embassy/embassy-net-wiznet/src/device.rs
2023-08-15 23:05:55 +02:00

195 lines
6.4 KiB
Rust

use core::marker::PhantomData;
use embedded_hal_async::spi::SpiDevice;
use crate::chip::Chip;
#[repr(u8)]
enum Command {
Open = 0x01,
Send = 0x20,
Receive = 0x40,
}
#[repr(u8)]
enum Interrupt {
Receive = 0b00100_u8,
}
/// Wiznet chip in MACRAW mode
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub(crate) struct WiznetDevice<C, SPI> {
spi: SPI,
_phantom: PhantomData<C>,
}
impl<C: Chip, SPI: SpiDevice> WiznetDevice<C, SPI> {
/// Create and initialize the driver
pub async fn new(spi: SPI, mac_addr: [u8; 6]) -> Result<Self, SPI::Error> {
let mut this = Self {
spi,
_phantom: PhantomData,
};
// Reset device
this.bus_write(C::COMMON_MODE, &[0x80]).await?;
// Enable interrupt pin
this.bus_write(C::COMMON_SOCKET_INTR, &[0x01]).await?;
// Enable receive interrupt
this.bus_write(C::SOCKET_INTR_MASK, &[Interrupt::Receive as u8]).await?;
// Set MAC address
this.bus_write(C::COMMON_MAC, &mac_addr).await?;
// Set the raw socket RX/TX buffer sizes.
let buf_kbs = (C::BUF_SIZE / 1024) as u8;
this.bus_write(C::SOCKET_TXBUF_SIZE, &[buf_kbs]).await?;
this.bus_write(C::SOCKET_RXBUF_SIZE, &[buf_kbs]).await?;
// MACRAW mode with MAC filtering.
this.bus_write(C::SOCKET_MODE, &[C::SOCKET_MODE_VALUE]).await?;
this.command(Command::Open).await?;
Ok(this)
}
async fn bus_read(&mut self, address: C::Address, data: &mut [u8]) -> Result<(), SPI::Error> {
C::bus_read(&mut self.spi, address, data).await
}
async fn bus_write(&mut self, address: C::Address, data: &[u8]) -> Result<(), SPI::Error> {
C::bus_write(&mut self.spi, address, data).await
}
async fn reset_interrupt(&mut self, code: Interrupt) -> Result<(), SPI::Error> {
let data = [code as u8];
self.bus_write(C::SOCKET_INTR, &data).await
}
async fn get_tx_write_ptr(&mut self) -> Result<u16, SPI::Error> {
let mut data = [0u8; 2];
self.bus_read(C::SOCKET_TX_DATA_WRITE_PTR, &mut data).await?;
Ok(u16::from_be_bytes(data))
}
async fn set_tx_write_ptr(&mut self, ptr: u16) -> Result<(), SPI::Error> {
let data = ptr.to_be_bytes();
self.bus_write(C::SOCKET_TX_DATA_WRITE_PTR, &data).await
}
async fn get_rx_read_ptr(&mut self) -> Result<u16, SPI::Error> {
let mut data = [0u8; 2];
self.bus_read(C::SOCKET_RX_DATA_READ_PTR, &mut data).await?;
Ok(u16::from_be_bytes(data))
}
async fn set_rx_read_ptr(&mut self, ptr: u16) -> Result<(), SPI::Error> {
let data = ptr.to_be_bytes();
self.bus_write(C::SOCKET_RX_DATA_READ_PTR, &data).await
}
async fn command(&mut self, command: Command) -> Result<(), SPI::Error> {
let data = [command as u8];
self.bus_write(C::SOCKET_COMMAND, &data).await
}
async fn get_rx_size(&mut self) -> Result<u16, SPI::Error> {
loop {
// Wait until two sequential reads are equal
let mut res0 = [0u8; 2];
self.bus_read(C::SOCKET_RECVD_SIZE, &mut res0).await?;
let mut res1 = [0u8; 2];
self.bus_read(C::SOCKET_RECVD_SIZE, &mut res1).await?;
if res0 == res1 {
break Ok(u16::from_be_bytes(res0));
}
}
}
async fn get_tx_free_size(&mut self) -> Result<u16, SPI::Error> {
let mut data = [0; 2];
self.bus_read(C::SOCKET_TX_FREE_SIZE, &mut data).await?;
Ok(u16::from_be_bytes(data))
}
/// Read bytes from the RX buffer.
async fn read_bytes(&mut self, read_ptr: &mut u16, buffer: &mut [u8]) -> Result<(), SPI::Error> {
if C::AUTO_WRAP {
self.bus_read(C::rx_addr(*read_ptr), buffer).await?;
} else {
let addr = *read_ptr % C::BUF_SIZE;
if addr as usize + buffer.len() <= C::BUF_SIZE as usize {
self.bus_read(C::rx_addr(addr), buffer).await?;
} else {
let n = C::BUF_SIZE - addr;
self.bus_read(C::rx_addr(addr), &mut buffer[..n as usize]).await?;
self.bus_read(C::rx_addr(0), &mut buffer[n as usize..]).await?;
}
}
*read_ptr = (*read_ptr).wrapping_add(buffer.len() as u16);
Ok(())
}
/// Read an ethernet frame from the device. Returns the number of bytes read.
pub async fn read_frame(&mut self, frame: &mut [u8]) -> Result<usize, SPI::Error> {
let rx_size = self.get_rx_size().await? as usize;
if rx_size == 0 {
return Ok(0);
}
self.reset_interrupt(Interrupt::Receive).await?;
let mut read_ptr = self.get_rx_read_ptr().await?;
// First two bytes gives the size of the received ethernet frame
let expected_frame_size: usize = {
let mut frame_bytes = [0u8; 2];
self.read_bytes(&mut read_ptr, &mut frame_bytes).await?;
u16::from_be_bytes(frame_bytes) as usize - 2
};
// Read the ethernet frame
self.read_bytes(&mut read_ptr, &mut frame[..expected_frame_size])
.await?;
// Register RX as completed
self.set_rx_read_ptr(read_ptr).await?;
self.command(Command::Receive).await?;
Ok(expected_frame_size)
}
/// Write an ethernet frame to the device. Returns number of bytes written
pub async fn write_frame(&mut self, frame: &[u8]) -> Result<usize, SPI::Error> {
while self.get_tx_free_size().await? < frame.len() as u16 {}
let write_ptr = self.get_tx_write_ptr().await?;
if C::AUTO_WRAP {
self.bus_write(C::tx_addr(write_ptr), frame).await?;
} else {
let addr = write_ptr % C::BUF_SIZE;
if addr as usize + frame.len() <= C::BUF_SIZE as usize {
self.bus_write(C::tx_addr(addr), frame).await?;
} else {
let n = C::BUF_SIZE - addr;
self.bus_write(C::tx_addr(addr), &frame[..n as usize]).await?;
self.bus_write(C::tx_addr(0), &frame[n as usize..]).await?;
}
}
self.set_tx_write_ptr(write_ptr.wrapping_add(frame.len() as u16))
.await?;
self.command(Command::Send).await?;
Ok(frame.len())
}
pub async fn is_link_up(&mut self) -> bool {
let mut link = [0];
self.bus_read(C::COMMON_PHY_CFG, &mut link).await.ok();
link[0] & 1 == 1
}
}