flush in/out FIFOs
|
||||
T::regs().cr().modify(|w| w.fflush());
|
||||
|
||||
let ctx = Context { key: key };
|
||||
if mode == Mode::GCM {
|
||||
// GCM init phase
|
||||
T::regs().cr().modify(|w| w.set_gcm_ccmph(0));
|
||||
T::regs().cr().modify(|w| w.set_crypen(true));
|
||||
while T::regs().cr().read().crypen() {}
|
||||
}
|
||||
|
||||
self.store_context(&mut ctx);
|
||||
|
||||
ctx
|
||||
}
|
||||
|
||||
// pub fn aad_blocking(&self, ctx: &mut Context, aad: &[u8]) {
|
||||
// if ctx.aad_complete {
|
||||
// panic!("Cannot update AAD after calling 'update'!")
|
||||
// }
|
||||
// if (ctx.mode != Mode::GCM) && (ctx.mode != Mode::GMAC) && (ctx.mode != Mode::CCM) {
|
||||
// panic!("Associated data only valid for GCM, GMAC, and CCM modes.")
|
||||
// }
|
||||
|
||||
// let mut header_size = 0;
|
||||
// let mut header: [u8;]
|
||||
|
||||
// if aad.len() < 65280 {
|
||||
|
||||
// }
|
||||
|
||||
// // GCM header phase
|
||||
// T::regs().cr().modify(|w| w.set_gcm_ccmph(1));
|
||||
// T::regs().cr().modify(|w| w.set_crypen(true));
|
||||
// }
|
||||
|
||||
pub fn update_blocking(&self, ctx: &mut Context, input: &[u8], output: &mut [u8], last_block: bool) {
|
||||
self.load_context(ctx);
|
||||
|
||||
ctx.aad_complete = true;
|
||||
if last_block {
|
||||
ctx.last_block_processed = true;
|
||||
}
|
||||
|
||||
let block_size;
|
||||
if ctx.algo == Algorithm::DES {
|
||||
block_size = 8;
|
||||
} else {
|
||||
block_size = 16;
|
||||
}
|
||||
let last_block_remainder = input.len() % block_size;
|
||||
|
||||
// Perform checks for correctness.
|
||||
|
||||
if ctx.mode == Mode::GMAC {
|
||||
panic!("GMAC works on header data only. Do not call this function for GMAC.");
|
||||
}
|
||||
if ctx.last_block_processed {
|
||||
panic!("The last block has already been processed!");
|
||||
}
|
||||
if input.len() != output.len() {
|
||||
panic!("Output buffer length must match input length.");
|
||||
}
|
||||
if !last_block {
|
||||
if last_block_remainder != 0 {
|
||||
panic!("Input length must be a multiple of {block_size} bytes.");
|
||||
}
|
||||
}
|
||||
if (ctx.mode == Mode::ECB) || (ctx.mode == Mode::CBC) {
|
||||
if last_block_remainder != 0 {
|
||||
panic!("Input must be a multiple of {block_size} bytes in ECB and CBC modes. Consider padding or ciphertext stealing.");
|
||||
}
|
||||
}
|
||||
|
||||
// Load data into core, block by block.
|
||||
let num_full_blocks = input.len() / block_size;
|
||||
for block in 0..num_full_blocks {
|
||||
let mut index = block * block_size;
|
||||
let end_index = index + block_size;
|
||||
// Write block in
|
||||
while index < end_index {
|
||||
let mut in_word: [u8; 4] = [0; 4];
|
||||
in_word.copy_from_slice(&input[index..index + 4]);
|
||||
T::regs().din().write_value(u32::from_ne_bytes(in_word));
|
||||
index += 4;
|
||||
}
|
||||
let mut index = block * block_size;
|
||||
let end_index = index + block_size;
|
||||
// Block until there is output to read.
|
||||
while !T::regs().sr().read().ofne() {}
|
||||
// Read block out
|
||||
while index < end_index {
|
||||
let out_word: u32 = T::regs().dout().read();
|
||||
output[index..index + 4].copy_from_slice(u32::to_ne_bytes(out_word).as_slice());
|
||||
index += 4;
|
||||
}
|
||||
}
|
||||
|
||||
// Handle the final block, which is incomplete.
|
||||
if last_block_remainder > 0 {
|
||||
if ctx.mode == Mode::GCM && ctx.dir == Direction::Encrypt {
|
||||
//Handle special GCM partial block process.
|
||||
T::regs().cr().modify(|w| w.set_crypen(false));
|
||||
T::regs().cr().write(|w| w.set_algomode0(6));
|
||||
let iv1r = T::regs().csgcmccmr(7).read() - 1;
|
||||
T::regs().init(1).ivrr().write_value(iv1r);
|
||||
T::regs().cr().modify(|w| w.set_crypen(true));
|
||||
}
|
||||
|
||||
let mut intermediate_data: [u8; 16] = [0; 16];
|
||||
let mut last_block: [u8; 16] = [0; 16];
|
||||
last_block.copy_from_slice(&input[input.len() - last_block_remainder..input.len()]);
|
||||
let mut index = 0;
|
||||
let end_index = block_size;
|
||||
// Write block in
|
||||
while index < end_index {
|
||||
let mut in_word: [u8; 4] = [0; 4];
|
||||
in_word.copy_from_slice(&last_block[index..index + 4]);
|
||||
T::regs().din().write_value(u32::from_ne_bytes(in_word));
|
||||
index += 4;
|
||||
}
|
||||
let mut index = 0;
|
||||
let end_index = block_size;
|
||||
// Block until there is output to read.
|
||||
while !T::regs().sr().read().ofne() {}
|
||||
// Read block out
|
||||
while index < end_index {
|
||||
let out_word: u32 = T::regs().dout().read();
|
||||
intermediate_data[index..index + 4].copy_from_slice(u32::to_ne_bytes(out_word).as_slice());
|
||||
index += 4;
|
||||
}
|
||||
|
||||
// Handle the last block depending on mode.
|
||||
output[output.len() - last_block_remainder..output.len()]
|
||||
.copy_from_slice(&intermediate_data[0..last_block_remainder]);
|
||||
|
||||
if ctx.mode == Mode::GCM && ctx.dir == Direction::Encrypt {
|
||||
//Handle special GCM partial block process.
|
||||
T::regs().cr().modify(|w| w.set_crypen(false));
|
||||
T::regs().cr().write(|w| w.set_algomode0(8));
|
||||
T::regs().init(1).ivrr().write_value(2);
|
||||
T::regs().cr().modify(|w| w.set_crypen(true));
|
||||
T::regs().cr().modify(|w| w.set_gcm_ccmph(3));
|
||||
let mut index = 0;
|
||||
let end_index = block_size;
|
||||
while index < end_index {
|
||||
let mut in_word: [u8; 4] = [0; 4];
|
||||
in_word.copy_from_slice(&intermediate_data[index..index + 4]);
|
||||
T::regs().din().write_value(u32::from_ne_bytes(in_word));
|
||||
index += 4;
|
||||
}
|
||||
for _ in 0..4 {
|
||||
T::regs().dout().read();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn prepare_key(&self, ctx: &Context) {
|
||||
if ctx.algo == Algorithm::AES {
|
||||
if (ctx.mode == Mode::ECB) || (ctx.mode == Mode::CBC) {
|
||||
T::regs().cr().modify(|w| w.set_algomode0(7));
|
||||
T::regs().cr().modify(|w| w.set_crypen(true));
|
||||
while T::regs().sr().read().busy() {}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn load_key(&self, key: &[u8]) {
|
||||
// Load the key into the registers.
|
||||
let mut keyidx = 0;
|
||||
let mut keyword: [u8; 4] = [0; 4];
|
||||
let keylen = key.len() * 8;
|
||||
if keylen > 192 {
|
||||
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
|
||||
keyidx += 4;
|
||||
T::regs().key(0).klr().write_value(u32::from_be_bytes(keyword));
|
||||
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
|
||||
keyidx += 4;
|
||||
T::regs().key(0).krr().write_value(u32::from_be_bytes(keyword));
|
||||
}
|
||||
if keylen > 128 {
|
||||
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
|
||||
keyidx += 4;
|
||||
T::regs().key(1).klr().write_value(u32::from_be_bytes(keyword));
|
||||
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
|
||||
keyidx += 4;
|
||||
T::regs().key(1).krr().write_value(u32::from_be_bytes(keyword));
|
||||
}
|
||||
if keylen > 64 {
|
||||
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
|
||||
keyidx += 4;
|
||||
T::regs().key(2).klr().write_value(u32::from_be_bytes(keyword));
|
||||
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
|
||||
keyidx += 4;
|
||||
T::regs().key(2).krr().write_value(u32::from_be_bytes(keyword));
|
||||
}
|
||||
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
|
||||
keyidx += 4;
|
||||
T::regs().key(3).klr().write_value(u32::from_be_bytes(keyword));
|
||||
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
|
||||
T::regs().key(3).krr().write_value(u32::from_be_bytes(keyword));
|
||||
}
|
||||
|
||||
fn store_context(&self, ctx: &mut Context) {
|
||||
// Wait for data block processing to finish.
|
||||
while !T::regs().sr().read().ifem() {}
|
||||
while T::regs().sr().read().ofne() {}
|
||||
while T::regs().sr().read().busy() {}
|
||||
|
||||
// Disable crypto processor.
|
||||
T::regs().cr().modify(|w| w.set_crypen(false));
|
||||
|
||||
// Save the peripheral state.
|
||||
ctx.cr = T::regs().cr().read().0;
|
||||
ctx.iv[0] = T::regs().init(0).ivlr().read();
|
||||
ctx.iv[1] = T::regs().init(0).ivrr().read();
|
||||
ctx.iv[2] = T::regs().init(1).ivlr().read();
|
||||
ctx.iv[3] = T::regs().init(1).ivrr().read();
|
||||
for i in 0..8 {
|
||||
ctx.csgcmccm[i] = T::regs().csgcmccmr(i).read();
|
||||
ctx.csgcm[i] = T::regs().csgcmr(i).read();
|
||||
}
|
||||
}
|
||||
|
||||
fn load_context(&self, ctx: &Context) {
|
||||
// Reload state registers.
|
||||
T::regs().cr().write(|w| w.0 = ctx.cr);
|
||||
T::regs().init(0).ivlr().write_value(ctx.iv[0]);
|
||||
T::regs().init(0).ivrr().write_value(ctx.iv[1]);
|
||||
T::regs().init(1).ivlr().write_value(ctx.iv[2]);
|
||||
T::regs().init(1).ivrr().write_value(ctx.iv[3]);
|
||||
for i in 0..8 {
|
||||
T::regs().csgcmccmr(i).write_value(ctx.csgcmccm[i]);
|
||||
T::regs().csgcmr(i).write_value(ctx.csgcm[i]);
|
||||
}
|
||||
self.load_key(ctx.key);
|
||||
|
||||
// Prepare key if applicable.
|
||||
self.prepare_key(ctx);
|
||||
|
||||
// Enable crypto processor.
|
||||
T::regs().cr().modify(|w| w.set_crypen(true));
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) mod sealed {
|
||||
|
|
Loading…
Reference in a new issue