Add support for splitting stm32 usart into TX and RX

* Keeps existing API for usart, but wraps it in Tx and Rx sub-types
* Adds split() method similar to nRF for getting indepdendent TX and RX
  parts
* Implements e-h traits for TX and RX types
* Add stm32h7 example
This commit is contained in:
Ulf Lilleengen 2022-03-14 22:03:35 +01:00 committed by Ulf Lilleengen
parent cb1be3983a
commit e09bde9345
2 changed files with 251 additions and 75 deletions

View file

@ -72,57 +72,26 @@ pub enum Error {
}
pub struct Uart<'d, T: Instance, TxDma = NoDma, RxDma = NoDma> {
inner: T,
phantom: PhantomData<&'d mut T>,
tx: UartTx<'d, T, TxDma>,
rx: UartRx<'d, T, RxDma>,
}
pub struct UartTx<'d, T: Instance, TxDma = NoDma> {
phantom: PhantomData<&'d mut T>,
tx_dma: TxDma,
}
pub struct UartRx<'d, T: Instance, RxDma = NoDma> {
phantom: PhantomData<&'d mut T>,
rx_dma: RxDma,
}
impl<'d, T: Instance, TxDma, RxDma> Uart<'d, T, TxDma, RxDma> {
pub fn new(
inner: impl Unborrow<Target = T> + 'd,
rx: impl Unborrow<Target = impl RxPin<T>> + 'd,
tx: impl Unborrow<Target = impl TxPin<T>> + 'd,
tx_dma: impl Unborrow<Target = TxDma> + 'd,
rx_dma: impl Unborrow<Target = RxDma> + 'd,
config: Config,
) -> Self {
unborrow!(inner, rx, tx, tx_dma, rx_dma);
T::enable();
let pclk_freq = T::frequency();
// TODO: better calculation, including error checking and OVER8 if possible.
let div = (pclk_freq.0 + (config.baudrate / 2)) / config.baudrate;
let r = inner.regs();
unsafe {
rx.set_as_af(rx.af_num(), AFType::Input);
tx.set_as_af(tx.af_num(), AFType::OutputPushPull);
r.cr2().write(|_w| {});
r.cr3().write(|_w| {});
r.brr().write_value(regs::Brr(div));
r.cr1().write(|w| {
w.set_ue(true);
w.set_te(true);
w.set_re(true);
w.set_m0(vals::M0::BIT8);
w.set_pce(config.parity != Parity::ParityNone);
w.set_ps(match config.parity {
Parity::ParityOdd => vals::Ps::ODD,
Parity::ParityEven => vals::Ps::EVEN,
_ => vals::Ps::EVEN,
});
});
}
impl<'d, T: Instance, TxDma> UartTx<'d, T, TxDma> {
fn new(tx_dma: TxDma) -> Self {
Self {
inner,
phantom: PhantomData,
tx_dma,
rx_dma,
phantom: PhantomData,
}
}
@ -133,16 +102,43 @@ impl<'d, T: Instance, TxDma, RxDma> Uart<'d, T, TxDma, RxDma> {
let ch = &mut self.tx_dma;
let request = ch.request();
unsafe {
self.inner.regs().cr3().modify(|reg| {
T::regs().cr3().modify(|reg| {
reg.set_dmat(true);
});
}
let r = self.inner.regs();
let dst = tdr(r);
let dst = tdr(T::regs());
crate::dma::write(ch, request, buffer, dst).await;
Ok(())
}
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
unsafe {
let r = T::regs();
for &b in buffer {
while !sr(r).read().txe() {}
tdr(r).write_volatile(b);
}
}
Ok(())
}
pub fn blocking_flush(&mut self) -> Result<(), Error> {
unsafe {
let r = T::regs();
while !sr(r).read().tc() {}
}
Ok(())
}
}
impl<'d, T: Instance, RxDma> UartRx<'d, T, RxDma> {
fn new(rx_dma: RxDma) -> Self {
Self {
rx_dma,
phantom: PhantomData,
}
}
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error>
where
RxDma: crate::usart::RxDma<T>,
@ -150,11 +146,11 @@ impl<'d, T: Instance, TxDma, RxDma> Uart<'d, T, TxDma, RxDma> {
let ch = &mut self.rx_dma;
let request = ch.request();
unsafe {
self.inner.regs().cr3().modify(|reg| {
T::regs().cr3().modify(|reg| {
reg.set_dmar(true);
});
}
let r = self.inner.regs();
let r = T::regs();
let src = rdr(r);
crate::dma::read(ch, request, src, buffer).await;
Ok(())
@ -162,7 +158,7 @@ impl<'d, T: Instance, TxDma, RxDma> Uart<'d, T, TxDma, RxDma> {
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
unsafe {
let r = self.inner.regs();
let r = T::regs();
for b in buffer {
loop {
let sr = sr(r).read();
@ -187,36 +183,96 @@ impl<'d, T: Instance, TxDma, RxDma> Uart<'d, T, TxDma, RxDma> {
}
Ok(())
}
}
impl<'d, T: Instance, TxDma, RxDma> Uart<'d, T, TxDma, RxDma> {
pub fn new(
_inner: impl Unborrow<Target = T> + 'd,
rx: impl Unborrow<Target = impl RxPin<T>> + 'd,
tx: impl Unborrow<Target = impl TxPin<T>> + 'd,
tx_dma: impl Unborrow<Target = TxDma> + 'd,
rx_dma: impl Unborrow<Target = RxDma> + 'd,
config: Config,
) -> Self {
unborrow!(_inner, rx, tx, tx_dma, rx_dma);
T::enable();
let pclk_freq = T::frequency();
// TODO: better calculation, including error checking and OVER8 if possible.
let div = (pclk_freq.0 + (config.baudrate / 2)) / config.baudrate;
let r = T::regs();
unsafe {
rx.set_as_af(rx.af_num(), AFType::Input);
tx.set_as_af(tx.af_num(), AFType::OutputPushPull);
r.cr2().write(|_w| {});
r.cr3().write(|_w| {});
r.brr().write_value(regs::Brr(div));
r.cr1().write(|w| {
w.set_ue(true);
w.set_te(true);
w.set_re(true);
w.set_m0(vals::M0::BIT8);
w.set_pce(config.parity != Parity::ParityNone);
w.set_ps(match config.parity {
Parity::ParityOdd => vals::Ps::ODD,
Parity::ParityEven => vals::Ps::EVEN,
_ => vals::Ps::EVEN,
});
});
}
Self {
phantom: PhantomData,
tx: UartTx::new(tx_dma),
rx: UartRx::new(rx_dma),
}
}
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error>
where
TxDma: crate::usart::TxDma<T>,
{
self.tx.write(buffer).await
}
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
unsafe {
let r = self.inner.regs();
for &b in buffer {
while !sr(r).read().txe() {}
tdr(r).write_volatile(b);
}
}
Ok(())
self.tx.blocking_write(buffer)
}
pub fn blocking_flush(&mut self) -> Result<(), Error> {
unsafe {
let r = self.inner.regs();
while !sr(r).read().tc() {}
}
Ok(())
self.tx.blocking_flush()
}
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error>
where
RxDma: crate::usart::RxDma<T>,
{
self.rx.read(buffer).await
}
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.rx.blocking_read(buffer)
}
/// Split the Uart into a transmitter and receiver, which is
/// particuarly useful when having two tasks correlating to
/// transmitting and receiving.
pub fn split(self) -> (UartTx<'d, T, TxDma>, UartRx<'d, T, RxDma>) {
(self.tx, self.rx)
}
}
mod eh02 {
use super::*;
impl<'d, T: Instance, TxDma, RxDma> embedded_hal_02::serial::Read<u8>
for Uart<'d, T, TxDma, RxDma>
{
impl<'d, T: Instance, RxDma> embedded_hal_02::serial::Read<u8> for UartRx<'d, T, RxDma> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
let r = self.inner.regs();
let r = T::regs();
unsafe {
let sr = sr(r).read();
if sr.pe() {
@ -240,6 +296,25 @@ mod eh02 {
}
}
impl<'d, T: Instance, TxDma> embedded_hal_02::blocking::serial::Write<u8> for UartTx<'d, T, TxDma> {
type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
}
fn bflush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
impl<'d, T: Instance, TxDma, RxDma> embedded_hal_02::serial::Read<u8>
for Uart<'d, T, TxDma, RxDma>
{
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx)
}
}
impl<'d, T: Instance, TxDma, RxDma> embedded_hal_02::blocking::serial::Write<u8>
for Uart<'d, T, TxDma, RxDma>
{
@ -273,12 +348,48 @@ mod eh1 {
{
type Error = Error;
}
impl<'d, T: Instance, TxDma> embedded_hal_1::serial::ErrorType for UartTx<'d, T, TxDma> {
type Error = Error;
}
impl<'d, T: Instance, RxDma> embedded_hal_1::serial::ErrorType for UartRx<'d, T, RxDma> {
type Error = Error;
}
}
cfg_if::cfg_if! {
if #[cfg(all(feature = "unstable-traits", feature = "nightly"))] {
use core::future::Future;
impl<'d, T: Instance, TxDma> embedded_hal_async::serial::Write for UartTx<'d, T, TxDma>
where
TxDma: crate::usart::TxDma<T>,
{
type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
self.write(buf)
}
type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
async move { Ok(()) }
}
}
impl<'d, T: Instance, RxDma> embedded_hal_async::serial::Read for UartRx<'d, T, RxDma>
where
RxDma: crate::usart::RxDma<T>,
{
type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
self.read(buf)
}
}
impl<'d, T: Instance, TxDma, RxDma> embedded_hal_async::serial::Write for Uart<'d, T, TxDma, RxDma>
where
TxDma: crate::usart::TxDma<T>,
@ -329,7 +440,6 @@ mod buffered {
}
struct StateInner<'d, T: Instance> {
uart: Uart<'d, T, NoDma, NoDma>,
phantom: PhantomData<&'d mut T>,
rx_waker: WakerRegistration,
@ -351,14 +461,14 @@ mod buffered {
impl<'d, T: Instance> BufferedUart<'d, T> {
pub unsafe fn new(
state: &'d mut State<'d, T>,
uart: Uart<'d, T, NoDma, NoDma>,
_uart: Uart<'d, T, NoDma, NoDma>,
irq: impl Unborrow<Target = T::Interrupt> + 'd,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
) -> BufferedUart<'d, T> {
unborrow!(irq);
let r = uart.inner.regs();
let r = T::regs();
r.cr1().modify(|w| {
w.set_rxneie(true);
w.set_idleie(true);
@ -366,7 +476,6 @@ mod buffered {
Self {
inner: PeripheralMutex::new_unchecked(irq, &mut state.0, move || StateInner {
uart,
phantom: PhantomData,
tx: RingBuffer::new(tx_buffer),
tx_waker: WakerRegistration::new(),
@ -383,7 +492,7 @@ mod buffered {
Self: 'd,
{
fn on_rx(&mut self) {
let r = self.uart.inner.regs();
let r = T::regs();
unsafe {
let sr = sr(r).read();
clear_interrupt_flags(r, sr);
@ -425,7 +534,7 @@ mod buffered {
}
fn on_tx(&mut self) {
let r = self.uart.inner.regs();
let r = T::regs();
unsafe {
if sr(r).read().txe() {
let buf = self.tx.pop_buf();
@ -575,7 +684,7 @@ unsafe fn clear_interrupt_flags(r: crate::pac::usart::Usart, sr: regs::Ixr) {
pub(crate) mod sealed {
pub trait Instance {
fn regs(&self) -> crate::pac::usart::Usart;
fn regs() -> crate::pac::usart::Usart;
}
}
@ -595,7 +704,7 @@ dma_trait!(RxDma, Instance);
foreach_interrupt!(
($inst:ident, usart, $block:ident, $signal_name:ident, $irq:ident) => {
impl sealed::Instance for peripherals::$inst {
fn regs(&self) -> crate::pac::usart::Usart {
fn regs() -> crate::pac::usart::Usart {
crate::pac::$inst
}
}

View file

@ -0,0 +1,67 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
#[path = "../example_common.rs"]
mod example_common;
use embassy::blocking_mutex::raw::NoopRawMutex;
use embassy::channel::mpsc::{self, Channel, Sender};
use embassy::executor::Spawner;
use embassy::util::Forever;
use embassy_stm32::dma::NoDma;
use embassy_stm32::{
peripherals::{DMA1_CH1, UART7},
usart::{Config, Uart, UartRx},
Peripherals,
};
use example_common::*;
#[embassy::task]
async fn writer(mut usart: Uart<'static, UART7, NoDma, NoDma>) {
unwrap!(usart.blocking_write(b"Hello Embassy World!\r\n"));
info!("wrote Hello, starting echo");
let mut buf = [0u8; 1];
loop {
unwrap!(usart.blocking_read(&mut buf));
unwrap!(usart.blocking_write(&buf));
}
}
static CHANNEL: Forever<Channel<NoopRawMutex, [u8; 8], 1>> = Forever::new();
#[embassy::main]
async fn main(spawner: Spawner, p: Peripherals) -> ! {
info!("Hello World!");
let config = Config::default();
let mut usart = Uart::new(p.UART7, p.PF6, p.PF7, p.DMA1_CH0, p.DMA1_CH1, config);
unwrap!(usart.blocking_write(b"Type 8 chars to echo!\r\n"));
let (mut tx, rx) = usart.split();
let c = CHANNEL.put(Channel::new());
let (s, mut r) = mpsc::split(c);
unwrap!(spawner.spawn(reader(rx, s)));
loop {
if let Some(buf) = r.recv().await {
info!("writing...");
unwrap!(tx.write(&buf).await);
}
}
}
#[embassy::task]
async fn reader(
mut rx: UartRx<'static, UART7, DMA1_CH1>,
s: Sender<'static, NoopRawMutex, [u8; 8], 1>,
) {
let mut buf = [0; 8];
loop {
info!("reading...");
unwrap!(rx.read(&mut buf).await);
unwrap!(s.send(buf).await);
}
}