Add embassy-boot

Embassy-boot is a simple bootloader that works together with an
application to provide firmware update capabilities with a minimal risk.

The bootloader consists of a platform-independent part, which implements
the swap algorithm, and a platform-dependent part (currently only for
nRF) that provides addition functionality such as watchdog timers
softdevice support.
This commit is contained in:
Ulf Lilleengen 2022-01-24 12:54:09 +01:00 committed by Ulf Lilleengen
parent d91bd0b9a6
commit ed2a87a262
22 changed files with 1705 additions and 0 deletions

View file

@ -0,0 +1,23 @@
[package]
authors = [
"Ulf Lilleengen <lulf@redhat.com>",
]
edition = "2018"
name = "embassy-boot"
version = "0.1.0"
description = "Bootloader using Embassy"
[lib]
[dependencies]
defmt = { version = "0.3", optional = true }
log = { version = "0.4", optional = true }
embassy = { path = "../../embassy", default-features = false }
embedded-storage = "0.3.0"
embedded-storage-async = "0.3.0"
[dev-dependencies]
log = "0.4"
env_logger = "0.9"
rand = "0.8"
futures = { version = "0.3", features = ["executor"] }

View file

@ -0,0 +1,225 @@
#![macro_use]
#![allow(unused_macros)]
#[cfg(all(feature = "defmt", feature = "log"))]
compile_error!("You may not enable both `defmt` and `log` features.");
macro_rules! assert {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::assert!($($x)*);
#[cfg(feature = "defmt")]
::defmt::assert!($($x)*);
}
};
}
macro_rules! assert_eq {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::assert_eq!($($x)*);
#[cfg(feature = "defmt")]
::defmt::assert_eq!($($x)*);
}
};
}
macro_rules! assert_ne {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::assert_ne!($($x)*);
#[cfg(feature = "defmt")]
::defmt::assert_ne!($($x)*);
}
};
}
macro_rules! debug_assert {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::debug_assert!($($x)*);
#[cfg(feature = "defmt")]
::defmt::debug_assert!($($x)*);
}
};
}
macro_rules! debug_assert_eq {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::debug_assert_eq!($($x)*);
#[cfg(feature = "defmt")]
::defmt::debug_assert_eq!($($x)*);
}
};
}
macro_rules! debug_assert_ne {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::debug_assert_ne!($($x)*);
#[cfg(feature = "defmt")]
::defmt::debug_assert_ne!($($x)*);
}
};
}
macro_rules! todo {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::todo!($($x)*);
#[cfg(feature = "defmt")]
::defmt::todo!($($x)*);
}
};
}
macro_rules! unreachable {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::unreachable!($($x)*);
#[cfg(feature = "defmt")]
::defmt::unreachable!($($x)*);
}
};
}
macro_rules! panic {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::panic!($($x)*);
#[cfg(feature = "defmt")]
::defmt::panic!($($x)*);
}
};
}
macro_rules! trace {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::trace!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::trace!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! debug {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::debug!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::debug!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! info {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::info!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::info!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! warn {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::warn!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::warn!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! error {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::error!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::error!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
#[cfg(feature = "defmt")]
macro_rules! unwrap {
($($x:tt)*) => {
::defmt::unwrap!($($x)*)
};
}
#[cfg(not(feature = "defmt"))]
macro_rules! unwrap {
($arg:expr) => {
match $crate::fmt::Try::into_result($arg) {
::core::result::Result::Ok(t) => t,
::core::result::Result::Err(e) => {
::core::panic!("unwrap of `{}` failed: {:?}", ::core::stringify!($arg), e);
}
}
};
($arg:expr, $($msg:expr),+ $(,)? ) => {
match $crate::fmt::Try::into_result($arg) {
::core::result::Result::Ok(t) => t,
::core::result::Result::Err(e) => {
::core::panic!("unwrap of `{}` failed: {}: {:?}", ::core::stringify!($arg), ::core::format_args!($($msg,)*), e);
}
}
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct NoneError;
pub trait Try {
type Ok;
type Error;
fn into_result(self) -> Result<Self::Ok, Self::Error>;
}
impl<T> Try for Option<T> {
type Ok = T;
type Error = NoneError;
#[inline]
fn into_result(self) -> Result<T, NoneError> {
self.ok_or(NoneError)
}
}
impl<T, E> Try for Result<T, E> {
type Ok = T;
type Error = E;
#[inline]
fn into_result(self) -> Self {
self
}
}

View file

@ -0,0 +1,550 @@
#![feature(type_alias_impl_trait)]
#![feature(generic_associated_types)]
#![no_std]
///! embassy-boot is a bootloader and firmware updater for embedded devices with flash
///! storage implemented using embedded-storage
///!
///! The bootloader works in conjunction with the firmware application, and only has the
///! ability to manage two flash banks with an active and a updatable part. It implements
///! a swap algorithm that is power-failure safe, and allows reverting to the previous
///! version of the firmware, should the application crash and fail to mark itself as booted.
///!
///! This library is intended to be used by platform-specific bootloaders, such as embassy-boot-nrf,
///! which defines the limits and flash type for that particular platform.
///!
mod fmt;
use embedded_storage::nor_flash::{NorFlash, ReadNorFlash};
use embedded_storage_async::nor_flash::AsyncNorFlash;
pub const BOOT_MAGIC: u32 = 0xD00DF00D;
pub const SWAP_MAGIC: u32 = 0xF00FDAAD;
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct Partition {
pub from: usize,
pub to: usize,
}
impl Partition {
pub const fn new(from: usize, to: usize) -> Self {
Self { from, to }
}
pub const fn len(&self) -> usize {
self.to - self.from
}
}
#[derive(PartialEq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum State {
Boot,
Swap,
}
#[derive(PartialEq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum BootError<E> {
Flash(E),
BadMagic,
}
impl<E> From<E> for BootError<E> {
fn from(error: E) -> Self {
BootError::Flash(error)
}
}
/// BootLoader works with any flash implementing embedded_storage and can also work with
/// different page sizes.
pub struct BootLoader<const PAGE_SIZE: usize> {
// Page with current state of bootloader. The state partition has the following format:
// | Range | Description |
// | 0 - 4 | Magic indicating bootloader state. BOOT_MAGIC means boot, SWAP_MAGIC means swap. |
// | 4 - N | Progress index used while swapping or reverting |
state: Partition,
// Location of the partition which will be booted from
active: Partition,
// Location of the partition which will be swapped in when requested
dfu: Partition,
}
impl<const PAGE_SIZE: usize> BootLoader<PAGE_SIZE> {
pub fn new(active: Partition, dfu: Partition, state: Partition) -> Self {
assert_eq!(active.len() % PAGE_SIZE, 0);
assert_eq!(dfu.len() % PAGE_SIZE, 0);
// DFU partition must have an extra page
assert!(dfu.len() - active.len() >= PAGE_SIZE);
// Ensure we have enough progress pages to store copy progress
assert!(active.len() / PAGE_SIZE >= (state.len() - 4) / PAGE_SIZE);
Self { active, dfu, state }
}
pub fn boot_address(&self) -> usize {
self.active.from
}
/// Perform necessary boot preparations like swapping images.
///
/// The DFU partition is assumed to be 1 page bigger than the active partition for the swap
/// algorithm to work correctly.
///
/// SWAPPING
///
/// Assume a flash size of 3 pages for the active partition, and 4 pages for the DFU partition.
/// The swap index contains the copy progress, as to allow continuation of the copy process on
/// power failure. The index counter is represented within 1 or more pages (depending on total
/// flash size), where a page X is considered swapped if index at location (X + WRITE_SIZE)
/// contains a zero value. This ensures that index updates can be performed atomically and
/// avoid a situation where the wrong index value is set (page write size is "atomic").
///
/// +-----------+------------+--------+--------+--------+--------+
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+------------+--------+--------+--------+--------+
/// | Active | 0 | 1 | 2 | 3 | - |
/// | DFU | 0 | 3 | 2 | 1 | X |
/// +-----------+-------+--------+--------+--------+--------+
///
/// The algorithm starts by copying 'backwards', and after the first step, the layout is
/// as follows:
///
/// +-----------+------------+--------+--------+--------+--------+
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+------------+--------+--------+--------+--------+
/// | Active | 1 | 1 | 2 | 1 | - |
/// | DFU | 1 | 3 | 2 | 1 | 3 |
/// +-----------+------------+--------+--------+--------+--------+
///
/// The next iteration performs the same steps
///
/// +-----------+------------+--------+--------+--------+--------+
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+------------+--------+--------+--------+--------+
/// | Active | 2 | 1 | 2 | 1 | - |
/// | DFU | 2 | 3 | 2 | 2 | 3 |
/// +-----------+------------+--------+--------+--------+--------+
///
/// And again until we're done
///
/// +-----------+------------+--------+--------+--------+--------+
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+------------+--------+--------+--------+--------+
/// | Active | 3 | 3 | 2 | 1 | - |
/// | DFU | 3 | 3 | 1 | 2 | 3 |
/// +-----------+------------+--------+--------+--------+--------+
///
/// REVERTING
///
/// The reverting algorithm uses the swap index to discover that images were swapped, but that
/// the application failed to mark the boot successful. In this case, the revert algorithm will
/// run.
///
/// The revert index is located separately from the swap index, to ensure that revert can continue
/// on power failure.
///
/// The revert algorithm works forwards, by starting copying into the 'unused' DFU page at the start.
///
/// +-----------+--------------+--------+--------+--------+--------+
/// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 |
//*/
/// +-----------+--------------+--------+--------+--------+--------+
/// | Active | 3 | 1 | 2 | 1 | - |
/// | DFU | 3 | 3 | 1 | 2 | 3 |
/// +-----------+--------------+--------+--------+--------+--------+
///
///
/// +-----------+--------------+--------+--------+--------+--------+
/// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+--------------+--------+--------+--------+--------+
/// | Active | 3 | 1 | 2 | 1 | - |
/// | DFU | 3 | 3 | 2 | 2 | 3 |
/// +-----------+--------------+--------+--------+--------+--------+
///
/// +-----------+--------------+--------+--------+--------+--------+
/// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+--------------+--------+--------+--------+--------+
/// | Active | 3 | 1 | 2 | 3 | - |
/// | DFU | 3 | 3 | 2 | 1 | 3 |
/// +-----------+--------------+--------+--------+--------+--------+
///
pub fn prepare_boot<F: NorFlash + ReadNorFlash>(
&mut self,
flash: &mut F,
) -> Result<State, BootError<F::Error>> {
// Copy contents from partition N to active
let state = self.read_state(flash)?;
match state {
State::Swap => {
//
// Check if we already swapped. If we're in the swap state, this means we should revert
// since the app has failed to mark boot as successful
//
if !self.is_swapped(flash)? {
trace!("Swapping");
self.swap(flash)?;
} else {
trace!("Reverting");
self.revert(flash)?;
// Overwrite magic and reset progress
flash.write(self.state.from as u32, &[0, 0, 0, 0])?;
flash.erase(self.state.from as u32, self.state.to as u32)?;
flash.write(self.state.from as u32, &BOOT_MAGIC.to_le_bytes())?;
}
}
_ => {}
}
Ok(state)
}
fn is_swapped<F: ReadNorFlash>(&mut self, flash: &mut F) -> Result<bool, F::Error> {
let page_count = self.active.len() / PAGE_SIZE;
let progress = self.current_progress(flash)?;
Ok(progress >= page_count * 2)
}
fn current_progress<F: ReadNorFlash>(&mut self, flash: &mut F) -> Result<usize, F::Error> {
let max_index = ((self.state.len() - 4) / 4) - 1;
for i in 0..max_index {
let mut buf: [u8; 4] = [0; 4];
flash.read((self.state.from + 4 + i * 4) as u32, &mut buf)?;
if buf == [0xFF, 0xFF, 0xFF, 0xFF] {
return Ok(i);
}
}
Ok(max_index)
}
fn update_progress<F: NorFlash>(&mut self, idx: usize, flash: &mut F) -> Result<(), F::Error> {
let w = self.state.from + 4 + idx * 4;
flash.write(w as u32, &[0, 0, 0, 0])?;
Ok(())
}
fn active_addr(&self, n: usize) -> usize {
self.active.from + n * PAGE_SIZE
}
fn dfu_addr(&self, n: usize) -> usize {
self.dfu.from + n * PAGE_SIZE
}
fn copy_page_once<F: NorFlash + ReadNorFlash>(
&mut self,
idx: usize,
from: usize,
to: usize,
flash: &mut F,
) -> Result<(), F::Error> {
let mut buf: [u8; PAGE_SIZE] = [0; PAGE_SIZE];
if self.current_progress(flash)? <= idx {
flash.read(from as u32, &mut buf)?;
flash.erase(to as u32, (to + PAGE_SIZE) as u32)?;
flash.write(to as u32, &buf)?;
self.update_progress(idx, flash)?;
}
Ok(())
}
fn swap<F: NorFlash + ReadNorFlash>(&mut self, flash: &mut F) -> Result<(), F::Error> {
let page_count = self.active.len() / PAGE_SIZE;
// trace!("Page count: {}", page_count);
for page in 0..page_count {
// Copy active page to the 'next' DFU page.
let active_page = self.active_addr(page_count - 1 - page);
let dfu_page = self.dfu_addr(page_count - page);
// info!("Copy active {} to dfu {}", active_page, dfu_page);
self.copy_page_once(page * 2, active_page, dfu_page, flash)?;
// Copy DFU page to the active page
let active_page = self.active_addr(page_count - 1 - page);
let dfu_page = self.dfu_addr(page_count - 1 - page);
//info!("Copy dfy {} to active {}", dfu_page, active_page);
self.copy_page_once(page * 2 + 1, dfu_page, active_page, flash)?;
}
Ok(())
}
fn revert<F: NorFlash + ReadNorFlash>(&mut self, flash: &mut F) -> Result<(), F::Error> {
let page_count = self.active.len() / PAGE_SIZE;
for page in 0..page_count {
// Copy the bad active page to the DFU page
let active_page = self.active_addr(page);
let dfu_page = self.dfu_addr(page);
self.copy_page_once(page_count * 2 + page * 2, active_page, dfu_page, flash)?;
// Copy the DFU page back to the active page
let active_page = self.active_addr(page);
let dfu_page = self.dfu_addr(page + 1);
self.copy_page_once(page_count * 2 + page * 2 + 1, dfu_page, active_page, flash)?;
}
Ok(())
}
fn read_state<F: ReadNorFlash>(&mut self, flash: &mut F) -> Result<State, BootError<F::Error>> {
let mut magic: [u8; 4] = [0; 4];
flash.read(self.state.from as u32, &mut magic)?;
match u32::from_le_bytes(magic) {
SWAP_MAGIC => Ok(State::Swap),
_ => Ok(State::Boot),
}
}
}
/// FirmwareUpdater is an application API for interacting with the BootLoader without the ability to
/// 'mess up' the internal bootloader state
pub struct FirmwareUpdater {
state: Partition,
dfu: Partition,
}
impl FirmwareUpdater {
pub const fn new(dfu: Partition, state: Partition) -> Self {
Self { dfu, state }
}
/// Return the length of the DFU area
pub fn firmware_len(&self) -> usize {
self.dfu.len()
}
/// Instruct bootloader that DFU should commence at next boot.
pub async fn mark_update<F: AsyncNorFlash>(&mut self, flash: &mut F) -> Result<(), F::Error> {
flash.write(self.state.from as u32, &[0, 0, 0, 0]).await?;
flash
.erase(self.state.from as u32, self.state.to as u32)
.await?;
info!(
"Setting swap magic at {} to 0x{:x}, LE: 0x{:x}",
self.state.from,
&SWAP_MAGIC,
&SWAP_MAGIC.to_le_bytes()
);
flash
.write(self.state.from as u32, &SWAP_MAGIC.to_le_bytes())
.await?;
Ok(())
}
/// Mark firmware boot successfully
pub async fn mark_booted<F: AsyncNorFlash>(&mut self, flash: &mut F) -> Result<(), F::Error> {
flash.write(self.state.from as u32, &[0, 0, 0, 0]).await?;
flash
.erase(self.state.from as u32, self.state.to as u32)
.await?;
flash
.write(self.state.from as u32, &BOOT_MAGIC.to_le_bytes())
.await?;
Ok(())
}
// Write to a region of the DFU page
pub async fn write_firmware<F: AsyncNorFlash>(
&mut self,
offset: usize,
data: &[u8],
flash: &mut F,
) -> Result<(), F::Error> {
info!(
"Writing firmware at offset 0x{:x} len {}",
self.dfu.from + offset,
data.len()
);
flash
.erase(
(self.dfu.from + offset) as u32,
(self.dfu.from + offset + data.len()) as u32,
)
.await?;
flash.write((self.dfu.from + offset) as u32, data).await
}
}
#[cfg(test)]
mod tests {
use super::*;
use core::convert::Infallible;
use core::future::Future;
use embedded_storage_async::nor_flash::AsyncReadNorFlash;
use futures::executor::block_on;
const STATE: Partition = Partition::new(0, 4096);
const ACTIVE: Partition = Partition::new(4096, 61440);
const DFU: Partition = Partition::new(61440, 122880);
#[test]
fn test_bad_magic() {
let mut flash = MemFlash([0xff; 131072]);
let mut bootloader = BootLoader::<4096>::new(ACTIVE, DFU, STATE);
assert_eq!(
bootloader.prepare_boot(&mut flash),
Err(BootError::BadMagic)
);
}
#[test]
fn test_boot_state() {
let mut flash = MemFlash([0xff; 131072]);
flash.0[0..4].copy_from_slice(&BOOT_MAGIC.to_le_bytes());
let mut bootloader = BootLoader::<4096>::new(ACTIVE, DFU, STATE);
assert_eq!(State::Boot, bootloader.prepare_boot(&mut flash).unwrap());
}
#[test]
fn test_swap_state() {
env_logger::init();
let mut flash = MemFlash([0xff; 131072]);
let original: [u8; ACTIVE.len()] = [rand::random::<u8>(); ACTIVE.len()];
let update: [u8; DFU.len()] = [rand::random::<u8>(); DFU.len()];
for i in ACTIVE.from..ACTIVE.to {
flash.0[i] = original[i - ACTIVE.from];
}
let mut bootloader = BootLoader::<4096>::new(ACTIVE, DFU, STATE);
let mut updater = FirmwareUpdater::new(DFU, STATE);
for i in (DFU.from..DFU.to).step_by(4) {
let base = i - DFU.from;
let data: [u8; 4] = [
update[base],
update[base + 1],
update[base + 2],
update[base + 3],
];
block_on(updater.write_firmware(i - DFU.from, &data, &mut flash)).unwrap();
}
block_on(updater.mark_update(&mut flash)).unwrap();
assert_eq!(State::Swap, bootloader.prepare_boot(&mut flash).unwrap());
for i in ACTIVE.from..ACTIVE.to {
assert_eq!(flash.0[i], update[i - ACTIVE.from], "Index {}", i);
}
// First DFU page is untouched
for i in DFU.from + 4096..DFU.to {
assert_eq!(flash.0[i], original[i - DFU.from - 4096], "Index {}", i);
}
// Running again should cause a revert
assert_eq!(State::Swap, bootloader.prepare_boot(&mut flash).unwrap());
for i in ACTIVE.from..ACTIVE.to {
assert_eq!(flash.0[i], original[i - ACTIVE.from], "Index {}", i);
}
// Last page is untouched
for i in DFU.from..DFU.to - 4096 {
assert_eq!(flash.0[i], update[i - DFU.from], "Index {}", i);
}
// Mark as booted
block_on(updater.mark_booted(&mut flash)).unwrap();
assert_eq!(State::Boot, bootloader.prepare_boot(&mut flash).unwrap());
}
struct MemFlash([u8; 131072]);
impl NorFlash for MemFlash {
const WRITE_SIZE: usize = 4;
const ERASE_SIZE: usize = 4096;
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
let from = from as usize;
let to = to as usize;
for i in from..to {
self.0[i] = 0xFF;
self.0[i] = 0xFF;
self.0[i] = 0xFF;
self.0[i] = 0xFF;
}
Ok(())
}
fn write(&mut self, offset: u32, data: &[u8]) -> Result<(), Self::Error> {
assert!(data.len() % 4 == 0);
assert!(offset % 4 == 0);
assert!(offset as usize + data.len() < 131072);
self.0[offset as usize..offset as usize + data.len()].copy_from_slice(data);
Ok(())
}
}
impl ReadNorFlash for MemFlash {
const READ_SIZE: usize = 4;
type Error = Infallible;
fn read(&mut self, offset: u32, buf: &mut [u8]) -> Result<(), Self::Error> {
let len = buf.len();
buf[..].copy_from_slice(&self.0[offset as usize..offset as usize + len]);
Ok(())
}
fn capacity(&self) -> usize {
131072
}
}
impl AsyncReadNorFlash for MemFlash {
const READ_SIZE: usize = 4;
type Error = Infallible;
type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a;
fn read<'a>(&'a mut self, offset: usize, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
async move {
let len = buf.len();
buf[..].copy_from_slice(&self.0[offset as usize..offset as usize + len]);
Ok(())
}
}
fn capacity(&self) -> usize {
131072
}
}
impl AsyncNorFlash for MemFlash {
const WRITE_SIZE: usize = 4;
const ERASE_SIZE: usize = 4096;
type EraseFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a;
fn erase<'a>(&'a mut self, from: u32, to: u32) -> Self::EraseFuture<'a> {
async move {
let from = from as usize;
let to = to as usize;
for i in from..to {
self.0[i] = 0xFF;
self.0[i] = 0xFF;
self.0[i] = 0xFF;
self.0[i] = 0xFF;
}
Ok(())
}
}
type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a;
fn write<'a>(&'a mut self, offset: u32, data: &'a [u8]) -> Self::WriteFuture<'a> {
async move {
assert!(data.len() % 4 == 0);
assert!(offset % 4 == 0);
assert!(offset as usize + data.len() < 131072);
self.0[offset as usize..offset as usize + data.len()].copy_from_slice(data);
Ok(())
}
}
}
}

View file

@ -0,0 +1,18 @@
[unstable]
namespaced-features = true
build-std = ["core"]
build-std-features = ["panic_immediate_abort"]
[target.'cfg(all(target_arch = "arm", target_os = "none"))']
#runner = "./fruitrunner"
runner = "probe-run --chip nrf52840_xxAA"
rustflags = [
# Code-size optimizations.
"-Z", "trap-unreachable=no",
#"-C", "no-vectorize-loops",
"-C", "force-frame-pointers=yes",
]
[build]
target = "thumbv7em-none-eabi"

View file

@ -0,0 +1,65 @@
[package]
authors = [
"Ulf Lilleengen <lulf@redhat.com>",
]
edition = "2018"
name = "embassy-boot-nrf"
version = "0.1.0"
description = "Bootloader for nRF chips"
[dependencies]
defmt = { version = "0.3", optional = true }
defmt-rtt = { version = "0.3", optional = true }
embassy = { path = "../../embassy", default-features = false }
embassy-nrf = { path = "../../embassy-nrf", default-features = false }
embassy-boot = { path = "../boot", default-features = false }
cortex-m = { version = "0.7" }
cortex-m-rt = { version = "0.7" }
embedded-storage = "0.3.0"
embedded-storage-async = "0.3.0"
cfg-if = "1.0.0"
nrf-softdevice-mbr = { version = "0.1.0", git = "https://github.com/embassy-rs/nrf-softdevice.git", branch = "master", optional = true }
[features]
defmt = [
"dep:defmt",
"embassy-boot/defmt",
"embassy-nrf/defmt",
]
softdevice = [
"nrf-softdevice-mbr",
]
debug = ["defmt-rtt"]
[profile.dev]
debug = 2
debug-assertions = true
incremental = false
opt-level = 'z'
overflow-checks = true
[profile.release]
codegen-units = 1
debug = 2
debug-assertions = false
incremental = false
lto = 'fat'
opt-level = 'z'
overflow-checks = false
# do not optimize proc-macro crates = faster builds from scratch
[profile.dev.build-override]
codegen-units = 8
debug = false
debug-assertions = false
opt-level = 0
overflow-checks = false
[profile.release.build-override]
codegen-units = 8
debug = false
debug-assertions = false
opt-level = 0
overflow-checks = false

View file

@ -0,0 +1,11 @@
# Bootloader for nRF
The bootloader uses `embassy-boot` to interact with the flash.
# Usage
Flash the bootloader
```
cargo flash --features embassy-nrf/nrf52832 --release --chip nRF52832_xxAA
```

37
embassy-boot/nrf/build.rs Normal file
View file

@ -0,0 +1,37 @@
//! This build script copies the `memory.x` file from the crate root into
//! a directory where the linker can always find it at build time.
//! For many projects this is optional, as the linker always searches the
//! project root directory -- wherever `Cargo.toml` is. However, if you
//! are using a workspace or have a more complicated build setup, this
//! build script becomes required. Additionally, by requesting that
//! Cargo re-run the build script whenever `memory.x` is changed,
//! updating `memory.x` ensures a rebuild of the application with the
//! new memory settings.
use std::env;
use std::fs::File;
use std::io::Write;
use std::path::PathBuf;
fn main() {
// Put `memory.x` in our output directory and ensure it's
// on the linker search path.
let out = &PathBuf::from(env::var_os("OUT_DIR").unwrap());
File::create(out.join("memory.x"))
.unwrap()
.write_all(include_bytes!("memory.x"))
.unwrap();
println!("cargo:rustc-link-search={}", out.display());
// By default, Cargo will re-run a build script whenever
// any file in the project changes. By specifying `memory.x`
// here, we ensure the build script is only re-run when
// `memory.x` is changed.
println!("cargo:rerun-if-changed=memory.x");
println!("cargo:rustc-link-arg-bins=--nmagic");
println!("cargo:rustc-link-arg-bins=-Tlink.x");
if env::var("CARGO_FEATURE_DEFMT").is_ok() {
println!("cargo:rustc-link-arg-bins=-Tdefmt.x");
}
}

View file

@ -0,0 +1,18 @@
MEMORY
{
/* NOTE 1 K = 1 KiBi = 1024 bytes */
FLASH : ORIGIN = 0x00000000, LENGTH = 24K
BOOTLOADER_STATE : ORIGIN = 0x00006000, LENGTH = 4K
ACTIVE : ORIGIN = 0x00007000, LENGTH = 64K
DFU : ORIGIN = 0x00017000, LENGTH = 68K
RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 32K
}
__bootloader_state_start = ORIGIN(BOOTLOADER_STATE);
__bootloader_state_end = ORIGIN(BOOTLOADER_STATE) + LENGTH(BOOTLOADER_STATE);
__bootloader_active_start = ORIGIN(ACTIVE);
__bootloader_active_end = ORIGIN(ACTIVE) + LENGTH(ACTIVE);
__bootloader_dfu_start = ORIGIN(DFU);
__bootloader_dfu_end = ORIGIN(DFU) + LENGTH(DFU);

View file

@ -0,0 +1,31 @@
MEMORY
{
/* NOTE 1 K = 1 KiBi = 1024 bytes */
MBR : ORIGIN = 0x00000000, LENGTH = 4K
SOFTDEVICE : ORIGIN = 0x00001000, LENGTH = 155648
ACTIVE : ORIGIN = 0x00027000, LENGTH = 425984
DFU : ORIGIN = 0x0008F000, LENGTH = 430080
FLASH : ORIGIN = 0x000f9000, LENGTH = 24K
BOOTLOADER_STATE : ORIGIN = 0x000ff000, LENGTH = 4K
RAM (rwx) : ORIGIN = 0x20000008, LENGTH = 0x2fff8
uicr_bootloader_start_address (r) : ORIGIN = 0x10001014, LENGTH = 0x4
}
__bootloader_state_start = ORIGIN(BOOTLOADER_STATE);
__bootloader_state_end = ORIGIN(BOOTLOADER_STATE) + LENGTH(BOOTLOADER_STATE);
__bootloader_active_start = ORIGIN(ACTIVE);
__bootloader_active_end = ORIGIN(ACTIVE) + LENGTH(ACTIVE);
__bootloader_dfu_start = ORIGIN(DFU);
__bootloader_dfu_end = ORIGIN(DFU) + LENGTH(DFU);
__bootloader_start = ORIGIN(FLASH);
SECTIONS
{
.uicr_bootloader_start_address :
{
LONG(__bootloader_start)
} > uicr_bootloader_start_address
}

18
embassy-boot/nrf/memory.x Normal file
View file

@ -0,0 +1,18 @@
MEMORY
{
/* NOTE 1 K = 1 KiBi = 1024 bytes */
FLASH : ORIGIN = 0x00000000, LENGTH = 24K
BOOTLOADER_STATE : ORIGIN = 0x00006000, LENGTH = 4K
ACTIVE : ORIGIN = 0x00007000, LENGTH = 64K
DFU : ORIGIN = 0x00017000, LENGTH = 68K
RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 32K
}
__bootloader_state_start = ORIGIN(BOOTLOADER_STATE);
__bootloader_state_end = ORIGIN(BOOTLOADER_STATE) + LENGTH(BOOTLOADER_STATE);
__bootloader_active_start = ORIGIN(ACTIVE);
__bootloader_active_end = ORIGIN(ACTIVE) + LENGTH(ACTIVE);
__bootloader_dfu_start = ORIGIN(DFU);
__bootloader_dfu_end = ORIGIN(DFU) + LENGTH(DFU);

225
embassy-boot/nrf/src/fmt.rs Normal file
View file

@ -0,0 +1,225 @@
#![macro_use]
#![allow(unused_macros)]
#[cfg(all(feature = "defmt", feature = "log"))]
compile_error!("You may not enable both `defmt` and `log` features.");
macro_rules! assert {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::assert!($($x)*);
#[cfg(feature = "defmt")]
::defmt::assert!($($x)*);
}
};
}
macro_rules! assert_eq {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::assert_eq!($($x)*);
#[cfg(feature = "defmt")]
::defmt::assert_eq!($($x)*);
}
};
}
macro_rules! assert_ne {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::assert_ne!($($x)*);
#[cfg(feature = "defmt")]
::defmt::assert_ne!($($x)*);
}
};
}
macro_rules! debug_assert {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::debug_assert!($($x)*);
#[cfg(feature = "defmt")]
::defmt::debug_assert!($($x)*);
}
};
}
macro_rules! debug_assert_eq {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::debug_assert_eq!($($x)*);
#[cfg(feature = "defmt")]
::defmt::debug_assert_eq!($($x)*);
}
};
}
macro_rules! debug_assert_ne {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::debug_assert_ne!($($x)*);
#[cfg(feature = "defmt")]
::defmt::debug_assert_ne!($($x)*);
}
};
}
macro_rules! todo {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::todo!($($x)*);
#[cfg(feature = "defmt")]
::defmt::todo!($($x)*);
}
};
}
macro_rules! unreachable {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::unreachable!($($x)*);
#[cfg(feature = "defmt")]
::defmt::unreachable!($($x)*);
}
};
}
macro_rules! panic {
($($x:tt)*) => {
{
#[cfg(not(feature = "defmt"))]
::core::panic!($($x)*);
#[cfg(feature = "defmt")]
::defmt::panic!($($x)*);
}
};
}
macro_rules! trace {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::trace!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::trace!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! debug {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::debug!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::debug!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! info {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::info!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::info!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! warn {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::warn!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::warn!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
macro_rules! error {
($s:literal $(, $x:expr)* $(,)?) => {
{
#[cfg(feature = "log")]
::log::error!($s $(, $x)*);
#[cfg(feature = "defmt")]
::defmt::error!($s $(, $x)*);
#[cfg(not(any(feature = "log", feature="defmt")))]
let _ = ($( & $x ),*);
}
};
}
#[cfg(feature = "defmt")]
macro_rules! unwrap {
($($x:tt)*) => {
::defmt::unwrap!($($x)*)
};
}
#[cfg(not(feature = "defmt"))]
macro_rules! unwrap {
($arg:expr) => {
match $crate::fmt::Try::into_result($arg) {
::core::result::Result::Ok(t) => t,
::core::result::Result::Err(e) => {
::core::panic!("unwrap of `{}` failed: {:?}", ::core::stringify!($arg), e);
}
}
};
($arg:expr, $($msg:expr),+ $(,)? ) => {
match $crate::fmt::Try::into_result($arg) {
::core::result::Result::Ok(t) => t,
::core::result::Result::Err(e) => {
::core::panic!("unwrap of `{}` failed: {}: {:?}", ::core::stringify!($arg), ::core::format_args!($($msg,)*), e);
}
}
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct NoneError;
pub trait Try {
type Ok;
type Error;
fn into_result(self) -> Result<Self::Ok, Self::Error>;
}
impl<T> Try for Option<T> {
type Ok = T;
type Error = NoneError;
#[inline]
fn into_result(self) -> Result<T, NoneError> {
self.ok_or(NoneError)
}
}
impl<T, E> Try for Result<T, E> {
type Ok = T;
type Error = E;
#[inline]
fn into_result(self) -> Self {
self
}
}

203
embassy-boot/nrf/src/lib.rs Normal file
View file

@ -0,0 +1,203 @@
#![no_std]
#![feature(generic_associated_types)]
#![feature(type_alias_impl_trait)]
mod fmt;
pub use embassy_boot::{FirmwareUpdater, Partition, State, BOOT_MAGIC};
use embassy_nrf::{
nvmc::{Nvmc, PAGE_SIZE},
peripherals::WDT,
wdt,
};
use embedded_storage::nor_flash::{ErrorType, NorFlash, ReadNorFlash};
pub struct BootLoader {
boot: embassy_boot::BootLoader<PAGE_SIZE>,
}
impl BootLoader {
/// Create a new bootloader instance using parameters from linker script
pub fn default() -> Self {
extern "C" {
static __bootloader_state_start: u32;
static __bootloader_state_end: u32;
static __bootloader_active_start: u32;
static __bootloader_active_end: u32;
static __bootloader_dfu_start: u32;
static __bootloader_dfu_end: u32;
}
let active = unsafe {
Partition::new(
&__bootloader_active_start as *const u32 as usize,
&__bootloader_active_end as *const u32 as usize,
)
};
let dfu = unsafe {
Partition::new(
&__bootloader_dfu_start as *const u32 as usize,
&__bootloader_dfu_end as *const u32 as usize,
)
};
let state = unsafe {
Partition::new(
&__bootloader_state_start as *const u32 as usize,
&__bootloader_state_end as *const u32 as usize,
)
};
trace!("ACTIVE: 0x{:x} - 0x{:x}", active.from, active.to);
trace!("DFU: 0x{:x} - 0x{:x}", dfu.from, dfu.to);
trace!("STATE: 0x{:x} - 0x{:x}", state.from, state.to);
Self::new(active, dfu, state)
}
/// Create a new bootloader instance using the supplied partitions for active, dfu and state.
pub fn new(active: Partition, dfu: Partition, state: Partition) -> Self {
Self {
boot: embassy_boot::BootLoader::new(active, dfu, state),
}
}
/// Boots the application without softdevice mechanisms
pub fn prepare<F: NorFlash + ReadNorFlash>(&mut self, flash: &mut F) -> usize {
match self.boot.prepare_boot(flash) {
Ok(_) => self.boot.boot_address(),
Err(_) => panic!("boot prepare error!"),
}
}
#[cfg(not(feature = "softdevice"))]
pub unsafe fn load(&mut self, start: usize) -> ! {
let mut p = cortex_m::Peripherals::steal();
p.SCB.invalidate_icache();
p.SCB.vtor.write(start as u32);
cortex_m::asm::bootload(start as *const u32)
}
#[cfg(feature = "softdevice")]
pub unsafe fn load(&mut self, _app: usize) -> ! {
use nrf_softdevice_mbr as mbr;
const NRF_SUCCESS: u32 = 0;
// Address of softdevice which we'll forward interrupts to
let addr = 0x1000;
let mut cmd = mbr::sd_mbr_command_t {
command: mbr::NRF_MBR_COMMANDS_SD_MBR_COMMAND_IRQ_FORWARD_ADDRESS_SET,
params: mbr::sd_mbr_command_t__bindgen_ty_1 {
irq_forward_address_set: mbr::sd_mbr_command_irq_forward_address_set_t {
address: addr,
},
},
};
let ret = mbr::sd_mbr_command(&mut cmd);
assert_eq!(ret, NRF_SUCCESS);
let msp = *(addr as *const u32);
let rv = *((addr + 4) as *const u32);
trace!("msp = {=u32:x}, rv = {=u32:x}", msp, rv);
core::arch::asm!(
"mrs {tmp}, CONTROL",
"bics {tmp}, {spsel}",
"msr CONTROL, {tmp}",
"isb",
"msr MSP, {msp}",
"mov lr, {new_lr}",
"bx {rv}",
// `out(reg) _` is not permitted in a `noreturn` asm! call,
// so instead use `in(reg) 0` and don't restore it afterwards.
tmp = in(reg) 0,
spsel = in(reg) 2,
new_lr = in(reg) 0xFFFFFFFFu32,
msp = in(reg) msp,
rv = in(reg) rv,
options(noreturn),
);
}
}
/// A flash implementation that wraps NVMC and will pet a watchdog when touching flash.
pub struct WatchdogFlash<'d> {
flash: Nvmc<'d>,
wdt: wdt::WatchdogHandle,
}
impl<'d> WatchdogFlash<'d> {
/// Start a new watchdog with a given flash and WDT peripheral and a timeout
pub fn start(flash: Nvmc<'d>, wdt: WDT, timeout: u32) -> Self {
let mut config = wdt::Config::default();
config.timeout_ticks = 32768 * timeout; // timeout seconds
config.run_during_sleep = true;
config.run_during_debug_halt = false;
let (_wdt, [wdt]) = match wdt::Watchdog::try_new(wdt, config) {
Ok(x) => x,
Err(_) => {
// In case the watchdog is already running, just spin and let it expire, since
// we can't configure it anyway. This usually happens when we first program
// the device and the watchdog was previously active
info!("Watchdog already active with wrong config, waiting for it to timeout...");
loop {}
}
};
Self { flash, wdt }
}
}
impl<'d> ErrorType for WatchdogFlash<'d> {
type Error = <Nvmc<'d> as ErrorType>::Error;
}
impl<'d> NorFlash for WatchdogFlash<'d> {
const WRITE_SIZE: usize = <Nvmc<'d> as NorFlash>::WRITE_SIZE;
const ERASE_SIZE: usize = <Nvmc<'d> as NorFlash>::ERASE_SIZE;
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
self.wdt.pet();
self.flash.erase(from, to)
}
fn write(&mut self, offset: u32, data: &[u8]) -> Result<(), Self::Error> {
self.wdt.pet();
self.flash.write(offset, data)
}
}
impl<'d> ReadNorFlash for WatchdogFlash<'d> {
const READ_SIZE: usize = <Nvmc<'d> as ReadNorFlash>::READ_SIZE;
fn read(&mut self, offset: u32, data: &mut [u8]) -> Result<(), Self::Error> {
self.wdt.pet();
self.flash.read(offset, data)
}
fn capacity(&self) -> usize {
self.flash.capacity()
}
}
pub mod updater {
use super::*;
pub fn new() -> embassy_boot::FirmwareUpdater {
extern "C" {
static __bootloader_state_start: u32;
static __bootloader_state_end: u32;
static __bootloader_dfu_start: u32;
static __bootloader_dfu_end: u32;
}
let dfu = unsafe {
Partition::new(
&__bootloader_dfu_start as *const u32 as usize,
&__bootloader_dfu_end as *const u32 as usize,
)
};
let state = unsafe {
Partition::new(
&__bootloader_state_start as *const u32 as usize,
&__bootloader_state_end as *const u32 as usize,
)
};
embassy_boot::FirmwareUpdater::new(dfu, state)
}
}

View file

@ -0,0 +1,46 @@
#![no_std]
#![no_main]
use cortex_m_rt::{entry, exception};
#[cfg(feature = "defmt")]
use defmt_rtt as _;
use embassy_boot_nrf::*;
use embassy_nrf::nvmc::Nvmc;
#[entry]
fn main() -> ! {
let p = embassy_nrf::init(Default::default());
/*
for i in 0..10000000 {
cortex_m::asm::nop();
}
*/
let mut bl = BootLoader::default();
let start = bl.prepare(&mut WatchdogFlash::start(Nvmc::new(p.NVMC), p.WDT, 5));
unsafe { bl.load(start) }
}
#[no_mangle]
#[cfg_attr(target_os = "none", link_section = ".HardFault.user")]
unsafe extern "C" fn HardFault() {
cortex_m::peripheral::SCB::sys_reset();
}
#[exception]
unsafe fn DefaultHandler(_: i16) -> ! {
const SCB_ICSR: *const u32 = 0xE000_ED04 as *const u32;
let irqn = core::ptr::read_volatile(SCB_ICSR) as u8 as i16 - 16;
panic!("DefaultHandler #{:?}", irqn);
}
#[panic_handler]
fn panic(_info: &core::panic::PanicInfo) -> ! {
unsafe {
core::arch::asm!("udf #0");
core::hint::unreachable_unchecked();
}
}

View file

@ -11,4 +11,6 @@ std = []
embedded-hal-02 = { package = "embedded-hal", version = "0.2.6", features = ["unproven"] }
embedded-hal-1 = { package = "embedded-hal", version = "1.0.0-alpha.6", git = "https://github.com/embassy-rs/embedded-hal", branch = "embassy" }
embedded-hal-async = { version = "0.0.1", git = "https://github.com/embassy-rs/embedded-hal", branch = "embassy"}
embedded-storage = "0.3.0"
embedded-storage-async = "0.3.0"
nb = "1.0.0"

View file

@ -254,3 +254,56 @@ where
async move { self.wrapped.bflush() }
}
}
/// NOR flash wrapper
use embedded_storage::nor_flash::{ErrorType, NorFlash, ReadNorFlash};
use embedded_storage_async::nor_flash::{AsyncNorFlash, AsyncReadNorFlash};
impl<T> ErrorType for BlockingAsync<T>
where
T: ErrorType,
{
type Error = T::Error;
}
impl<T> AsyncNorFlash for BlockingAsync<T>
where
T: NorFlash,
{
const WRITE_SIZE: usize = <T as NorFlash>::WRITE_SIZE;
const ERASE_SIZE: usize = <T as NorFlash>::ERASE_SIZE;
type WriteFuture<'a>
where
Self: 'a,
= impl Future<Output = Result<(), Self::Error>> + 'a;
fn write<'a>(&'a mut self, offset: u32, data: &'a [u8]) -> Self::WriteFuture<'a> {
async move { self.wrapped.write(offset, data) }
}
type EraseFuture<'a>
where
Self: 'a,
= impl Future<Output = Result<(), Self::Error>> + 'a;
fn erase<'a>(&'a mut self, from: u32, to: u32) -> Self::EraseFuture<'a> {
async move { self.wrapped.erase(from, to) }
}
}
impl<T> AsyncReadNorFlash for BlockingAsync<T>
where
T: ReadNorFlash,
{
const READ_SIZE: usize = <T as ReadNorFlash>::READ_SIZE;
type ReadFuture<'a>
where
Self: 'a,
= impl Future<Output = Result<(), Self::Error>> + 'a;
fn read<'a>(&'a mut self, address: u32, data: &'a mut [u8]) -> Self::ReadFuture<'a> {
async move { self.wrapped.read(address, data) }
}
fn capacity(&self) -> usize {
self.wrapped.capacity()
}
}

View file

@ -0,0 +1,7 @@
[unstable]
namespaced-features = true
build-std = ["core"]
build-std-features = ["panic_immediate_abort"]
[build]
target = "thumbv7em-none-eabi"

19
examples/boot/Cargo.toml Normal file
View file

@ -0,0 +1,19 @@
[package]
authors = ["Ulf Lilleengen <lulf@redhat.com>"]
edition = "2018"
name = "embassy-boot-examples"
version = "0.1.0"
[dependencies]
embassy = { version = "0.1.0", path = "../../embassy" }
embassy-nrf = { version = "0.1.0", path = "../../embassy-nrf", features = ["time-driver-rtc1", "gpiote"] }
embassy-boot-nrf = { version = "0.1.0", path = "../../embassy-boot/nrf" }
embassy-traits = { version = "0.1.0", path = "../../embassy-traits" }
defmt = { version = "0.3", optional = true }
defmt-rtt = { version = "0.3", optional = true }
panic-reset = { version = "0.1.1" }
embedded-hal = { version = "0.2.6" }
cortex-m = "0.7.3"
cortex-m-rt = "0.7.0"

31
examples/boot/README.md Normal file
View file

@ -0,0 +1,31 @@
# Examples using bootloader
Example for nRF52 demonstrating the bootloader. The example consists of application binaries, 'a'
which allows you to press a button to start the DFU process, and 'b' which is the updated
application.
## Prerequisites
* `cargo-binutils`
* `cargo-flash`
* `embassy-boot-nrf`
## Usage
```
# Flash bootloader
cargo flash --manifest-path ../../embassy-boot/nrf/Cargo.toml --release --features embassy-nrf/nrf52840 --chip nRF52840_xxAA
# Build 'b'
cargo build --release --features embassy-nrf/nrf52840 --bin b
# Generate binary for 'b'
cargo objcopy --release --features embassy-nrf/nrf52840 --bin b -- -O binary b.bin
```
# Flash `a` (which includes b.bin)
```
cargo flash --release --features embassy-nrf/nrf52840 --bin a --chip nRF52840_xxAA
```

34
examples/boot/build.rs Normal file
View file

@ -0,0 +1,34 @@
//! This build script copies the `memory.x` file from the crate root into
//! a directory where the linker can always find it at build time.
//! For many projects this is optional, as the linker always searches the
//! project root directory -- wherever `Cargo.toml` is. However, if you
//! are using a workspace or have a more complicated build setup, this
//! build script becomes required. Additionally, by requesting that
//! Cargo re-run the build script whenever `memory.x` is changed,
//! updating `memory.x` ensures a rebuild of the application with the
//! new memory settings.
use std::env;
use std::fs::File;
use std::io::Write;
use std::path::PathBuf;
fn main() {
// Put `memory.x` in our output directory and ensure it's
// on the linker search path.
let out = &PathBuf::from(env::var_os("OUT_DIR").unwrap());
File::create(out.join("memory.x"))
.unwrap()
.write_all(include_bytes!("memory.x"))
.unwrap();
println!("cargo:rustc-link-search={}", out.display());
// By default, Cargo will re-run a build script whenever
// any file in the project changes. By specifying `memory.x`
// here, we ensure the build script is only re-run when
// `memory.x` is changed.
println!("cargo:rerun-if-changed=memory.x");
println!("cargo:rustc-link-arg-bins=--nmagic");
println!("cargo:rustc-link-arg-bins=-Tlink.x");
}

14
examples/boot/memory.x Normal file
View file

@ -0,0 +1,14 @@
MEMORY
{
/* NOTE 1 K = 1 KiBi = 1024 bytes */
BOOTLOADER_STATE : ORIGIN = 0x00006000, LENGTH = 4K
FLASH : ORIGIN = 0x00007000, LENGTH = 64K
DFU : ORIGIN = 0x00017000, LENGTH = 68K
RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 32K
}
__bootloader_state_start = ORIGIN(BOOTLOADER_STATE);
__bootloader_state_end = ORIGIN(BOOTLOADER_STATE) + LENGTH(BOOTLOADER_STATE);
__bootloader_dfu_start = ORIGIN(DFU);
__bootloader_dfu_end = ORIGIN(DFU) + LENGTH(DFU);

View file

@ -0,0 +1,49 @@
#![no_std]
#![no_main]
#![macro_use]
#![feature(generic_associated_types)]
#![feature(type_alias_impl_trait)]
use embassy_boot_nrf::updater;
use embassy_nrf::{
gpio::{Input, Pull},
gpio::{Level, Output, OutputDrive},
nvmc::Nvmc,
Peripherals,
};
use embassy_traits::adapter::BlockingAsync;
use embedded_hal::digital::v2::InputPin;
use panic_reset as _;
static APP_B: &[u8] = include_bytes!("../../b.bin");
#[embassy::main]
async fn main(_s: embassy::executor::Spawner, p: Peripherals) {
let mut button = Input::new(p.P0_11, Pull::Up);
let mut led = Output::new(p.P0_13, Level::Low, OutputDrive::Standard);
//let mut led = Output::new(p.P1_10, Level::Low, OutputDrive::Standard);
//let mut button = Input::new(p.P1_02, Pull::Up);
let nvmc = Nvmc::new(p.NVMC);
let mut nvmc = BlockingAsync::new(nvmc);
loop {
button.wait_for_any_edge().await;
if button.is_low().unwrap() {
let mut updater = updater::new();
let mut offset = 0;
for chunk in APP_B.chunks(4096) {
let mut buf: [u8; 4096] = [0; 4096];
buf[..chunk.len()].copy_from_slice(chunk);
updater
.write_firmware(offset, &buf, &mut nvmc)
.await
.unwrap();
offset += chunk.len();
}
updater.mark_update(&mut nvmc).await.unwrap();
led.set_high();
cortex_m::peripheral::SCB::sys_reset();
}
}
}

View file

@ -0,0 +1,26 @@
#![no_std]
#![no_main]
#![macro_use]
#![feature(generic_associated_types)]
#![feature(type_alias_impl_trait)]
use embassy::time::{Duration, Timer};
use embassy_nrf::{
gpio::{Level, Output, OutputDrive},
Peripherals,
};
use panic_reset as _;
#[embassy::main]
async fn main(_s: embassy::executor::Spawner, p: Peripherals) {
let mut led = Output::new(p.P0_13, Level::Low, OutputDrive::Standard);
//let mut led = Output::new(p.P1_10, Level::Low, OutputDrive::Standard);
loop {
led.set_high();
Timer::after(Duration::from_millis(300)).await;
led.set_low();
Timer::after(Duration::from_millis(300)).await;
}
}