Rework bufferedUart to get rid of PeripheralMutex in a similar fashion as nrf & rp. Also adds embedded-hal traits to bufferedUart

This commit is contained in:
Mathias 2023-03-31 10:43:30 +02:00
parent 7a841b58d1
commit cfbe93c280
2 changed files with 490 additions and 269 deletions

View file

@ -1,51 +1,47 @@
use core::cell::RefCell;
use core::future::poll_fn;
use core::sync::atomic::{compiler_fence, Ordering};
use core::slice;
use core::task::Poll;
use embassy_cortex_m::peripheral::{PeripheralMutex, PeripheralState, StateStorage};
use embassy_hal_common::ring_buffer::RingBuffer;
use embassy_sync::waitqueue::WakerRegistration;
use embassy_cortex_m::interrupt::Interrupt;
use embassy_hal_common::atomic_ring_buffer::RingBuffer;
use embassy_sync::waitqueue::AtomicWaker;
use super::*;
pub struct State<'d, T: BasicInstance>(StateStorage<StateInner<'d, T>>);
impl<'d, T: BasicInstance> State<'d, T> {
pub struct State {
rx_waker: AtomicWaker,
rx_buf: RingBuffer,
tx_waker: AtomicWaker,
tx_buf: RingBuffer,
}
impl State {
pub const fn new() -> Self {
Self(StateStorage::new())
Self {
rx_buf: RingBuffer::new(),
tx_buf: RingBuffer::new(),
rx_waker: AtomicWaker::new(),
tx_waker: AtomicWaker::new(),
}
}
}
struct StateInner<'d, T: BasicInstance> {
phantom: PhantomData<&'d mut T>,
rx_waker: WakerRegistration,
rx: RingBuffer<'d>,
tx_waker: WakerRegistration,
tx: RingBuffer<'d>,
}
unsafe impl<'d, T: BasicInstance> Send for StateInner<'d, T> {}
unsafe impl<'d, T: BasicInstance> Sync for StateInner<'d, T> {}
pub struct BufferedUart<'d, T: BasicInstance> {
inner: RefCell<PeripheralMutex<'d, StateInner<'d, T>>>,
rx: BufferedUartRx<'d, T>,
tx: BufferedUartTx<'d, T>,
}
pub struct BufferedUartTx<'u, 'd, T: BasicInstance> {
inner: &'u BufferedUart<'d, T>,
pub struct BufferedUartTx<'d, T: BasicInstance> {
phantom: PhantomData<&'d mut T>,
}
pub struct BufferedUartRx<'u, 'd, T: BasicInstance> {
inner: &'u BufferedUart<'d, T>,
pub struct BufferedUartRx<'d, T: BasicInstance> {
phantom: PhantomData<&'d mut T>,
}
impl<'d, T: BasicInstance> Unpin for BufferedUart<'d, T> {}
impl<'d, T: BasicInstance> BufferedUart<'d, T> {
pub fn new(
state: &'d mut State<'d, T>,
peri: impl Peripheral<P = T> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
@ -57,11 +53,10 @@ impl<'d, T: BasicInstance> BufferedUart<'d, T> {
T::enable();
T::reset();
Self::new_inner(state, peri, rx, tx, irq, tx_buffer, rx_buffer, config)
Self::new_inner(peri, rx, tx, irq, tx_buffer, rx_buffer, config)
}
pub fn new_with_rtscts(
state: &'d mut State<'d, T>,
peri: impl Peripheral<P = T> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
@ -86,12 +81,11 @@ impl<'d, T: BasicInstance> BufferedUart<'d, T> {
});
}
Self::new_inner(state, peri, rx, tx, irq, tx_buffer, rx_buffer, config)
Self::new_inner(peri, rx, tx, irq, tx_buffer, rx_buffer, config)
}
#[cfg(not(usart_v1))]
pub fn new_with_de(
state: &'d mut State<'d, T>,
peri: impl Peripheral<P = T> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
@ -113,11 +107,10 @@ impl<'d, T: BasicInstance> BufferedUart<'d, T> {
});
}
Self::new_inner(state, peri, rx, tx, irq, tx_buffer, rx_buffer, config)
Self::new_inner(peri, rx, tx, irq, tx_buffer, rx_buffer, config)
}
fn new_inner(
state: &'d mut State<'d, T>,
_peri: impl Peripheral<P = T> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
@ -128,8 +121,13 @@ impl<'d, T: BasicInstance> BufferedUart<'d, T> {
) -> BufferedUart<'d, T> {
into_ref!(_peri, rx, tx, irq);
let r = T::regs();
let state = T::buffered_state();
let len = tx_buffer.len();
unsafe { state.tx_buf.init(tx_buffer.as_mut_ptr(), len) };
let len = rx_buffer.len();
unsafe { state.rx_buf.init(rx_buffer.as_mut_ptr(), len) };
let r = T::regs();
unsafe {
rx.set_as_af(rx.af_num(), AFType::Input);
tx.set_as_af(tx.af_num(), AFType::OutputPushPull);
@ -147,273 +145,297 @@ impl<'d, T: BasicInstance> BufferedUart<'d, T> {
});
}
Self {
inner: RefCell::new(PeripheralMutex::new(irq, &mut state.0, move || StateInner {
phantom: PhantomData,
tx: RingBuffer::new(tx_buffer),
tx_waker: WakerRegistration::new(),
irq.set_handler(on_interrupt::<T>);
irq.unpend();
irq.enable();
rx: RingBuffer::new(rx_buffer),
rx_waker: WakerRegistration::new(),
})),
Self {
rx: BufferedUartRx { phantom: PhantomData },
tx: BufferedUartTx { phantom: PhantomData },
}
}
pub fn split<'u>(&'u mut self) -> (BufferedUartRx<'u, 'd, T>, BufferedUartTx<'u, 'd, T>) {
(BufferedUartRx { inner: self }, BufferedUartTx { inner: self })
pub fn split(self) -> (BufferedUartRx<'d, T>, BufferedUartTx<'d, T>) {
(self.rx, self.tx)
}
}
async fn inner_read<'a>(&'a self, buf: &'a mut [u8]) -> Result<usize, Error> {
impl<'d, T: BasicInstance> BufferedUartRx<'d, T> {
async fn read(&self, buf: &mut [u8]) -> Result<usize, Error> {
poll_fn(move |cx| {
let mut do_pend = false;
let mut inner = self.inner.borrow_mut();
let res = inner.with(|state| {
compiler_fence(Ordering::SeqCst);
// We have data ready in buffer? Return it.
let data = state.rx.pop_buf();
if !data.is_empty() {
let len = data.len().min(buf.len());
buf[..len].copy_from_slice(&data[..len]);
if state.rx.is_full() {
do_pend = true;
}
state.rx.pop(len);
return Poll::Ready(Ok(len));
}
state.rx_waker.register(cx.waker());
Poll::Pending
let state = T::buffered_state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
let n = rx_reader.pop(|data| {
let n = data.len().min(buf.len());
buf[..n].copy_from_slice(&data[..n]);
n
});
if do_pend {
inner.pend();
if n == 0 {
state.rx_waker.register(cx.waker());
return Poll::Pending;
}
res
// FIXME:
// (Re-)Enable the interrupt to receive more data in case it was
// disabled because the buffer was full.
// let regs = T::regs();
// unsafe {
// regs.uartimsc().write_set(|w| {
// w.set_rxim(true);
// w.set_rtim(true);
// });
// }
Poll::Ready(Ok(n))
})
.await
// poll_fn(move |cx| {
// let state = T::buffered_state();
// let mut do_pend = false;
// compiler_fence(Ordering::SeqCst);
// // We have data ready in buffer? Return it.
// let data = state.rx_buf.pop_buf();
// if !data.is_empty() {
// let len = data.len().min(buf.len());
// buf[..len].copy_from_slice(&data[..len]);
// if state.rx_buf.is_full() {
// do_pend = true;
// }
// state.rx_buf.pop(len);
// return Poll::Ready(Ok(len));
// }
// state.rx_waker.register(cx.waker());
// if do_pend {
// inner.pend();
// }
// Poll::Pending
// })
// .await
}
fn inner_blocking_read(&self, buf: &mut [u8]) -> Result<usize, Error> {
fn blocking_read(&self, buf: &mut [u8]) -> Result<usize, Error> {
loop {
let mut do_pend = false;
let mut inner = self.inner.borrow_mut();
let n = inner.with(|state| {
compiler_fence(Ordering::SeqCst);
// We have data ready in buffer? Return it.
let data = state.rx.pop_buf();
if !data.is_empty() {
let len = data.len().min(buf.len());
buf[..len].copy_from_slice(&data[..len]);
if state.rx.is_full() {
do_pend = true;
}
state.rx.pop(len);
return len;
}
0
let state = T::buffered_state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
let n = rx_reader.pop(|data| {
let n = data.len().min(buf.len());
buf[..n].copy_from_slice(&data[..n]);
n
});
if do_pend {
inner.pend();
}
if n > 0 {
// FIXME:
// (Re-)Enable the interrupt to receive more data in case it was
// disabled because the buffer was full.
// let regs = T::regs();
// unsafe {
// regs.uartimsc().write_set(|w| {
// w.set_rxim(true);
// w.set_rtim(true);
// });
// }
return Ok(n);
}
}
}
async fn inner_write<'a>(&'a self, buf: &'a [u8]) -> Result<usize, Error> {
async fn fill_buf(&self) -> Result<&[u8], Error> {
poll_fn(move |cx| {
let mut inner = self.inner.borrow_mut();
let (poll, empty) = inner.with(|state| {
let empty = state.tx.is_empty();
let tx_buf = state.tx.push_buf();
if tx_buf.is_empty() {
state.tx_waker.register(cx.waker());
return (Poll::Pending, empty);
}
let n = core::cmp::min(tx_buf.len(), buf.len());
tx_buf[..n].copy_from_slice(&buf[..n]);
state.tx.push(n);
(Poll::Ready(Ok(n)), empty)
});
if empty {
inner.pend();
let state = T::buffered_state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
let (p, n) = rx_reader.pop_buf();
if n == 0 {
state.rx_waker.register(cx.waker());
return Poll::Pending;
}
poll
let buf = unsafe { slice::from_raw_parts(p, n) };
Poll::Ready(Ok(buf))
})
.await
}
async fn inner_flush<'a>(&'a self) -> Result<(), Error> {
fn consume(&self, amt: usize) {
let state = T::buffered_state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
let full = state.rx_buf.is_full();
rx_reader.pop_done(amt);
if full {
unsafe { T::Interrupt::steal().pend() };
}
}
}
impl<'d, T: BasicInstance> BufferedUartTx<'d, T> {
async fn write(&self, buf: &[u8]) -> Result<usize, Error> {
poll_fn(move |cx| {
self.inner.borrow_mut().with(|state| {
if !state.tx.is_empty() {
state.tx_waker.register(cx.waker());
return Poll::Pending;
}
let state = T::buffered_state();
let mut tx_writer = unsafe { state.tx_buf.writer() };
let n = tx_writer.push(|data| {
let n = data.len().min(buf.len());
data[..n].copy_from_slice(&buf[..n]);
n
});
if n == 0 {
state.tx_waker.register(cx.waker());
return Poll::Pending;
}
Poll::Ready(Ok(()))
})
// The TX interrupt only triggers when the there was data in the
// FIFO and the number of bytes drops below a threshold. When the
// FIFO was empty we have to manually pend the interrupt to shovel
// TX data from the buffer into the FIFO.
unsafe { T::Interrupt::steal() }.pend();
Poll::Ready(Ok(n))
})
.await
}
fn inner_blocking_write(&self, buf: &[u8]) -> Result<usize, Error> {
async fn flush(&self) -> Result<(), Error> {
poll_fn(move |cx| {
let state = T::buffered_state();
if !state.tx_buf.is_empty() {
state.tx_waker.register(cx.waker());
return Poll::Pending;
}
Poll::Ready(Ok(()))
})
.await
}
fn blocking_write(&self, buf: &[u8]) -> Result<usize, Error> {
loop {
let mut inner = self.inner.borrow_mut();
let (n, empty) = inner.with(|state| {
let empty = state.tx.is_empty();
let tx_buf = state.tx.push_buf();
if tx_buf.is_empty() {
return (0, empty);
}
let n = core::cmp::min(tx_buf.len(), buf.len());
tx_buf[..n].copy_from_slice(&buf[..n]);
state.tx.push(n);
(n, empty)
let state = T::buffered_state();
let mut tx_writer = unsafe { state.tx_buf.writer() };
let n = tx_writer.push(|data| {
let n = data.len().min(buf.len());
data[..n].copy_from_slice(&buf[..n]);
n
});
if empty {
inner.pend();
}
if n != 0 {
// The TX interrupt only triggers when the there was data in the
// FIFO and the number of bytes drops below a threshold. When the
// FIFO was empty we have to manually pend the interrupt to shovel
// TX data from the buffer into the FIFO.
unsafe { T::Interrupt::steal() }.pend();
return Ok(n);
}
}
}
fn inner_blocking_flush(&self) -> Result<(), Error> {
fn blocking_flush(&self) -> Result<(), Error> {
loop {
if !self.inner.borrow_mut().with(|state| state.tx.is_empty()) {
let state = T::buffered_state();
if state.tx_buf.is_empty() {
return Ok(());
}
}
}
async fn inner_fill_buf<'a>(&'a self) -> Result<&'a [u8], Error> {
poll_fn(move |cx| {
self.inner.borrow_mut().with(|state| {
compiler_fence(Ordering::SeqCst);
// We have data ready in buffer? Return it.
let buf = state.rx.pop_buf();
if !buf.is_empty() {
let buf: &[u8] = buf;
// Safety: buffer lives as long as uart
let buf: &[u8] = unsafe { core::mem::transmute(buf) };
return Poll::Ready(Ok(buf));
}
state.rx_waker.register(cx.waker());
Poll::<Result<&[u8], Error>>::Pending
})
})
.await
}
fn inner_consume(&self, amt: usize) {
let mut inner = self.inner.borrow_mut();
let signal = inner.with(|state| {
let full = state.rx.is_full();
state.rx.pop(amt);
full
});
if signal {
inner.pend();
}
}
}
impl<'d, T: BasicInstance> StateInner<'d, T>
where
Self: 'd,
{
fn on_rx(&mut self) {
let r = T::regs();
impl<'d, T: BasicInstance> Drop for BufferedUartRx<'d, T> {
fn drop(&mut self) {
let state = T::buffered_state();
unsafe {
let sr = sr(r).read();
clear_interrupt_flags(r, sr);
state.rx_buf.deinit();
// This read also clears the error and idle interrupt flags on v1.
let b = rdr(r).read_volatile();
if sr.rxne() {
if sr.pe() {
warn!("Parity error");
}
if sr.fe() {
warn!("Framing error");
}
if sr.ne() {
warn!("Noise error");
}
if sr.ore() {
warn!("Overrun error");
}
let buf = self.rx.push_buf();
if !buf.is_empty() {
buf[0] = b;
self.rx.push(1);
} else {
warn!("RX buffer full, discard received byte");
}
if self.rx.is_full() {
self.rx_waker.wake();
}
}
if sr.idle() {
self.rx_waker.wake();
};
}
}
fn on_tx(&mut self) {
let r = T::regs();
unsafe {
if sr(r).read().txe() {
let buf = self.tx.pop_buf();
if !buf.is_empty() {
r.cr1().modify(|w| {
w.set_txeie(true);
});
tdr(r).write_volatile(buf[0].into());
self.tx.pop(1);
self.tx_waker.wake();
} else {
// Disable interrupt until we have something to transmit again
r.cr1().modify(|w| {
w.set_txeie(false);
});
}
// TX is inactive if the the buffer is not available.
// We can now unregister the interrupt handler
if state.tx_buf.len() == 0 {
T::Interrupt::steal().disable();
}
}
}
}
impl<'d, T: BasicInstance> PeripheralState for StateInner<'d, T>
where
Self: 'd,
{
type Interrupt = T::Interrupt;
fn on_interrupt(&mut self) {
self.on_rx();
self.on_tx();
impl<'d, T: BasicInstance> Drop for BufferedUartTx<'d, T> {
fn drop(&mut self) {
let state = T::buffered_state();
unsafe {
state.tx_buf.deinit();
// RX is inactive if the the buffer is not available.
// We can now unregister the interrupt handler
if state.rx_buf.len() == 0 {
T::Interrupt::steal().disable();
}
}
}
}
unsafe fn on_interrupt<T: BasicInstance>(_: *mut ()) {
let r = T::regs();
let state = T::buffered_state();
// RX
unsafe {
let sr = sr(r).read();
clear_interrupt_flags(r, sr);
if sr.rxne() {
if sr.pe() {
warn!("Parity error");
}
if sr.fe() {
warn!("Framing error");
}
if sr.ne() {
warn!("Noise error");
}
if sr.ore() {
warn!("Overrun error");
}
let mut rx_writer = state.rx_buf.writer();
let buf = rx_writer.push_slice();
if !buf.is_empty() {
// This read also clears the error and idle interrupt flags on v1.
buf[0] = rdr(r).read_volatile();
rx_writer.push_done(1);
} else {
// FIXME: Should we disable any further RX interrupts when the buffer becomes full.
}
if state.rx_buf.is_full() {
state.rx_waker.wake();
}
}
if sr.idle() {
state.rx_waker.wake();
};
}
// TX
unsafe {
if sr(r).read().txe() {
let mut tx_reader = state.tx_buf.reader();
let buf = tx_reader.pop_slice();
if !buf.is_empty() {
r.cr1().modify(|w| {
w.set_txeie(true);
});
tdr(r).write_volatile(buf[0].into());
tx_reader.pop_done(1);
state.tx_waker.wake();
} else {
// Disable interrupt until we have something to transmit again
r.cr1().modify(|w| {
w.set_txeie(false);
});
}
}
}
}
@ -427,94 +449,284 @@ impl<'d, T: BasicInstance> embedded_io::Io for BufferedUart<'d, T> {
type Error = Error;
}
impl<'u, 'd, T: BasicInstance> embedded_io::Io for BufferedUartRx<'u, 'd, T> {
impl<'d, T: BasicInstance> embedded_io::Io for BufferedUartRx<'d, T> {
type Error = Error;
}
impl<'u, 'd, T: BasicInstance> embedded_io::Io for BufferedUartTx<'u, 'd, T> {
impl<'d, T: BasicInstance> embedded_io::Io for BufferedUartTx<'d, T> {
type Error = Error;
}
impl<'d, T: BasicInstance> embedded_io::asynch::Read for BufferedUart<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.inner_read(buf).await
self.rx.read(buf).await
}
}
impl<'u, 'd, T: BasicInstance> embedded_io::asynch::Read for BufferedUartRx<'u, 'd, T> {
impl<'d, T: BasicInstance> embedded_io::asynch::Read for BufferedUartRx<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.inner.inner_read(buf).await
Self::read(self, buf).await
}
}
impl<'d, T: BasicInstance> embedded_io::asynch::BufRead for BufferedUart<'d, T> {
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
self.inner_fill_buf().await
self.rx.fill_buf().await
}
fn consume(&mut self, amt: usize) {
self.inner_consume(amt)
self.rx.consume(amt)
}
}
impl<'u, 'd, T: BasicInstance> embedded_io::asynch::BufRead for BufferedUartRx<'u, 'd, T> {
impl<'d, T: BasicInstance> embedded_io::asynch::BufRead for BufferedUartRx<'d, T> {
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
self.inner.inner_fill_buf().await
Self::fill_buf(self).await
}
fn consume(&mut self, amt: usize) {
self.inner.inner_consume(amt)
Self::consume(self, amt)
}
}
impl<'d, T: BasicInstance> embedded_io::asynch::Write for BufferedUart<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.inner_write(buf).await
self.tx.write(buf).await
}
async fn flush(&mut self) -> Result<(), Self::Error> {
self.inner_flush().await
self.tx.flush().await
}
}
impl<'u, 'd, T: BasicInstance> embedded_io::asynch::Write for BufferedUartTx<'u, 'd, T> {
impl<'d, T: BasicInstance> embedded_io::asynch::Write for BufferedUartTx<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.inner.inner_write(buf).await
Self::write(self, buf).await
}
async fn flush(&mut self) -> Result<(), Self::Error> {
self.inner.inner_flush().await
Self::flush(self).await
}
}
impl<'d, T: BasicInstance> embedded_io::blocking::Read for BufferedUart<'d, T> {
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.inner_blocking_read(buf)
self.rx.blocking_read(buf)
}
}
impl<'u, 'd, T: BasicInstance> embedded_io::blocking::Read for BufferedUartRx<'u, 'd, T> {
impl<'d, T: BasicInstance> embedded_io::blocking::Read for BufferedUartRx<'d, T> {
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.inner.inner_blocking_read(buf)
self.blocking_read(buf)
}
}
impl<'d, T: BasicInstance> embedded_io::blocking::Write for BufferedUart<'d, T> {
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.inner_blocking_write(buf)
self.tx.blocking_write(buf)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.inner_blocking_flush()
self.tx.blocking_flush()
}
}
impl<'u, 'd, T: BasicInstance> embedded_io::blocking::Write for BufferedUartTx<'u, 'd, T> {
impl<'d, T: BasicInstance> embedded_io::blocking::Write for BufferedUartTx<'d, T> {
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.inner.inner_blocking_write(buf)
Self::blocking_write(self, buf)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.inner.inner_blocking_flush()
Self::blocking_flush(self)
}
}
mod eh02 {
use super::*;
impl<'d, T: BasicInstance> embedded_hal_02::serial::Read<u8> for BufferedUartRx<'d, T> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
let r = T::regs();
unsafe {
let sr = sr(r).read();
if sr.pe() {
rdr(r).read_volatile();
Err(nb::Error::Other(Error::Parity))
} else if sr.fe() {
rdr(r).read_volatile();
Err(nb::Error::Other(Error::Framing))
} else if sr.ne() {
rdr(r).read_volatile();
Err(nb::Error::Other(Error::Noise))
} else if sr.ore() {
rdr(r).read_volatile();
Err(nb::Error::Other(Error::Overrun))
} else if sr.rxne() {
Ok(rdr(r).read_volatile())
} else {
Err(nb::Error::WouldBlock)
}
}
}
}
impl<'d, T: BasicInstance> embedded_hal_02::blocking::serial::Write<u8> for BufferedUartTx<'d, T> {
type Error = Error;
fn bwrite_all(&mut self, mut buffer: &[u8]) -> Result<(), Self::Error> {
while !buffer.is_empty() {
match self.blocking_write(buffer) {
Ok(0) => panic!("zero-length write."),
Ok(n) => buffer = &buffer[n..],
Err(e) => return Err(e),
}
}
Ok(())
}
fn bflush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_02::serial::Read<u8> for BufferedUart<'d, T> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx)
}
}
impl<'d, T: BasicInstance> embedded_hal_02::blocking::serial::Write<u8> for BufferedUart<'d, T> {
type Error = Error;
fn bwrite_all(&mut self, mut buffer: &[u8]) -> Result<(), Self::Error> {
while !buffer.is_empty() {
match self.tx.blocking_write(buffer) {
Ok(0) => panic!("zero-length write."),
Ok(n) => buffer = &buffer[n..],
Err(e) => return Err(e),
}
}
Ok(())
}
fn bflush(&mut self) -> Result<(), Self::Error> {
self.tx.blocking_flush()
}
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl<'d, T: BasicInstance> embedded_hal_1::serial::ErrorType for BufferedUart<'d, T> {
type Error = Error;
}
impl<'d, T: BasicInstance> embedded_hal_1::serial::ErrorType for BufferedUartTx<'d, T> {
type Error = Error;
}
impl<'d, T: BasicInstance> embedded_hal_1::serial::ErrorType for BufferedUartRx<'d, T> {
type Error = Error;
}
impl<'d, T: BasicInstance> embedded_hal_nb::serial::Read for BufferedUartRx<'d, T> {
fn read(&mut self) -> nb::Result<u8, Self::Error> {
embedded_hal_02::serial::Read::read(self)
}
}
impl<'d, T: BasicInstance> embedded_hal_1::serial::Write for BufferedUartTx<'d, T> {
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer).map(drop)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_nb::serial::Write for BufferedUartTx<'d, T> {
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
self.blocking_write(&[char]).map(drop).map_err(nb::Error::Other)
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.blocking_flush().map_err(nb::Error::Other)
}
}
impl<'d, T: BasicInstance> embedded_hal_nb::serial::Read for BufferedUart<'d, T> {
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx)
}
}
impl<'d, T: BasicInstance> embedded_hal_1::serial::Write for BufferedUart<'d, T> {
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.tx.blocking_write(buffer).map(drop)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.tx.blocking_flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_nb::serial::Write for BufferedUart<'d, T> {
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
self.tx.blocking_write(&[char]).map(drop).map_err(nb::Error::Other)
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.tx.blocking_flush().map_err(nb::Error::Other)
}
}
}
#[cfg(all(
feature = "unstable-traits",
feature = "nightly",
feature = "_todo_embedded_hal_serial"
))]
mod eha {
use core::future::Future;
use super::*;
impl<'d, T: BasicInstance> embedded_hal_async::serial::Write for BufferedUartTx<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<(), Self::Error> {
Self::write(buf)
}
async fn flush(&mut self) -> Result<(), Self::Error> {
Self::flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_async::serial::Read for BufferedUartRx<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<(), Self::Error> {
Self::read(buf)
}
}
impl<'d, T: BasicInstance> embedded_hal_async::serial::Write for BufferedUart<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<(), Self::Error> {
self.tx.write(buf)
}
async fn flush(&mut self) -> Result<(), Self::Error> {
self.tx.flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_async::serial::Read for BufferedUart<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<(), Self::Error> {
self.rx.read(buf)
}
}
}

View file

@ -1112,6 +1112,9 @@ pub(crate) mod sealed {
fn regs() -> Regs;
fn state() -> &'static State;
#[cfg(feature = "nightly")]
fn buffered_state() -> &'static buffered::State;
}
pub trait FullInstance: BasicInstance {
@ -1147,6 +1150,12 @@ macro_rules! impl_lpuart {
static STATE: crate::usart::sealed::State = crate::usart::sealed::State::new();
&STATE
}
#[cfg(feature = "nightly")]
fn buffered_state() -> &'static buffered::State {
static STATE: buffered::State = buffered::State::new();
&STATE
}
}
impl BasicInstance for peripherals::$inst {}