Merge pull request #44 from akiles/executor-v2

Executor API V2.
This commit is contained in:
Dario Nieuwenhuis 2021-02-03 03:47:40 +01:00 committed by GitHub
commit edca627286
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
25 changed files with 495 additions and 377 deletions

View file

@ -1,4 +1,5 @@
{ {
"rust-analyzer.assist.importMergeBehavior": "last",
"editor.formatOnSave": true, "editor.formatOnSave": true,
"rust-analyzer.cargo.allFeatures": false, "rust-analyzer.cargo.allFeatures": false,
"rust-analyzer.checkOnSave.allFeatures": false, "rust-analyzer.checkOnSave.allFeatures": false,
@ -8,4 +9,4 @@
"**/.git/subtree-cache/**": true, "**/.git/subtree-cache/**": true,
"**/target/**": true "**/target/**": true
} }
} }

View file

@ -11,21 +11,23 @@ use syn::spanned::Spanned;
struct MacroArgs { struct MacroArgs {
#[darling(default)] #[darling(default)]
pool_size: Option<usize>, pool_size: Option<usize>,
#[darling(default)]
send: bool,
} }
#[proc_macro_attribute] #[proc_macro_attribute]
pub fn task(args: TokenStream, item: TokenStream) -> TokenStream { pub fn task(args: TokenStream, item: TokenStream) -> TokenStream {
let args = syn::parse_macro_input!(args as syn::AttributeArgs); let macro_args = syn::parse_macro_input!(args as syn::AttributeArgs);
let mut task_fn = syn::parse_macro_input!(item as syn::ItemFn); let mut task_fn = syn::parse_macro_input!(item as syn::ItemFn);
let args = match MacroArgs::from_list(&args) { let macro_args = match MacroArgs::from_list(&macro_args) {
Ok(v) => v, Ok(v) => v,
Err(e) => { Err(e) => {
return TokenStream::from(e.write_errors()); return TokenStream::from(e.write_errors());
} }
}; };
let pool_size: usize = args.pool_size.unwrap_or(1); let pool_size: usize = macro_args.pool_size.unwrap_or(1);
let mut fail = false; let mut fail = false;
if task_fn.sig.asyncness.is_none() { if task_fn.sig.asyncness.is_none() {
@ -90,11 +92,16 @@ pub fn task(args: TokenStream, item: TokenStream) -> TokenStream {
let visibility = &task_fn.vis; let visibility = &task_fn.vis;
task_fn.sig.ident = format_ident!("task"); task_fn.sig.ident = format_ident!("task");
let impl_ty = if macro_args.send {
quote!(impl ::core::future::Future + Send + 'static)
} else {
quote!(impl ::core::future::Future + 'static)
};
let result = quote! { let result = quote! {
#visibility fn #name(#args) -> ::embassy::executor::SpawnToken { #visibility fn #name(#args) -> ::embassy::executor::SpawnToken<#impl_ty> {
#task_fn #task_fn
type F = impl ::core::future::Future + 'static; type F = #impl_ty;
static POOL: [::embassy::executor::Task<F>; #pool_size] = [::embassy::executor::Task::new(); #pool_size]; static POOL: [::embassy::executor::Task<F>; #pool_size] = [::embassy::executor::Task::new(); #pool_size];
unsafe { ::embassy::executor::Task::spawn(&POOL, move || task(#arg_names)) } unsafe { ::embassy::executor::Task::spawn(&POOL, move || task(#arg_names)) }
} }
@ -119,6 +126,9 @@ pub fn interrupt_declare(item: TokenStream) -> TokenStream {
let irq = Interrupt::#name; let irq = Interrupt::#name;
irq.nr() as u8 irq.nr() as u8
} }
unsafe fn steal() -> Self {
Self(())
}
unsafe fn __handler(&self) -> &'static ::embassy::interrupt::Handler { unsafe fn __handler(&self) -> &'static ::embassy::interrupt::Handler {
#[export_name = #name_handler] #[export_name = #name_handler]
static HANDLER: ::embassy::interrupt::Handler = ::embassy::interrupt::Handler::new(); static HANDLER: ::embassy::interrupt::Handler = ::embassy::interrupt::Handler::new();

View file

@ -83,11 +83,8 @@ static EXECUTOR: Forever<Executor> = Forever::new();
fn main() -> ! { fn main() -> ! {
info!("Hello World!"); info!("Hello World!");
let executor = EXECUTOR.put(Executor::new(cortex_m::asm::sev)); let executor = EXECUTOR.put(Executor::new());
unwrap!(executor.spawn(run())); executor.run(|spawner| {
unwrap!(spawner.spawn(run()));
loop { });
executor.run();
cortex_m::asm::wfe();
}
} }

View file

@ -61,14 +61,11 @@ fn main() -> ! {
unsafe { embassy::time::set_clock(rtc) }; unsafe { embassy::time::set_clock(rtc) };
let alarm = ALARM.put(rtc.alarm0()); let alarm = ALARM.put(rtc.alarm0());
let executor = EXECUTOR.put(Executor::new_with_alarm(alarm, cortex_m::asm::sev)); let executor = EXECUTOR.put(Executor::new());
executor.set_alarm(alarm);
unwrap!(executor.spawn(run1())); executor.run(|spawner| {
unwrap!(executor.spawn(run2())); unwrap!(spawner.spawn(run1()));
unwrap!(executor.spawn(run3())); unwrap!(spawner.spawn(run2()));
unwrap!(spawner.spawn(run3()));
loop { });
executor.run();
cortex_m::asm::wfe();
}
} }

View file

@ -73,11 +73,8 @@ static EXECUTOR: Forever<Executor> = Forever::new();
fn main() -> ! { fn main() -> ! {
info!("Hello World!"); info!("Hello World!");
let executor = EXECUTOR.put(Executor::new(cortex_m::asm::sev)); let executor = EXECUTOR.put(Executor::new());
unwrap!(executor.spawn(run())); executor.run(|spawner| {
unwrap!(spawner.spawn(run()));
loop { });
executor.run();
cortex_m::asm::wfe();
}
} }

View file

@ -52,11 +52,8 @@ static EXECUTOR: Forever<Executor> = Forever::new();
fn main() -> ! { fn main() -> ! {
info!("Hello World!"); info!("Hello World!");
let executor = EXECUTOR.put(Executor::new(cortex_m::asm::sev)); let executor = EXECUTOR.put(Executor::new());
unwrap!(executor.spawn(run())); executor.run(|spawner| {
unwrap!(spawner.spawn(run()));
loop { });
executor.run();
cortex_m::asm::wfe();
}
} }

View file

@ -66,9 +66,10 @@ use cortex_m_rt::entry;
use defmt::panic; use defmt::panic;
use nrf52840_hal::clocks; use nrf52840_hal::clocks;
use embassy::executor::{task, Executor}; use embassy::executor::{task, Executor, IrqExecutor};
use embassy::time::{Duration, Instant, Timer}; use embassy::time::{Duration, Instant, Timer};
use embassy::util::Forever; use embassy::util::Forever;
use embassy_nrf::interrupt::OwnedInterrupt;
use embassy_nrf::{interrupt, pac, rtc}; use embassy_nrf::{interrupt, pac, rtc};
#[task] #[task]
@ -114,12 +115,12 @@ async fn run_low() {
} }
static RTC: Forever<rtc::RTC<pac::RTC1>> = Forever::new(); static RTC: Forever<rtc::RTC<pac::RTC1>> = Forever::new();
static ALARM_HIGH: Forever<rtc::Alarm<pac::RTC1>> = Forever::new();
static EXECUTOR_HIGH: Forever<IrqExecutor<interrupt::SWI1_EGU1Interrupt>> = Forever::new();
static ALARM_MED: Forever<rtc::Alarm<pac::RTC1>> = Forever::new();
static EXECUTOR_MED: Forever<IrqExecutor<interrupt::SWI0_EGU0Interrupt>> = Forever::new();
static ALARM_LOW: Forever<rtc::Alarm<pac::RTC1>> = Forever::new(); static ALARM_LOW: Forever<rtc::Alarm<pac::RTC1>> = Forever::new();
static EXECUTOR_LOW: Forever<Executor> = Forever::new(); static EXECUTOR_LOW: Forever<Executor> = Forever::new();
static ALARM_MED: Forever<rtc::Alarm<pac::RTC1>> = Forever::new();
static EXECUTOR_MED: Forever<Executor> = Forever::new();
static ALARM_HIGH: Forever<rtc::Alarm<pac::RTC1>> = Forever::new();
static EXECUTOR_HIGH: Forever<Executor> = Forever::new();
#[entry] #[entry]
fn main() -> ! { fn main() -> ! {
@ -136,41 +137,31 @@ fn main() -> ! {
rtc.start(); rtc.start();
unsafe { embassy::time::set_clock(rtc) }; unsafe { embassy::time::set_clock(rtc) };
let alarm_low = ALARM_LOW.put(rtc.alarm0()); // High-priority executor: SWI1_EGU1, priority level 6
let executor_low = EXECUTOR_LOW.put(Executor::new_with_alarm(alarm_low, cortex_m::asm::sev)); let irq = interrupt::take!(SWI1_EGU1);
let alarm_med = ALARM_MED.put(rtc.alarm1()); irq.set_priority(interrupt::Priority::Level6);
let executor_med = EXECUTOR_MED.put(Executor::new_with_alarm(alarm_med, || { let alarm = ALARM_HIGH.put(rtc.alarm2());
NVIC::pend(interrupt::SWI0_EGU0) let executor = EXECUTOR_HIGH.put(IrqExecutor::new(irq));
})); executor.set_alarm(alarm);
let alarm_high = ALARM_HIGH.put(rtc.alarm2()); executor.start(|spawner| {
let executor_high = EXECUTOR_HIGH.put(Executor::new_with_alarm(alarm_high, || { unwrap!(spawner.spawn(run_high()));
NVIC::pend(interrupt::SWI1_EGU1) });
}));
unsafe { // Medium-priority executor: SWI0_EGU0, priority level 7
let mut nvic: NVIC = core::mem::transmute(()); let irq = interrupt::take!(SWI0_EGU0);
nvic.set_priority(interrupt::SWI0_EGU0, 7 << 5); irq.set_priority(interrupt::Priority::Level7);
nvic.set_priority(interrupt::SWI1_EGU1, 6 << 5); let alarm = ALARM_MED.put(rtc.alarm1());
NVIC::unmask(interrupt::SWI0_EGU0); let executor = EXECUTOR_MED.put(IrqExecutor::new(irq));
NVIC::unmask(interrupt::SWI1_EGU1); executor.set_alarm(alarm);
} executor.start(|spawner| {
unwrap!(spawner.spawn(run_med()));
});
unwrap!(executor_low.spawn(run_low())); // Low priority executor: runs in thread mode, using WFE/SEV
unwrap!(executor_med.spawn(run_med())); let alarm = ALARM_LOW.put(rtc.alarm0());
unwrap!(executor_high.spawn(run_high())); let executor = EXECUTOR_LOW.put(Executor::new());
executor.set_alarm(alarm);
loop { executor.run(|spawner| {
executor_low.run(); unwrap!(spawner.spawn(run_low()));
cortex_m::asm::wfe(); });
}
}
#[interrupt]
unsafe fn SWI0_EGU0() {
EXECUTOR_MED.steal().run()
}
#[interrupt]
unsafe fn SWI1_EGU1() {
EXECUTOR_HIGH.steal().run()
} }

View file

@ -124,11 +124,8 @@ static EXECUTOR: Forever<Executor> = Forever::new();
fn main() -> ! { fn main() -> ! {
info!("Hello World!"); info!("Hello World!");
let executor = EXECUTOR.put(Executor::new(cortex_m::asm::sev)); let executor = EXECUTOR.put(Executor::new());
unwrap!(executor.spawn(run())); executor.run(|spawner| {
unwrap!(spawner.spawn(run()));
loop { });
executor.run();
cortex_m::asm::wfe();
}
} }

View file

@ -53,13 +53,10 @@ fn main() -> ! {
unsafe { embassy::time::set_clock(rtc) }; unsafe { embassy::time::set_clock(rtc) };
let alarm = ALARM.put(rtc.alarm0()); let alarm = ALARM.put(rtc.alarm0());
let executor = EXECUTOR.put(Executor::new_with_alarm(alarm, cortex_m::asm::sev)); let executor = EXECUTOR.put(Executor::new());
executor.set_alarm(alarm);
unwrap!(executor.spawn(run1())); executor.run(|spawner| {
unwrap!(executor.spawn(run2())); unwrap!(spawner.spawn(run1()));
unwrap!(spawner.spawn(run2()));
loop { });
executor.run();
cortex_m::asm::wfe();
}
} }

View file

@ -38,7 +38,7 @@ fn main() -> ! {
rtc.start(); rtc.start();
alarm.set_callback(|| info!("ALARM TRIGGERED")); alarm.set_callback(|_| info!("ALARM TRIGGERED"), core::ptr::null_mut());
alarm.set(53719); alarm.set(53719);
info!("initialized!"); info!("initialized!");

View file

@ -18,7 +18,31 @@ use nrf52840_hal::clocks;
use nrf52840_hal::gpio; use nrf52840_hal::gpio;
#[task] #[task]
async fn run(mut uart: uarte::Uarte<pac::UARTE0>) { async fn run(uart: pac::UARTE0, port: pac::P0) {
// Init UART
let port0 = gpio::p0::Parts::new(port);
let pins = uarte::Pins {
rxd: port0.p0_08.into_floating_input().degrade(),
txd: port0
.p0_06
.into_push_pull_output(gpio::Level::Low)
.degrade(),
cts: None,
rts: None,
};
// NOTE(unsafe): Safe becasue we do not use `mem::forget` anywhere.
let mut uart = unsafe {
uarte::Uarte::new(
uart,
interrupt::take!(UARTE0_UART0),
pins,
uarte::Parity::EXCLUDED,
uarte::Baudrate::BAUD115200,
)
};
info!("uarte initialized!"); info!("uarte initialized!");
// Message must be in SRAM // Message must be in SRAM
@ -81,36 +105,12 @@ fn main() -> ! {
unsafe { embassy::time::set_clock(rtc) }; unsafe { embassy::time::set_clock(rtc) };
let alarm = ALARM.put(rtc.alarm0()); let alarm = ALARM.put(rtc.alarm0());
let executor = EXECUTOR.put(Executor::new_with_alarm(alarm, cortex_m::asm::sev)); let executor = EXECUTOR.put(Executor::new());
executor.set_alarm(alarm);
// Init UART let uarte0 = p.UARTE0;
let port0 = gpio::p0::Parts::new(p.P0); let p0 = p.P0;
executor.run(|spawner| {
let pins = uarte::Pins { unwrap!(spawner.spawn(run(uarte0, p0)));
rxd: port0.p0_08.into_floating_input().degrade(), });
txd: port0
.p0_06
.into_push_pull_output(gpio::Level::Low)
.degrade(),
cts: None,
rts: None,
};
// NOTE(unsafe): Safe becasue we do not use `mem::forget` anywhere.
let uart = unsafe {
uarte::Uarte::new(
p.UARTE0,
interrupt::take!(UARTE0_UART0),
pins,
uarte::Parity::EXCLUDED,
uarte::Baudrate::BAUD115200,
)
};
unwrap!(executor.spawn(run(uart)));
loop {
executor.run();
cortex_m::asm::wfe();
}
} }

View file

@ -40,7 +40,7 @@ mod test {
struct AlarmState { struct AlarmState {
timestamp: Cell<u64>, timestamp: Cell<u64>,
callback: Cell<Option<fn()>>, callback: Cell<Option<(fn(*mut ()), *mut ())>>,
} }
impl AlarmState { impl AlarmState {
@ -159,13 +159,13 @@ impl<T: Instance> RTC<T> {
alarm.timestamp.set(u64::MAX); alarm.timestamp.set(u64::MAX);
// Call after clearing alarm, so the callback can set another alarm. // Call after clearing alarm, so the callback can set another alarm.
alarm.callback.get().map(|f| f()); alarm.callback.get().map(|(f, ctx)| f(ctx));
} }
fn set_alarm_callback(&self, n: usize, callback: fn()) { fn set_alarm_callback(&self, n: usize, callback: fn(*mut ()), ctx: *mut ()) {
interrupt::free(|cs| { interrupt::free(|cs| {
let alarm = &self.alarms.borrow(cs)[n]; let alarm = &self.alarms.borrow(cs)[n];
alarm.callback.set(Some(callback)); alarm.callback.set(Some((callback, ctx)));
}) })
} }
@ -220,8 +220,8 @@ pub struct Alarm<T: Instance> {
} }
impl<T: Instance> embassy::time::Alarm for Alarm<T> { impl<T: Instance> embassy::time::Alarm for Alarm<T> {
fn set_callback(&self, callback: fn()) { fn set_callback(&self, callback: fn(*mut ()), ctx: *mut ()) {
self.rtc.set_alarm_callback(self.n, callback); self.rtc.set_alarm_callback(self.n, callback, ctx);
} }
fn set(&self, timestamp: u64) { fn set(&self, timestamp: u64) {

View file

@ -49,11 +49,8 @@ fn main() -> ! {
let dp = stm32::Peripherals::take().unwrap(); let dp = stm32::Peripherals::take().unwrap();
let cp = cortex_m::peripheral::Peripherals::take().unwrap(); let cp = cortex_m::peripheral::Peripherals::take().unwrap();
let executor = EXECUTOR.put(Executor::new(cortex_m::asm::sev)); let executor = EXECUTOR.put(Executor::new());
executor.spawn(run(dp, cp)).unwrap(); executor.run(|spawner| {
unwrap!(spawner.spawn(run(dp, cp)));
loop { });
executor.run();
//cortex_m::asm::wfe(); // wfe causes RTT to stop working on stm32
}
} }

View file

@ -59,11 +59,8 @@ fn main() -> ! {
let dp = stm32::Peripherals::take().unwrap(); let dp = stm32::Peripherals::take().unwrap();
let cp = cortex_m::peripheral::Peripherals::take().unwrap(); let cp = cortex_m::peripheral::Peripherals::take().unwrap();
let executor = EXECUTOR.put(Executor::new(cortex_m::asm::sev)); let executor = EXECUTOR.put(Executor::new());
executor.spawn(run(dp, cp)).unwrap(); executor.run(|spawner| {
unwrap!(spawner.spawn(run(dp, cp)));
loop { });
executor.run();
//cortex_m::asm::wfe(); // wfe causes RTT to stop working on stm32
}
} }

View file

@ -2,129 +2,68 @@ pub use embassy_macros::task;
use core::future::Future; use core::future::Future;
use core::marker::PhantomData; use core::marker::PhantomData;
use core::mem;
use core::pin::Pin; use core::pin::Pin;
use core::ptr;
use core::ptr::NonNull; use core::ptr::NonNull;
use core::sync::atomic::{AtomicU32, Ordering}; use core::sync::atomic::Ordering;
use core::task::{Context, Poll, Waker}; use core::task::{Context, Poll};
use core::{ use core::{mem, ptr};
cell::{Cell, UnsafeCell},
cmp::min,
};
pub mod raw;
mod run_queue; mod run_queue;
pub(crate) mod timer; pub(crate) mod timer;
mod timer_queue; mod timer_queue;
mod util; mod util;
mod waker; mod waker;
use self::run_queue::{RunQueue, RunQueueItem};
use self::timer_queue::{TimerQueue, TimerQueueItem};
use self::util::UninitCell; use self::util::UninitCell;
use crate::{ use crate::fmt::{panic, *};
fmt::{panic, *}, use crate::interrupt::OwnedInterrupt;
time::{Alarm, Instant}, use crate::time::Alarm;
};
/// Task is spawned (has a future) // repr(C) is needed to guarantee that the raw::Task is located at offset 0
pub(crate) const STATE_SPAWNED: u32 = 1 << 0; // This makes it safe to cast between raw::Task and Task pointers.
/// Task is in the executor run queue
pub(crate) const STATE_RUN_QUEUED: u32 = 1 << 1;
/// Task is in the executor timer queue
pub(crate) const STATE_TIMER_QUEUED: u32 = 1 << 2;
pub(crate) struct TaskHeader {
state: AtomicU32,
run_queue_item: RunQueueItem,
expires_at: Cell<Instant>,
timer_queue_item: TimerQueueItem,
executor: Cell<*const Executor>, // Valid if state != 0
poll_fn: UninitCell<unsafe fn(*mut TaskHeader)>, // Valid if STATE_SPAWNED
}
impl TaskHeader {
const fn new() -> Self {
Self {
state: AtomicU32::new(0),
expires_at: Cell::new(Instant::from_ticks(0)),
run_queue_item: RunQueueItem::new(),
timer_queue_item: TimerQueueItem::new(),
executor: Cell::new(ptr::null()),
poll_fn: UninitCell::uninit(),
}
}
pub(crate) unsafe fn enqueue(&self) {
let mut current = self.state.load(Ordering::Acquire);
loop {
// If already scheduled, or if not started,
if (current & STATE_RUN_QUEUED != 0) || (current & STATE_SPAWNED == 0) {
return;
}
// Mark it as scheduled
let new = current | STATE_RUN_QUEUED;
match self.state.compare_exchange_weak(
current,
new,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => break,
Err(next_current) => current = next_current,
}
}
// We have just marked the task as scheduled, so enqueue it.
let executor = &*self.executor.get();
executor.enqueue(self as *const TaskHeader as *mut TaskHeader);
}
}
// repr(C) is needed to guarantee that header is located at offset 0
// This makes it safe to cast between Header and Task pointers.
#[repr(C)] #[repr(C)]
pub struct Task<F: Future + 'static> { pub struct Task<F: Future + 'static> {
header: TaskHeader, raw: raw::Task,
future: UninitCell<F>, // Valid if STATE_SPAWNED future: UninitCell<F>, // Valid if STATE_SPAWNED
} }
impl<F: Future + 'static> Task<F> { impl<F: Future + 'static> Task<F> {
pub const fn new() -> Self { pub const fn new() -> Self {
Self { Self {
header: TaskHeader::new(), raw: raw::Task::new(),
future: UninitCell::uninit(), future: UninitCell::uninit(),
} }
} }
pub unsafe fn spawn(pool: &'static [Self], future: impl FnOnce() -> F) -> SpawnToken { pub unsafe fn spawn(pool: &'static [Self], future: impl FnOnce() -> F) -> SpawnToken<F> {
for task in pool { for task in pool {
let state = STATE_SPAWNED | STATE_RUN_QUEUED; let state = raw::STATE_SPAWNED | raw::STATE_RUN_QUEUED;
if task if task
.header .raw
.state .state
.compare_exchange(0, state, Ordering::AcqRel, Ordering::Acquire) .compare_exchange(0, state, Ordering::AcqRel, Ordering::Acquire)
.is_ok() .is_ok()
{ {
// Initialize the task // Initialize the task
task.header.poll_fn.write(Self::poll); task.raw.poll_fn.write(Self::poll);
task.future.write(future()); task.future.write(future());
return SpawnToken { return SpawnToken {
header: Some(NonNull::new_unchecked( raw_task: Some(NonNull::new_unchecked(&task.raw as *const raw::Task as _)),
&task.header as *const TaskHeader as _, phantom: PhantomData,
)),
}; };
} }
} }
return SpawnToken { header: None }; return SpawnToken {
raw_task: None,
phantom: PhantomData,
};
} }
unsafe fn poll(p: *mut TaskHeader) { unsafe fn poll(p: NonNull<raw::Task>) {
let this = &*(p as *const Task<F>); let this = &*(p.as_ptr() as *const Task<F>);
let future = Pin::new_unchecked(this.future.as_mut()); let future = Pin::new_unchecked(this.future.as_mut());
let waker = waker::from_task(p); let waker = waker::from_task(p);
@ -132,9 +71,9 @@ impl<F: Future + 'static> Task<F> {
match future.poll(&mut cx) { match future.poll(&mut cx) {
Poll::Ready(_) => { Poll::Ready(_) => {
this.future.drop_in_place(); this.future.drop_in_place();
this.header this.raw
.state .state
.fetch_and(!STATE_SPAWNED, Ordering::AcqRel); .fetch_and(!raw::STATE_SPAWNED, Ordering::AcqRel);
} }
Poll::Pending => {} Poll::Pending => {}
} }
@ -144,11 +83,12 @@ impl<F: Future + 'static> Task<F> {
unsafe impl<F: Future + 'static> Sync for Task<F> {} unsafe impl<F: Future + 'static> Sync for Task<F> {}
#[must_use = "Calling a task function does nothing on its own. You must pass the returned SpawnToken to Executor::spawn()"] #[must_use = "Calling a task function does nothing on its own. You must pass the returned SpawnToken to Executor::spawn()"]
pub struct SpawnToken { pub struct SpawnToken<F> {
header: Option<NonNull<TaskHeader>>, raw_task: Option<NonNull<raw::Task>>,
phantom: PhantomData<*mut F>,
} }
impl Drop for SpawnToken { impl<F> Drop for SpawnToken<F> {
fn drop(&mut self) { fn drop(&mut self) {
// TODO deallocate the task instead. // TODO deallocate the task instead.
panic!("SpawnToken instances may not be dropped. You must pass them to Executor::spawn()") panic!("SpawnToken instances may not be dropped. You must pass them to Executor::spawn()")
@ -161,116 +101,167 @@ pub enum SpawnError {
Busy, Busy,
} }
pub struct Executor { /// Handle to spawn tasks into an executor.
alarm: Option<&'static dyn Alarm>, ///
run_queue: RunQueue, /// This Spawner can spawn any task (Send and non-Send ones), but it can
timer_queue: TimerQueue, /// only be used in the executor thread (it is not Send itself).
signal_fn: fn(), ///
/// If you want to spawn tasks from another thread, use [SendSpawner].
pub struct Spawner {
executor: &'static raw::Executor,
not_send: PhantomData<*mut ()>, not_send: PhantomData<*mut ()>,
} }
impl Executor { impl Spawner {
pub const fn new(signal_fn: fn()) -> Self { fn new(executor: &'static raw::Executor) -> Self {
Self { Self {
alarm: None, executor,
run_queue: RunQueue::new(),
timer_queue: TimerQueue::new(),
signal_fn: signal_fn,
not_send: PhantomData,
}
}
pub const fn new_with_alarm(alarm: &'static dyn Alarm, signal_fn: fn()) -> Self {
Self {
alarm: Some(alarm),
run_queue: RunQueue::new(),
timer_queue: TimerQueue::new(),
signal_fn: signal_fn,
not_send: PhantomData, not_send: PhantomData,
} }
} }
unsafe fn enqueue(&self, item: *mut TaskHeader) { pub fn spawn<F>(&self, token: SpawnToken<F>) -> Result<(), SpawnError> {
if self.run_queue.enqueue(item) { let task = token.raw_task;
(self.signal_fn)()
}
}
/// Spawn a future on this executor.
pub fn spawn(&'static self, token: SpawnToken) -> Result<(), SpawnError> {
let header = token.header;
mem::forget(token); mem::forget(token);
match header { match task {
Some(header) => unsafe { Some(task) => {
let header = header.as_ref(); unsafe { self.executor.spawn(task) };
header.executor.set(self);
self.enqueue(header as *const _ as _);
Ok(()) Ok(())
}, }
None => Err(SpawnError::Busy), None => Err(SpawnError::Busy),
} }
} }
/// Runs the executor until the queue is empty. /// Convert this Spawner to a SendSpawner. This allows you to send the
pub fn run(&self) { /// spawner to other threads, but the spawner loses the ability to spawn
unsafe { /// non-Send tasks.
if self.alarm.is_some() { pub fn make_send(&self) -> SendSpawner {
self.timer_queue.dequeue_expired(Instant::now(), |p| { SendSpawner {
let header = &*p; executor: self.executor,
header.enqueue(); not_send: PhantomData,
});
}
self.run_queue.dequeue_all(|p| {
let header = &*p;
header.expires_at.set(Instant::MAX);
let state = header.state.fetch_and(!STATE_RUN_QUEUED, Ordering::AcqRel);
if state & STATE_SPAWNED == 0 {
// If task is not running, ignore it. This can happen in the following scenario:
// - Task gets dequeued, poll starts
// - While task is being polled, it gets woken. It gets placed in the queue.
// - Task poll finishes, returning done=true
// - RUNNING bit is cleared, but the task is already in the queue.
return;
}
// Run the task
header.poll_fn.read()(p as _);
// Enqueue or update into timer_queue
self.timer_queue.update(p);
});
// If this is in the past, set_alarm will immediately trigger the alarm,
// which will make the wfe immediately return so we do another loop iteration.
if let Some(alarm) = self.alarm {
let next_expiration = self.timer_queue.next_expiration();
alarm.set_callback(self.signal_fn);
alarm.set(next_expiration.as_ticks());
}
} }
} }
} }
pub(crate) unsafe fn register_timer(at: Instant, waker: &Waker) { /// Handle to spawn tasks into an executor from any thread.
let p = waker::task_from_waker(waker); ///
let header = &*p; /// This Spawner can be used from any thread (it implements Send and Sync, so after any task (Send and non-Send ones), but it can
let expires_at = header.expires_at.get(); /// only be used in the executor thread (it is not Send itself).
header.expires_at.set(min(expires_at, at)); ///
/// If you want to spawn tasks from another thread, use [SendSpawner].
pub struct SendSpawner {
executor: &'static raw::Executor,
not_send: PhantomData<*mut ()>,
} }
pub mod raw { unsafe impl Send for SendSpawner {}
use super::waker; unsafe impl Sync for SendSpawner {}
use core::ptr::NonNull;
use core::task::Waker;
pub fn task_from_waker(waker: &Waker) -> NonNull<()> { /// Handle to spawn tasks to an executor.
unsafe { NonNull::new_unchecked(waker::task_from_waker(waker) as *mut ()) } ///
/// This Spawner can spawn any task (Send and non-Send ones), but it can
/// only be used in the executor thread (it is not Send itself).
///
/// If you want to spawn tasks from another thread, use [SendSpawner].
impl SendSpawner {
fn new(executor: &'static raw::Executor) -> Self {
Self {
executor,
not_send: PhantomData,
}
} }
pub unsafe fn wake_task(task: NonNull<()>) { pub fn spawn<F: Send>(&self, token: SpawnToken<F>) -> Result<(), SpawnError> {
let header = &*waker::task_from_ptr(task.as_ptr()); let header = token.raw_task;
header.enqueue(); mem::forget(token);
match header {
Some(header) => {
unsafe { self.executor.spawn(header) };
Ok(())
}
None => Err(SpawnError::Busy),
}
}
}
pub struct Executor {
inner: raw::Executor,
not_send: PhantomData<*mut ()>,
}
impl Executor {
pub const fn new() -> Self {
Self {
inner: raw::Executor::new(|_| cortex_m::asm::sev(), ptr::null_mut()),
not_send: PhantomData,
}
}
pub fn set_alarm(&mut self, alarm: &'static dyn Alarm) {
self.inner.set_alarm(alarm);
}
/// Runs the executor.
///
/// This function never returns.
pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! {
init(Spawner::new(&self.inner));
loop {
unsafe { self.inner.run_queued() };
cortex_m::asm::wfe();
}
}
}
fn pend_by_number(n: u8) {
struct N(u8);
unsafe impl cortex_m::interrupt::Nr for N {
fn nr(&self) -> u8 {
self.0
}
}
cortex_m::peripheral::NVIC::pend(N(n))
}
pub struct IrqExecutor<I: OwnedInterrupt> {
irq: I,
inner: raw::Executor,
not_send: PhantomData<*mut ()>,
}
impl<I: OwnedInterrupt> IrqExecutor<I> {
pub fn new(irq: I) -> Self {
let ctx = irq.number() as *mut ();
Self {
irq,
inner: raw::Executor::new(|ctx| pend_by_number(ctx as u8), ctx),
not_send: PhantomData,
}
}
pub fn set_alarm(&mut self, alarm: &'static dyn Alarm) {
self.inner.set_alarm(alarm);
}
/// Start the executor.
///
/// `init` is called in the interrupt context, then the interrupt is
/// configured to run the executor.
pub fn start(&'static mut self, init: impl FnOnce(Spawner) + Send) {
self.irq.disable();
init(Spawner::new(&self.inner));
self.irq.set_handler(
|ctx| unsafe {
let executor = &*(ctx as *const raw::Executor);
executor.run_queued();
},
&self.inner as *const _ as _,
);
self.irq.enable();
} }
} }

154
embassy/src/executor/raw.rs Normal file
View file

@ -0,0 +1,154 @@
use core::cell::Cell;
use core::cmp::min;
use core::ptr;
use core::ptr::NonNull;
use core::sync::atomic::{AtomicU32, Ordering};
use core::task::Waker;
use super::run_queue::{RunQueue, RunQueueItem};
use super::timer_queue::{TimerQueue, TimerQueueItem};
use super::util::UninitCell;
use super::waker;
use crate::time::{Alarm, Instant};
/// Task is spawned (has a future)
pub(crate) const STATE_SPAWNED: u32 = 1 << 0;
/// Task is in the executor run queue
pub(crate) const STATE_RUN_QUEUED: u32 = 1 << 1;
/// Task is in the executor timer queue
pub(crate) const STATE_TIMER_QUEUED: u32 = 1 << 2;
pub struct Task {
pub(crate) state: AtomicU32,
pub(crate) run_queue_item: RunQueueItem,
pub(crate) expires_at: Cell<Instant>,
pub(crate) timer_queue_item: TimerQueueItem,
pub(crate) executor: Cell<*const Executor>, // Valid if state != 0
pub(crate) poll_fn: UninitCell<unsafe fn(NonNull<Task>)>, // Valid if STATE_SPAWNED
}
impl Task {
pub(crate) const fn new() -> Self {
Self {
state: AtomicU32::new(0),
expires_at: Cell::new(Instant::from_ticks(0)),
run_queue_item: RunQueueItem::new(),
timer_queue_item: TimerQueueItem::new(),
executor: Cell::new(ptr::null()),
poll_fn: UninitCell::uninit(),
}
}
pub(crate) unsafe fn enqueue(&self) {
let mut current = self.state.load(Ordering::Acquire);
loop {
// If already scheduled, or if not started,
if (current & STATE_RUN_QUEUED != 0) || (current & STATE_SPAWNED == 0) {
return;
}
// Mark it as scheduled
let new = current | STATE_RUN_QUEUED;
match self.state.compare_exchange_weak(
current,
new,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => break,
Err(next_current) => current = next_current,
}
}
// We have just marked the task as scheduled, so enqueue it.
let executor = &*self.executor.get();
executor.enqueue(self as *const Task as *mut Task);
}
}
pub(crate) struct Executor {
run_queue: RunQueue,
timer_queue: TimerQueue,
signal_fn: fn(*mut ()),
signal_ctx: *mut (),
alarm: Option<&'static dyn Alarm>,
}
impl Executor {
pub(crate) const fn new(signal_fn: fn(*mut ()), signal_ctx: *mut ()) -> Self {
Self {
run_queue: RunQueue::new(),
timer_queue: TimerQueue::new(),
signal_fn,
signal_ctx,
alarm: None,
}
}
pub(crate) fn set_alarm(&mut self, alarm: &'static dyn Alarm) {
self.alarm = Some(alarm);
}
unsafe fn enqueue(&self, item: *mut Task) {
if self.run_queue.enqueue(item) {
(self.signal_fn)(self.signal_ctx)
}
}
pub(crate) unsafe fn spawn(&'static self, task: NonNull<Task>) {
let task = task.as_ref();
task.executor.set(self);
self.enqueue(task as *const _ as _);
}
pub(crate) unsafe fn run_queued(&self) {
if self.alarm.is_some() {
self.timer_queue.dequeue_expired(Instant::now(), |p| {
p.as_ref().enqueue();
});
}
self.run_queue.dequeue_all(|p| {
let task = p.as_ref();
task.expires_at.set(Instant::MAX);
let state = task.state.fetch_and(!STATE_RUN_QUEUED, Ordering::AcqRel);
if state & STATE_SPAWNED == 0 {
// If task is not running, ignore it. This can happen in the following scenario:
// - Task gets dequeued, poll starts
// - While task is being polled, it gets woken. It gets placed in the queue.
// - Task poll finishes, returning done=true
// - RUNNING bit is cleared, but the task is already in the queue.
return;
}
// Run the task
task.poll_fn.read()(p as _);
// Enqueue or update into timer_queue
self.timer_queue.update(p);
});
// If this is in the past, set_alarm will immediately trigger the alarm,
// which will make the wfe immediately return so we do another loop iteration.
if let Some(alarm) = self.alarm {
let next_expiration = self.timer_queue.next_expiration();
alarm.set_callback(self.signal_fn, self.signal_ctx);
alarm.set(next_expiration.as_ticks());
}
}
}
pub use super::waker::task_from_waker;
pub unsafe fn wake_task(task: NonNull<Task>) {
task.as_ref().enqueue();
}
pub(crate) unsafe fn register_timer(at: Instant, waker: &Waker) {
let task = waker::task_from_waker(waker);
let task = task.as_ref();
let expires_at = task.expires_at.get();
task.expires_at.set(min(expires_at, at));
}

View file

@ -1,10 +1,11 @@
use core::ptr; use core::ptr;
use core::ptr::NonNull;
use core::sync::atomic::{AtomicPtr, Ordering}; use core::sync::atomic::{AtomicPtr, Ordering};
use super::TaskHeader; use super::raw::Task;
pub(crate) struct RunQueueItem { pub(crate) struct RunQueueItem {
next: AtomicPtr<TaskHeader>, next: AtomicPtr<Task>,
} }
impl RunQueueItem { impl RunQueueItem {
@ -27,7 +28,7 @@ impl RunQueueItem {
/// current batch is completely processed, so even if a task enqueues itself instantly (for example /// current batch is completely processed, so even if a task enqueues itself instantly (for example
/// by waking its own waker) can't prevent other tasks from running. /// by waking its own waker) can't prevent other tasks from running.
pub(crate) struct RunQueue { pub(crate) struct RunQueue {
head: AtomicPtr<TaskHeader>, head: AtomicPtr<Task>,
} }
impl RunQueue { impl RunQueue {
@ -38,7 +39,7 @@ impl RunQueue {
} }
/// Enqueues an item. Returns true if the queue was empty. /// Enqueues an item. Returns true if the queue was empty.
pub(crate) unsafe fn enqueue(&self, item: *mut TaskHeader) -> bool { pub(crate) unsafe fn enqueue(&self, item: *mut Task) -> bool {
let mut prev = self.head.load(Ordering::Acquire); let mut prev = self.head.load(Ordering::Acquire);
loop { loop {
(*item).run_queue_item.next.store(prev, Ordering::Relaxed); (*item).run_queue_item.next.store(prev, Ordering::Relaxed);
@ -54,7 +55,7 @@ impl RunQueue {
prev.is_null() prev.is_null()
} }
pub(crate) unsafe fn dequeue_all(&self, on_task: impl Fn(*mut TaskHeader)) { pub(crate) unsafe fn dequeue_all(&self, on_task: impl Fn(NonNull<Task>)) {
let mut task = self.head.swap(ptr::null_mut(), Ordering::AcqRel); let mut task = self.head.swap(ptr::null_mut(), Ordering::AcqRel);
while !task.is_null() { while !task.is_null() {
@ -62,7 +63,7 @@ impl RunQueue {
// Therefore, first read the next pointer, and only then process the task. // Therefore, first read the next pointer, and only then process the task.
let next = (*task).run_queue_item.next.load(Ordering::Relaxed); let next = (*task).run_queue_item.next.load(Ordering::Relaxed);
on_task(task); on_task(NonNull::new_unchecked(task));
task = next task = next
} }

View file

@ -3,6 +3,7 @@ use core::pin::Pin;
use core::task::{Context, Poll}; use core::task::{Context, Poll};
use futures::Stream; use futures::Stream;
use super::raw;
use crate::time::{Duration, Instant}; use crate::time::{Duration, Instant};
pub struct Timer { pub struct Timer {
@ -34,7 +35,7 @@ impl Future for Timer {
if self.yielded_once && self.expires_at <= Instant::now() { if self.yielded_once && self.expires_at <= Instant::now() {
Poll::Ready(()) Poll::Ready(())
} else { } else {
unsafe { super::register_timer(self.expires_at, cx.waker()) }; unsafe { raw::register_timer(self.expires_at, cx.waker()) };
self.yielded_once = true; self.yielded_once = true;
Poll::Pending Poll::Pending
} }
@ -66,7 +67,7 @@ impl Stream for Ticker {
self.expires_at += dur; self.expires_at += dur;
Poll::Ready(Some(())) Poll::Ready(Some(()))
} else { } else {
unsafe { super::register_timer(self.expires_at, cx.waker()) }; unsafe { raw::register_timer(self.expires_at, cx.waker()) };
Poll::Pending Poll::Pending
} }
} }

View file

@ -1,13 +1,14 @@
use core::cell::Cell; use core::cell::Cell;
use core::cmp::min;
use core::ptr;
use core::ptr::NonNull;
use core::sync::atomic::{AtomicPtr, Ordering}; use core::sync::atomic::{AtomicPtr, Ordering};
use core::{cmp::min, ptr};
use super::raw::{Task, STATE_TIMER_QUEUED};
use crate::time::Instant; use crate::time::Instant;
use super::{TaskHeader, STATE_TIMER_QUEUED};
pub(crate) struct TimerQueueItem { pub(crate) struct TimerQueueItem {
next: Cell<*mut TaskHeader>, next: Cell<*mut Task>,
} }
impl TimerQueueItem { impl TimerQueueItem {
@ -19,7 +20,7 @@ impl TimerQueueItem {
} }
pub(crate) struct TimerQueue { pub(crate) struct TimerQueue {
head: Cell<*mut TaskHeader>, head: Cell<*mut Task>,
} }
impl TimerQueue { impl TimerQueue {
@ -29,15 +30,15 @@ impl TimerQueue {
} }
} }
pub(crate) unsafe fn update(&self, p: *mut TaskHeader) { pub(crate) unsafe fn update(&self, p: NonNull<Task>) {
let header = &*p; let task = p.as_ref();
if header.expires_at.get() != Instant::MAX { if task.expires_at.get() != Instant::MAX {
let old_state = header.state.fetch_or(STATE_TIMER_QUEUED, Ordering::AcqRel); let old_state = task.state.fetch_or(STATE_TIMER_QUEUED, Ordering::AcqRel);
let is_new = old_state & STATE_TIMER_QUEUED == 0; let is_new = old_state & STATE_TIMER_QUEUED == 0;
if is_new { if is_new {
header.timer_queue_item.next.set(self.head.get()); task.timer_queue_item.next.set(self.head.get());
self.head.set(p); self.head.set(p.as_ptr());
} }
} }
} }
@ -45,18 +46,18 @@ impl TimerQueue {
pub(crate) unsafe fn next_expiration(&self) -> Instant { pub(crate) unsafe fn next_expiration(&self) -> Instant {
let mut res = Instant::MAX; let mut res = Instant::MAX;
self.retain(|p| { self.retain(|p| {
let header = &*p; let task = p.as_ref();
let expires = header.expires_at.get(); let expires = task.expires_at.get();
res = min(res, expires); res = min(res, expires);
expires != Instant::MAX expires != Instant::MAX
}); });
res res
} }
pub(crate) unsafe fn dequeue_expired(&self, now: Instant, on_task: impl Fn(*mut TaskHeader)) { pub(crate) unsafe fn dequeue_expired(&self, now: Instant, on_task: impl Fn(NonNull<Task>)) {
self.retain(|p| { self.retain(|p| {
let header = &*p; let task = p.as_ref();
if header.expires_at.get() <= now { if task.expires_at.get() <= now {
on_task(p); on_task(p);
false false
} else { } else {
@ -65,20 +66,18 @@ impl TimerQueue {
}); });
} }
pub(crate) unsafe fn retain(&self, mut f: impl FnMut(*mut TaskHeader) -> bool) { pub(crate) unsafe fn retain(&self, mut f: impl FnMut(NonNull<Task>) -> bool) {
let mut prev = &self.head; let mut prev = &self.head;
while !prev.get().is_null() { while !prev.get().is_null() {
let p = prev.get(); let p = NonNull::new_unchecked(prev.get());
let header = &*p; let task = &*p.as_ptr();
if f(p) { if f(p) {
// Skip to next // Skip to next
prev = &header.timer_queue_item.next; prev = &task.timer_queue_item.next;
} else { } else {
// Remove it // Remove it
prev.set(header.timer_queue_item.next.get()); prev.set(task.timer_queue_item.next.get());
header task.state.fetch_and(!STATE_TIMER_QUEUED, Ordering::AcqRel);
.state
.fetch_and(!STATE_TIMER_QUEUED, Ordering::AcqRel);
} }
} }
} }

View file

@ -1,7 +1,8 @@
use core::mem; use core::mem;
use core::ptr::NonNull;
use core::task::{RawWaker, RawWakerVTable, Waker}; use core::task::{RawWaker, RawWakerVTable, Waker};
use super::TaskHeader; use super::raw::Task;
const VTABLE: RawWakerVTable = RawWakerVTable::new(clone, wake, wake, drop); const VTABLE: RawWakerVTable = RawWakerVTable::new(clone, wake, wake, drop);
@ -10,26 +11,21 @@ unsafe fn clone(p: *const ()) -> RawWaker {
} }
unsafe fn wake(p: *const ()) { unsafe fn wake(p: *const ()) {
let header = &*task_from_ptr(p); (*(p as *mut Task)).enqueue()
header.enqueue();
} }
unsafe fn drop(_: *const ()) { unsafe fn drop(_: *const ()) {
// nop // nop
} }
pub(crate) unsafe fn from_task(p: *mut TaskHeader) -> Waker { pub(crate) unsafe fn from_task(p: NonNull<Task>) -> Waker {
Waker::from_raw(RawWaker::new(p as _, &VTABLE)) Waker::from_raw(RawWaker::new(p.as_ptr() as _, &VTABLE))
} }
pub(crate) unsafe fn task_from_ptr(p: *const ()) -> *mut TaskHeader { pub unsafe fn task_from_waker(waker: &Waker) -> NonNull<Task> {
p as *mut TaskHeader let hack: &WakerHack = mem::transmute(waker);
} assert_eq!(hack.vtable, &VTABLE);
NonNull::new_unchecked(hack.data as *mut Task)
pub(crate) unsafe fn task_from_waker(w: &Waker) -> *mut TaskHeader {
let w: &WakerHack = mem::transmute(w);
assert_eq!(w.vtable, &VTABLE);
task_from_ptr(w.data)
} }
struct WakerHack { struct WakerHack {

View file

@ -32,6 +32,7 @@ unsafe impl cortex_m::interrupt::Nr for NrWrap {
pub unsafe trait OwnedInterrupt { pub unsafe trait OwnedInterrupt {
type Priority: From<u8> + Into<u8> + Copy; type Priority: From<u8> + Into<u8> + Copy;
fn number(&self) -> u8; fn number(&self) -> u8;
unsafe fn steal() -> Self;
/// Implementation detail, do not use outside embassy crates. /// Implementation detail, do not use outside embassy crates.
#[doc(hidden)] #[doc(hidden)]

View file

@ -2,7 +2,6 @@
#![feature(generic_associated_types)] #![feature(generic_associated_types)]
#![feature(const_fn)] #![feature(const_fn)]
#![feature(const_fn_fn_ptr_basics)] #![feature(const_fn_fn_ptr_basics)]
#![feature(const_in_array_repeat_expressions)]
#![feature(const_option)] #![feature(const_option)]
// This mod MUST go first, so that the others see its macros. // This mod MUST go first, so that the others see its macros.

View file

@ -16,7 +16,7 @@ impl<T: Clock + ?Sized> Clock for &T {
pub trait Alarm { pub trait Alarm {
/// Sets the callback function to be called when the alarm triggers. /// Sets the callback function to be called when the alarm triggers.
/// The callback may be called from any context (interrupt or thread mode). /// The callback may be called from any context (interrupt or thread mode).
fn set_callback(&self, callback: fn()); fn set_callback(&self, callback: fn(*mut ()), ctx: *mut ());
/// Sets an alarm at the given timestamp. When the clock reaches that /// Sets an alarm at the given timestamp. When the clock reaches that
/// timestamp, the provided callback funcion will be called. /// timestamp, the provided callback funcion will be called.
@ -32,8 +32,8 @@ pub trait Alarm {
} }
impl<T: Alarm + ?Sized> Alarm for &T { impl<T: Alarm + ?Sized> Alarm for &T {
fn set_callback(&self, callback: fn()) { fn set_callback(&self, callback: fn(*mut ()), ctx: *mut ()) {
T::set_callback(self, callback); T::set_callback(self, callback, ctx);
} }
fn set(&self, timestamp: u64) { fn set(&self, timestamp: u64) {
T::set(self, timestamp); T::set(self, timestamp);

View file

@ -110,7 +110,7 @@ impl<'a, I: OwnedInterrupt> InterruptFuture<'a, I> {
}; };
if ctx as *const _ != ptr::null() { if ctx as *const _ != ptr::null() {
executor::raw::wake_task(ptr::NonNull::new_unchecked(ctx)); executor::raw::wake_task(ptr::NonNull::new_unchecked(ctx as _));
} }
NVIC::mask(NrWrap(irq)); NVIC::mask(NrWrap(irq));
@ -124,10 +124,8 @@ impl<'a, I: OwnedInterrupt> Future for InterruptFuture<'a, I> {
fn poll(self: core::pin::Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> { fn poll(self: core::pin::Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
let s = unsafe { self.get_unchecked_mut() }; let s = unsafe { self.get_unchecked_mut() };
s.interrupt.set_handler( let ctx = unsafe { executor::raw::task_from_waker(&cx.waker()).cast().as_ptr() };
Self::interrupt_handler, s.interrupt.set_handler(Self::interrupt_handler, ctx);
executor::raw::task_from_waker(&cx.waker()).cast().as_ptr(),
);
if s.interrupt.is_enabled() { if s.interrupt.is_enabled() {
Poll::Pending Poll::Pending
} else { } else {

View file

@ -3,7 +3,7 @@
set -euxo pipefail set -euxo pipefail
# embassy std # embassy std
(cd embassy; cargo build --features log,std) #(cd embassy; cargo build --features log,std)
# embassy embedded # embassy embedded
(cd embassy; cargo build --target thumbv7em-none-eabi) (cd embassy; cargo build --target thumbv7em-none-eabi)