embassy/embassy-stm32/src/rcc/f3.rs
2024-02-12 02:19:31 +01:00

344 lines
9.9 KiB
Rust

use crate::pac::flash::vals::Latency;
pub use crate::pac::rcc::vals::{
Adcpres as AdcPllPrescaler, Hpre as AHBPrescaler, Pllmul as PllMul, Ppre as APBPrescaler, Prediv as PllPreDiv,
Sw as Sysclk,
};
use crate::pac::rcc::vals::{Pllsrc, Usbpre};
use crate::pac::{FLASH, RCC};
use crate::time::Hertz;
/// HSI speed
pub const HSI_FREQ: Hertz = Hertz(8_000_000);
#[derive(Clone, Copy, Eq, PartialEq)]
pub enum HseMode {
/// crystal/ceramic oscillator (HSEBYP=0)
Oscillator,
/// external analog clock (low swing) (HSEBYP=1)
Bypass,
}
#[derive(Clone, Copy, Eq, PartialEq)]
pub struct Hse {
/// HSE frequency.
pub freq: Hertz,
/// HSE mode.
pub mode: HseMode,
}
#[derive(Clone, Copy, Eq, PartialEq)]
pub enum PllSource {
HSE,
HSI,
}
#[derive(Clone, Copy)]
pub struct Pll {
pub src: PllSource,
/// PLL pre-divider.
///
/// On some F3 chips, this must be 2 if `src == HSI`. Init will panic if this is not the case.
pub prediv: PllPreDiv,
/// PLL multiplication factor.
pub mul: PllMul,
}
#[derive(Clone, Copy)]
pub enum AdcClockSource {
Pll(AdcPllPrescaler),
Hclk(AdcHclkPrescaler),
}
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum AdcHclkPrescaler {
Div1,
Div2,
Div4,
}
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum HrtimClockSource {
BusClk,
PllClk,
}
/// Clocks configutation
#[non_exhaustive]
pub struct Config {
pub hsi: bool,
pub hse: Option<Hse>,
pub sys: Sysclk,
pub pll: Option<Pll>,
pub ahb_pre: AHBPrescaler,
pub apb1_pre: APBPrescaler,
pub apb2_pre: APBPrescaler,
#[cfg(not(rcc_f37))]
pub adc: AdcClockSource,
#[cfg(all(not(rcc_f37), adc3_common))]
pub adc34: AdcClockSource,
#[cfg(stm32f334)]
pub hrtim: HrtimClockSource,
pub ls: super::LsConfig,
}
impl Default for Config {
fn default() -> Self {
Self {
hsi: true,
hse: None,
sys: Sysclk::HSI,
pll: None,
ahb_pre: AHBPrescaler::DIV1,
apb1_pre: APBPrescaler::DIV1,
apb2_pre: APBPrescaler::DIV1,
ls: Default::default(),
#[cfg(not(rcc_f37))]
adc: AdcClockSource::Hclk(AdcHclkPrescaler::Div1),
#[cfg(all(not(rcc_f37), adc3_common))]
adc34: AdcClockSource::Hclk(AdcHclkPrescaler::Div1),
#[cfg(stm32f334)]
hrtim: HrtimClockSource::BusClk,
}
}
}
/// Initialize and Set the clock frequencies
pub(crate) unsafe fn init(config: Config) {
// Configure HSI
let hsi = match config.hsi {
false => {
RCC.cr().modify(|w| w.set_hsion(false));
None
}
true => {
RCC.cr().modify(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
Some(HSI_FREQ)
}
};
// Configure HSE
let hse = match config.hse {
None => {
RCC.cr().modify(|w| w.set_hseon(false));
None
}
Some(hse) => {
match hse.mode {
HseMode::Bypass => assert!(max::HSE_BYP.contains(&hse.freq)),
HseMode::Oscillator => assert!(max::HSE_OSC.contains(&hse.freq)),
}
RCC.cr().modify(|w| w.set_hsebyp(hse.mode != HseMode::Oscillator));
RCC.cr().modify(|w| w.set_hseon(true));
while !RCC.cr().read().hserdy() {}
Some(hse.freq)
}
};
// Enable PLL
// RM0316: "Reserved, must be kept at reset value."
let pll = config.pll.map(|pll| {
let (src_val, src_freq) = match pll.src {
#[cfg(rcc_f3v3)]
PllSource::HSI => (Pllsrc::HSI_DIV_PREDIV, unwrap!(hsi)),
#[cfg(not(rcc_f3v3))]
PllSource::HSI => {
if pll.prediv != PllPreDiv::DIV2 {
panic!("if PLL source is HSI, PLL prediv must be 2.");
}
(Pllsrc::HSI_DIV2, unwrap!(hsi))
}
PllSource::HSE => (Pllsrc::HSE_DIV_PREDIV, unwrap!(hse)),
};
let in_freq = src_freq / pll.prediv;
assert!(max::PLL_IN.contains(&in_freq));
let out_freq = in_freq * pll.mul;
assert!(max::PLL_OUT.contains(&out_freq));
RCC.cfgr2().modify(|w| w.set_prediv(pll.prediv));
RCC.cfgr().modify(|w| {
w.set_pllmul(pll.mul);
w.set_pllsrc(src_val);
});
RCC.cr().modify(|w| w.set_pllon(true));
while !RCC.cr().read().pllrdy() {}
out_freq
});
let usb = match pll {
Some(Hertz(72_000_000)) => {
RCC.cfgr().modify(|w| w.set_usbpre(Usbpre::DIV1_5));
Some(Hertz(48_000_000))
}
Some(Hertz(48_000_000)) => {
RCC.cfgr().modify(|w| w.set_usbpre(Usbpre::DIV1));
Some(Hertz(48_000_000))
}
_ => None,
};
// Configure sysclk
let sys = match config.sys {
Sysclk::HSI => unwrap!(hsi),
Sysclk::HSE => unwrap!(hse),
Sysclk::PLL1_P => unwrap!(pll),
_ => unreachable!(),
};
let hclk = sys / config.ahb_pre;
let (pclk1, pclk1_tim) = super::util::calc_pclk(hclk, config.apb1_pre);
let (pclk2, pclk2_tim) = super::util::calc_pclk(hclk, config.apb2_pre);
assert!(max::HCLK.contains(&hclk));
assert!(max::PCLK1.contains(&pclk1));
assert!(max::PCLK2.contains(&pclk2));
// Set latency based on HCLK frquency
let latency = match hclk.0 {
..=24_000_000 => Latency::WS0,
..=48_000_000 => Latency::WS1,
_ => Latency::WS2,
};
FLASH.acr().modify(|w| {
w.set_latency(latency);
// RM0316: "The prefetch buffer must be kept on when using a prescaler
// different from 1 on the AHB clock.", "Half-cycle access cannot be
// used when there is a prescaler different from 1 on the AHB clock"
if config.ahb_pre != AHBPrescaler::DIV1 {
w.set_hlfcya(false);
w.set_prftbe(true);
}
});
// Set prescalers
// CFGR has been written before (PLL, PLL48) don't overwrite these settings
RCC.cfgr().modify(|w| {
w.set_ppre2(config.apb1_pre);
w.set_ppre1(config.apb2_pre);
w.set_hpre(config.ahb_pre);
});
// Wait for the new prescalers to kick in
// "The clocks are divided with the new prescaler factor from
// 1 to 16 AHB cycles after write"
cortex_m::asm::delay(16);
// CFGR has been written before (PLL, PLL48, clock divider) don't overwrite these settings
RCC.cfgr().modify(|w| w.set_sw(config.sys));
let rtc = config.ls.init();
#[cfg(not(rcc_f37))]
use crate::pac::adccommon::vals::Ckmode;
#[cfg(not(rcc_f37))]
let adc = match config.adc {
AdcClockSource::Pll(adcpres) => {
RCC.cfgr2().modify(|w| w.set_adc12pres(adcpres));
crate::pac::ADC_COMMON
.ccr()
.modify(|w| w.set_ckmode(Ckmode::ASYNCHRONOUS));
unwrap!(pll) / adcpres
}
AdcClockSource::Hclk(adcpres) => {
assert!(!(adcpres == AdcHclkPrescaler::Div1 && config.ahb_pre != AHBPrescaler::DIV1));
let (div, ckmode) = match adcpres {
AdcHclkPrescaler::Div1 => (1u32, Ckmode::SYNCDIV1),
AdcHclkPrescaler::Div2 => (2u32, Ckmode::SYNCDIV2),
AdcHclkPrescaler::Div4 => (4u32, Ckmode::SYNCDIV4),
};
crate::pac::ADC_COMMON.ccr().modify(|w| w.set_ckmode(ckmode));
hclk / div
}
};
#[cfg(all(not(rcc_f37), adc3_common))]
let adc34 = match config.adc34 {
AdcClockSource::Pll(adcpres) => {
RCC.cfgr2().modify(|w| w.set_adc34pres(adcpres));
crate::pac::ADC3_COMMON
.ccr()
.modify(|w| w.set_ckmode(Ckmode::ASYNCHRONOUS));
unwrap!(pll) / adcpres
}
AdcClockSource::Hclk(adcpres) => {
assert!(!(adcpres == AdcHclkPrescaler::Div1 && config.ahb_pre != AHBPrescaler::DIV1));
let (div, ckmode) = match adcpres {
AdcHclkPrescaler::Div1 => (1u32, Ckmode::SYNCDIV1),
AdcHclkPrescaler::Div2 => (2u32, Ckmode::SYNCDIV2),
AdcHclkPrescaler::Div4 => (4u32, Ckmode::SYNCDIV4),
};
crate::pac::ADC3_COMMON.ccr().modify(|w| w.set_ckmode(ckmode));
hclk / div
}
};
#[cfg(stm32f334)]
let hrtim = match config.hrtim {
// Must be configured after the bus is ready, otherwise it won't work
HrtimClockSource::BusClk => None,
HrtimClockSource::PllClk => {
use crate::pac::rcc::vals::Timsw;
// Make sure that we're using the PLL
let pll = unwrap!(pll);
assert!((pclk2 == pll) || (pclk2 * 2u32 == pll));
RCC.cfgr3().modify(|w| w.set_hrtim1sw(Timsw::PLL1_P));
Some(pll * 2u32)
}
};
set_clocks!(
hsi: hsi,
hse: hse,
pll1_p: pll,
sys: Some(sys),
pclk1: Some(pclk1),
pclk2: Some(pclk2),
pclk1_tim: Some(pclk1_tim),
pclk2_tim: Some(pclk2_tim),
hclk1: Some(hclk),
#[cfg(not(rcc_f37))]
adc: Some(adc),
#[cfg(all(not(rcc_f37), adc3_common))]
adc34: Some(adc34),
#[cfg(stm32f334)]
hrtim: hrtim,
rtc: rtc,
usb: usb,
lse: None,
);
}
mod max {
use core::ops::RangeInclusive;
use crate::time::Hertz;
pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(4_000_000)..=Hertz(32_000_000);
pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(32_000_000);
pub(crate) const HCLK: RangeInclusive<Hertz> = Hertz(0)..=Hertz(72_000_000);
pub(crate) const PCLK1: RangeInclusive<Hertz> = Hertz(0)..=Hertz(36_000_000);
pub(crate) const PCLK2: RangeInclusive<Hertz> = Hertz(0)..=Hertz(72_000_000);
pub(crate) const PLL_IN: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(24_000_000);
pub(crate) const PLL_OUT: RangeInclusive<Hertz> = Hertz(16_000_000)..=Hertz(72_000_000);
}