Add implementation of ReadUntilIdle for nRF UART

Add type UarteWithIdle that implements Read, Write and ReadUntilIdle
traits. The type uses a timer + 2 PPI channels internally, triggered on
RTXSTARTED event.
This commit is contained in:
Ulf Lilleengen 2021-05-10 15:45:40 +02:00 committed by Dario Nieuwenhuis
parent 040fffd667
commit dda338cedb

View file

@ -5,7 +5,7 @@ use core::marker::PhantomData;
use core::sync::atomic::{compiler_fence, Ordering}; use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll; use core::task::Poll;
use embassy::interrupt::InterruptExt; use embassy::interrupt::InterruptExt;
use embassy::traits::uart::{Error, Read, Write}; use embassy::traits::uart::{Error, Read, ReadUntilIdle, Write};
use embassy::util::{AtomicWaker, OnDrop, Unborrow}; use embassy::util::{AtomicWaker, OnDrop, Unborrow};
use embassy_extras::unborrow; use embassy_extras::unborrow;
use futures::future::poll_fn; use futures::future::poll_fn;
@ -17,7 +17,9 @@ use crate::interrupt;
use crate::interrupt::Interrupt; use crate::interrupt::Interrupt;
use crate::pac; use crate::pac;
use crate::peripherals; use crate::peripherals;
use crate::ppi::{AnyConfigurableChannel, ConfigurableChannel, Event, Ppi, Task};
use crate::target_constants::EASY_DMA_SIZE; use crate::target_constants::EASY_DMA_SIZE;
use crate::timer::Instance as TimerInstance;
// Re-export SVD variants to allow user to directly set values. // Re-export SVD variants to allow user to directly set values.
pub use pac::uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity}; pub use pac::uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity};
@ -281,6 +283,161 @@ impl<'d, T: Instance> Write for Uarte<'d, T> {
} }
} }
/// Interface to an UARTE peripheral that uses timers and PPI to emulate
/// ReadUntilIdle.
pub struct UarteWithIdle<'d, U: Instance, T: TimerInstance> {
uarte: Uarte<'d, U>,
timer: T,
_ppi_ch1: Ppi<'d, AnyConfigurableChannel>,
_ppi_ch2: Ppi<'d, AnyConfigurableChannel>,
}
impl<'d, U: Instance, T: TimerInstance> UarteWithIdle<'d, U, T> {
/// Creates the interface to a UARTE instance.
/// Sets the baud rate, parity and assigns the pins to the UARTE peripheral.
///
/// # Safety
///
/// The returned API is safe unless you use `mem::forget` (or similar safe mechanisms)
/// on stack allocated buffers which which have been passed to [`send()`](Uarte::send)
/// or [`receive`](Uarte::receive).
#[allow(unused_unsafe)]
pub unsafe fn new(
uarte: impl Unborrow<Target = U> + 'd,
timer: impl Unborrow<Target = T> + 'd,
ppi_ch1: impl Unborrow<Target = impl ConfigurableChannel> + 'd,
ppi_ch2: impl Unborrow<Target = impl ConfigurableChannel> + 'd,
irq: impl Unborrow<Target = U::Interrupt> + 'd,
rxd: impl Unborrow<Target = impl GpioPin> + 'd,
txd: impl Unborrow<Target = impl GpioPin> + 'd,
cts: impl Unborrow<Target = impl GpioOptionalPin> + 'd,
rts: impl Unborrow<Target = impl GpioOptionalPin> + 'd,
config: Config,
) -> Self {
let baudrate = config.baudrate;
let uarte = Uarte::new(uarte, irq, rxd, txd, cts, rts, config);
unborrow!(timer, ppi_ch1, ppi_ch2);
let r = U::regs();
let rt = timer.regs();
// BAUDRATE register values are `baudrate * 2^32 / 16000000`
// source: https://devzone.nordicsemi.com/f/nordic-q-a/391/uart-baudrate-register-values
//
// We want to stop RX if line is idle for 2 bytes worth of time
// That is 20 bits (each byte is 1 start bit + 8 data bits + 1 stop bit)
// This gives us the amount of 16M ticks for 20 bits.
let timeout = 0x8000_0000 / (baudrate as u32 / 40);
rt.tasks_stop.write(|w| unsafe { w.bits(1) });
rt.bitmode.write(|w| w.bitmode()._32bit());
rt.prescaler.write(|w| unsafe { w.prescaler().bits(0) });
rt.cc[0].write(|w| unsafe { w.bits(timeout) });
rt.mode.write(|w| w.mode().timer());
rt.shorts.write(|w| {
w.compare0_clear().set_bit();
w.compare0_stop().set_bit();
w
});
let mut ppi_ch1 = Ppi::new(ppi_ch1.degrade_configurable());
ppi_ch1.set_event(Event::from_reg(&r.events_rxstarted));
ppi_ch1.set_task(Task::from_reg(&rt.tasks_clear));
ppi_ch1.set_fork_task(Task::from_reg(&rt.tasks_start));
ppi_ch1.enable();
let mut ppi_ch2 = Ppi::new(ppi_ch2.degrade_configurable());
ppi_ch2.set_event(Event::from_reg(&rt.events_compare[0]));
ppi_ch2.set_task(Task::from_reg(&r.tasks_stoprx));
ppi_ch2.enable();
Self {
uarte,
timer,
_ppi_ch1: ppi_ch1,
_ppi_ch2: ppi_ch2,
}
}
}
impl<'d, U: Instance, T: TimerInstance> ReadUntilIdle for UarteWithIdle<'d, U, T> {
#[rustfmt::skip]
type ReadUntilIdleFuture<'a> where Self: 'a = impl Future<Output = Result<usize, Error>> + 'a;
fn read_until_idle<'a>(&'a mut self, rx_buffer: &'a mut [u8]) -> Self::ReadUntilIdleFuture<'a> {
async move {
let ptr = rx_buffer.as_ptr();
let len = rx_buffer.len();
assert!(len <= EASY_DMA_SIZE);
let r = U::regs();
let s = U::state();
let rt = self.timer.regs();
let drop = OnDrop::new(move || {
info!("read drop: stopping");
rt.tasks_stop.write(|w| unsafe { w.bits(1) });
r.intenclr.write(|w| w.endrx().clear());
r.events_rxto.reset();
r.tasks_stoprx.write(|w| unsafe { w.bits(1) });
while r.events_endrx.read().bits() == 0 {}
info!("read drop: stopped");
});
r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });
r.events_endrx.reset();
r.intenset.write(|w| w.endrx().set());
compiler_fence(Ordering::SeqCst);
trace!("startrx");
r.tasks_startrx.write(|w| unsafe { w.bits(1) });
let n: usize = poll_fn(|cx| {
s.endrx_waker.register(cx.waker());
if r.events_endrx.read().bits() != 0 {
let n: usize = r.rxd.amount.read().amount().bits() as usize;
return Poll::Ready(n);
}
Poll::Pending
})
.await;
compiler_fence(Ordering::SeqCst);
r.events_rxstarted.reset();
// Stop timer
rt.tasks_stop.write(|w| unsafe { w.bits(1) });
drop.defuse();
Ok(n)
}
}
}
impl<'d, U: Instance, T: TimerInstance> Read for UarteWithIdle<'d, U, T> {
#[rustfmt::skip]
type ReadFuture<'a> where Self: 'a = impl Future<Output = Result<(), Error>> + 'a;
fn read<'a>(&'a mut self, rx_buffer: &'a mut [u8]) -> Self::ReadFuture<'a> {
self.uarte.read(rx_buffer)
}
}
impl<'d, U: Instance, T: TimerInstance> Write for UarteWithIdle<'d, U, T> {
#[rustfmt::skip]
type WriteFuture<'a> where Self: 'a = impl Future<Output = Result<(), Error>> + 'a;
fn write<'a>(&'a mut self, tx_buffer: &'a [u8]) -> Self::WriteFuture<'a> {
self.uarte.write(tx_buffer)
}
}
mod sealed { mod sealed {
use super::*; use super::*;