embassy/embassy-rp/src/i2c.rs
2023-09-10 23:01:15 +02:00

860 lines
28 KiB
Rust

use core::future;
use core::marker::PhantomData;
use core::task::Poll;
use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use pac::i2c;
use crate::gpio::sealed::Pin;
use crate::gpio::AnyPin;
use crate::interrupt::typelevel::{Binding, Interrupt};
use crate::{interrupt, pac, peripherals, Peripheral};
/// I2C error abort reason
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum AbortReason {
/// A bus operation was not acknowledged, e.g. due to the addressed device
/// not being available on the bus or the device not being ready to process
/// requests at the moment
NoAcknowledge,
/// The arbitration was lost, e.g. electrical problems with the clock signal
ArbitrationLoss,
/// Transmit ended with data still in fifo
TxNotEmpty(u16),
Other(u32),
}
/// I2C error
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// I2C abort with error
Abort(AbortReason),
/// User passed in a read buffer that was 0 length
InvalidReadBufferLength,
/// User passed in a write buffer that was 0 length
InvalidWriteBufferLength,
/// Target i2c address is out of range
AddressOutOfRange(u16),
/// Target i2c address is reserved
AddressReserved(u16),
}
#[non_exhaustive]
#[derive(Copy, Clone)]
pub struct Config {
pub frequency: u32,
}
impl Default for Config {
fn default() -> Self {
Self { frequency: 100_000 }
}
}
pub const FIFO_SIZE: u8 = 16;
pub struct I2c<'d, T: Instance, M: Mode> {
phantom: PhantomData<(&'d mut T, M)>,
}
impl<'d, T: Instance> I2c<'d, T, Blocking> {
pub fn new_blocking(
peri: impl Peripheral<P = T> + 'd,
scl: impl Peripheral<P = impl SclPin<T>> + 'd,
sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
config: Config,
) -> Self {
into_ref!(scl, sda);
Self::new_inner(peri, scl.map_into(), sda.map_into(), config)
}
}
impl<'d, T: Instance> I2c<'d, T, Async> {
pub fn new_async(
peri: impl Peripheral<P = T> + 'd,
scl: impl Peripheral<P = impl SclPin<T>> + 'd,
sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
_irq: impl Binding<T::Interrupt, InterruptHandler<T>>,
config: Config,
) -> Self {
into_ref!(scl, sda);
let i2c = Self::new_inner(peri, scl.map_into(), sda.map_into(), config);
let r = T::regs();
// mask everything initially
r.ic_intr_mask().write_value(i2c::regs::IcIntrMask(0));
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
i2c
}
/// Calls `f` to check if we are ready or not.
/// If not, `g` is called once the waker is set (to eg enable the required interrupts).
async fn wait_on<F, U, G>(&mut self, mut f: F, mut g: G) -> U
where
F: FnMut(&mut Self) -> Poll<U>,
G: FnMut(&mut Self),
{
future::poll_fn(|cx| {
let r = f(self);
if r.is_pending() {
T::waker().register(cx.waker());
g(self);
}
r
})
.await
}
async fn read_async_internal(&mut self, buffer: &mut [u8], restart: bool, send_stop: bool) -> Result<(), Error> {
if buffer.is_empty() {
return Err(Error::InvalidReadBufferLength);
}
let p = T::regs();
let mut remaining = buffer.len();
let mut remaining_queue = buffer.len();
let mut abort_reason = Ok(());
while remaining > 0 {
// Waggle SCK - basically the same as write
let tx_fifo_space = Self::tx_fifo_capacity();
let mut batch = 0;
debug_assert!(remaining_queue > 0);
for _ in 0..remaining_queue.min(tx_fifo_space as usize) {
remaining_queue -= 1;
let last = remaining_queue == 0;
batch += 1;
p.ic_data_cmd().write(|w| {
w.set_restart(restart && remaining_queue == buffer.len() - 1);
w.set_stop(last && send_stop);
w.set_cmd(true);
});
}
// We've either run out of txfifo or just plain finished setting up
// the clocks for the message - either way we need to wait for rx
// data.
debug_assert!(batch > 0);
let res = self
.wait_on(
|me| {
let rxfifo = Self::rx_fifo_len();
if let Err(abort_reason) = me.read_and_clear_abort_reason() {
Poll::Ready(Err(abort_reason))
} else if rxfifo >= batch {
Poll::Ready(Ok(rxfifo))
} else {
Poll::Pending
}
},
|_me| {
// Set the read threshold to the number of bytes we're
// expecting so we don't get spurious interrupts.
p.ic_rx_tl().write(|w| w.set_rx_tl(batch - 1));
p.ic_intr_mask().modify(|w| {
w.set_m_rx_full(true);
w.set_m_tx_abrt(true);
});
},
)
.await;
match res {
Err(reason) => {
abort_reason = Err(reason);
break;
}
Ok(rxfifo) => {
// Fetch things from rx fifo. We're assuming we're the only
// rxfifo reader, so nothing else can take things from it.
let rxbytes = (rxfifo as usize).min(remaining);
let received = buffer.len() - remaining;
for b in &mut buffer[received..received + rxbytes] {
*b = p.ic_data_cmd().read().dat();
}
remaining -= rxbytes;
}
};
}
self.wait_stop_det(abort_reason, send_stop).await
}
async fn write_async_internal(
&mut self,
bytes: impl IntoIterator<Item = u8>,
send_stop: bool,
) -> Result<(), Error> {
let p = T::regs();
let mut bytes = bytes.into_iter().peekable();
let res = 'xmit: loop {
let tx_fifo_space = Self::tx_fifo_capacity();
for _ in 0..tx_fifo_space {
if let Some(byte) = bytes.next() {
let last = bytes.peek().is_none();
p.ic_data_cmd().write(|w| {
w.set_stop(last && send_stop);
w.set_cmd(false);
w.set_dat(byte);
});
} else {
break 'xmit Ok(());
}
}
let res = self
.wait_on(
|me| {
if let abort_reason @ Err(_) = me.read_and_clear_abort_reason() {
Poll::Ready(abort_reason)
} else if !Self::tx_fifo_full() {
// resume if there's any space free in the tx fifo
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
},
|_me| {
// Set tx "free" threshold a little high so that we get
// woken before the fifo completely drains to minimize
// transfer stalls.
p.ic_tx_tl().write(|w| w.set_tx_tl(1));
p.ic_intr_mask().modify(|w| {
w.set_m_tx_empty(true);
w.set_m_tx_abrt(true);
})
},
)
.await;
if res.is_err() {
break res;
}
};
self.wait_stop_det(res, send_stop).await
}
/// Helper to wait for a stop bit, for both tx and rx. If we had an abort,
/// then we'll get a hardware-generated stop, otherwise wait for a stop if
/// we're expecting it.
///
/// Also handles an abort which arises while processing the tx fifo.
async fn wait_stop_det(&mut self, had_abort: Result<(), Error>, do_stop: bool) -> Result<(), Error> {
if had_abort.is_err() || do_stop {
let p = T::regs();
let had_abort2 = self
.wait_on(
|me| {
// We could see an abort while processing fifo backlog,
// so handle it here.
let abort = me.read_and_clear_abort_reason();
if had_abort.is_ok() && abort.is_err() {
Poll::Ready(abort)
} else if p.ic_raw_intr_stat().read().stop_det() {
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
},
|_me| {
p.ic_intr_mask().modify(|w| {
w.set_m_stop_det(true);
w.set_m_tx_abrt(true);
});
},
)
.await;
p.ic_clr_stop_det().read();
had_abort.and(had_abort2)
} else {
had_abort
}
}
pub async fn read_async(&mut self, addr: u16, buffer: &mut [u8]) -> Result<(), Error> {
Self::setup(addr)?;
self.read_async_internal(buffer, false, true).await
}
pub async fn write_async(&mut self, addr: u16, bytes: impl IntoIterator<Item = u8>) -> Result<(), Error> {
Self::setup(addr)?;
self.write_async_internal(bytes, true).await
}
}
pub struct InterruptHandler<T: Instance> {
_uart: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
// Mask interrupts and wake any task waiting for this interrupt
unsafe fn on_interrupt() {
let i2c = T::regs();
i2c.ic_intr_mask().write_value(pac::i2c::regs::IcIntrMask::default());
T::waker().wake();
}
}
impl<'d, T: Instance + 'd, M: Mode> I2c<'d, T, M> {
fn new_inner(
_peri: impl Peripheral<P = T> + 'd,
scl: PeripheralRef<'d, AnyPin>,
sda: PeripheralRef<'d, AnyPin>,
config: Config,
) -> Self {
into_ref!(_peri);
assert!(config.frequency <= 1_000_000);
assert!(config.frequency > 0);
let p = T::regs();
let reset = T::reset();
crate::reset::reset(reset);
crate::reset::unreset_wait(reset);
p.ic_enable().write(|w| w.set_enable(false));
// Select controller mode & speed
p.ic_con().modify(|w| {
// Always use "fast" mode (<= 400 kHz, works fine for standard
// mode too)
w.set_speed(i2c::vals::Speed::FAST);
w.set_master_mode(true);
w.set_ic_slave_disable(true);
w.set_ic_restart_en(true);
w.set_tx_empty_ctrl(true);
});
// Set FIFO watermarks to 1 to make things simpler. This is encoded
// by a register value of 0.
p.ic_tx_tl().write(|w| w.set_tx_tl(0));
p.ic_rx_tl().write(|w| w.set_rx_tl(0));
// Configure SCL & SDA pins
scl.gpio().ctrl().write(|w| w.set_funcsel(3));
sda.gpio().ctrl().write(|w| w.set_funcsel(3));
scl.pad_ctrl().write(|w| {
w.set_schmitt(true);
w.set_ie(true);
w.set_od(false);
w.set_pue(true);
w.set_pde(false);
});
sda.pad_ctrl().write(|w| {
w.set_schmitt(true);
w.set_ie(true);
w.set_od(false);
w.set_pue(true);
w.set_pde(false);
});
// Configure baudrate
// There are some subtleties to I2C timing which we are completely
// ignoring here See:
// https://github.com/raspberrypi/pico-sdk/blob/bfcbefafc5d2a210551a4d9d80b4303d4ae0adf7/src/rp2_common/hardware_i2c/i2c.c#L69
let clk_base = crate::clocks::clk_peri_freq();
let period = (clk_base + config.frequency / 2) / config.frequency;
let lcnt = period * 3 / 5; // spend 3/5 (60%) of the period low
let hcnt = period - lcnt; // and 2/5 (40%) of the period high
// Check for out-of-range divisors:
assert!(hcnt <= 0xffff);
assert!(lcnt <= 0xffff);
assert!(hcnt >= 8);
assert!(lcnt >= 8);
// Per I2C-bus specification a device in standard or fast mode must
// internally provide a hold time of at least 300ns for the SDA
// signal to bridge the undefined region of the falling edge of SCL.
// A smaller hold time of 120ns is used for fast mode plus.
let sda_tx_hold_count = if config.frequency < 1_000_000 {
// sda_tx_hold_count = clk_base [cycles/s] * 300ns * (1s /
// 1e9ns) Reduce 300/1e9 to 3/1e7 to avoid numbers that don't
// fit in uint. Add 1 to avoid division truncation.
((clk_base * 3) / 10_000_000) + 1
} else {
// fast mode plus requires a clk_base > 32MHz
assert!(clk_base >= 32_000_000);
// sda_tx_hold_count = clk_base [cycles/s] * 120ns * (1s /
// 1e9ns) Reduce 120/1e9 to 3/25e6 to avoid numbers that don't
// fit in uint. Add 1 to avoid division truncation.
((clk_base * 3) / 25_000_000) + 1
};
assert!(sda_tx_hold_count <= lcnt - 2);
p.ic_fs_scl_hcnt().write(|w| w.set_ic_fs_scl_hcnt(hcnt as u16));
p.ic_fs_scl_lcnt().write(|w| w.set_ic_fs_scl_lcnt(lcnt as u16));
p.ic_fs_spklen()
.write(|w| w.set_ic_fs_spklen(if lcnt < 16 { 1 } else { (lcnt / 16) as u8 }));
p.ic_sda_hold()
.modify(|w| w.set_ic_sda_tx_hold(sda_tx_hold_count as u16));
// Enable I2C block
p.ic_enable().write(|w| w.set_enable(true));
Self { phantom: PhantomData }
}
fn setup(addr: u16) -> Result<(), Error> {
if addr >= 0x80 {
return Err(Error::AddressOutOfRange(addr));
}
if i2c_reserved_addr(addr) {
return Err(Error::AddressReserved(addr));
}
let p = T::regs();
p.ic_enable().write(|w| w.set_enable(false));
p.ic_tar().write(|w| w.set_ic_tar(addr));
p.ic_enable().write(|w| w.set_enable(true));
Ok(())
}
#[inline]
fn tx_fifo_full() -> bool {
Self::tx_fifo_capacity() == 0
}
#[inline]
fn tx_fifo_capacity() -> u8 {
let p = T::regs();
FIFO_SIZE - p.ic_txflr().read().txflr()
}
#[inline]
fn rx_fifo_len() -> u8 {
let p = T::regs();
p.ic_rxflr().read().rxflr()
}
fn read_and_clear_abort_reason(&mut self) -> Result<(), Error> {
let p = T::regs();
let abort_reason = p.ic_tx_abrt_source().read();
if abort_reason.0 != 0 {
// Note clearing the abort flag also clears the reason, and this
// instance of flag is clear-on-read! Note also the
// IC_CLR_TX_ABRT register always reads as 0.
p.ic_clr_tx_abrt().read();
let reason = if abort_reason.abrt_7b_addr_noack()
| abort_reason.abrt_10addr1_noack()
| abort_reason.abrt_10addr2_noack()
{
AbortReason::NoAcknowledge
} else if abort_reason.arb_lost() {
AbortReason::ArbitrationLoss
} else {
AbortReason::Other(abort_reason.0)
};
Err(Error::Abort(reason))
} else {
Ok(())
}
}
fn read_blocking_internal(&mut self, read: &mut [u8], restart: bool, send_stop: bool) -> Result<(), Error> {
if read.is_empty() {
return Err(Error::InvalidReadBufferLength);
}
let p = T::regs();
let lastindex = read.len() - 1;
for (i, byte) in read.iter_mut().enumerate() {
let first = i == 0;
let last = i == lastindex;
// wait until there is space in the FIFO to write the next byte
while Self::tx_fifo_full() {}
p.ic_data_cmd().write(|w| {
w.set_restart(restart && first);
w.set_stop(send_stop && last);
w.set_cmd(true);
});
while Self::rx_fifo_len() == 0 {
self.read_and_clear_abort_reason()?;
}
*byte = p.ic_data_cmd().read().dat();
}
Ok(())
}
fn write_blocking_internal(&mut self, write: &[u8], send_stop: bool) -> Result<(), Error> {
if write.is_empty() {
return Err(Error::InvalidWriteBufferLength);
}
let p = T::regs();
for (i, byte) in write.iter().enumerate() {
let last = i == write.len() - 1;
p.ic_data_cmd().write(|w| {
w.set_stop(send_stop && last);
w.set_dat(*byte);
});
// Wait until the transmission of the address/data from the
// internal shift register has completed. For this to function
// correctly, the TX_EMPTY_CTRL flag in IC_CON must be set. The
// TX_EMPTY_CTRL flag was set in i2c_init.
while !p.ic_raw_intr_stat().read().tx_empty() {}
let abort_reason = self.read_and_clear_abort_reason();
if abort_reason.is_err() || (send_stop && last) {
// If the transaction was aborted or if it completed
// successfully wait until the STOP condition has occurred.
while !p.ic_raw_intr_stat().read().stop_det() {}
p.ic_clr_stop_det().read().clr_stop_det();
}
// Note the hardware issues a STOP automatically on an abort
// condition. Note also the hardware clears RX FIFO as well as
// TX on abort, ecause we set hwparam
// IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT to 0.
abort_reason?;
}
Ok(())
}
// =========================
// Blocking public API
// =========================
pub fn blocking_read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Error> {
Self::setup(address.into())?;
self.read_blocking_internal(read, true, true)
// Automatic Stop
}
pub fn blocking_write(&mut self, address: u8, write: &[u8]) -> Result<(), Error> {
Self::setup(address.into())?;
self.write_blocking_internal(write, true)
}
pub fn blocking_write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error> {
Self::setup(address.into())?;
self.write_blocking_internal(write, false)?;
self.read_blocking_internal(read, true, true)
// Automatic Stop
}
}
mod eh02 {
use super::*;
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Read for I2c<'d, T, M> {
type Error = Error;
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, buffer)
}
}
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Write for I2c<'d, T, M> {
type Error = Error;
fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, bytes)
}
}
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T, M> {
type Error = Error;
fn write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, bytes, buffer)
}
}
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Transactional for I2c<'d, T, M> {
type Error = Error;
fn exec(
&mut self,
address: u8,
operations: &mut [embedded_hal_02::blocking::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
Self::setup(address.into())?;
for i in 0..operations.len() {
let last = i == operations.len() - 1;
match &mut operations[i] {
embedded_hal_02::blocking::i2c::Operation::Read(buf) => {
self.read_blocking_internal(buf, false, last)?
}
embedded_hal_02::blocking::i2c::Operation::Write(buf) => self.write_blocking_internal(buf, last)?,
}
}
Ok(())
}
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl embedded_hal_1::i2c::Error for Error {
fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
match *self {
Self::Abort(AbortReason::ArbitrationLoss) => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss,
Self::Abort(AbortReason::NoAcknowledge) => {
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Address)
}
Self::Abort(AbortReason::TxNotEmpty(_)) => embedded_hal_1::i2c::ErrorKind::Other,
Self::Abort(AbortReason::Other(_)) => embedded_hal_1::i2c::ErrorKind::Other,
Self::InvalidReadBufferLength => embedded_hal_1::i2c::ErrorKind::Other,
Self::InvalidWriteBufferLength => embedded_hal_1::i2c::ErrorKind::Other,
Self::AddressOutOfRange(_) => embedded_hal_1::i2c::ErrorKind::Other,
Self::AddressReserved(_) => embedded_hal_1::i2c::ErrorKind::Other,
}
}
}
impl<'d, T: Instance, M: Mode> embedded_hal_1::i2c::ErrorType for I2c<'d, T, M> {
type Error = Error;
}
impl<'d, T: Instance, M: Mode> embedded_hal_1::i2c::I2c for I2c<'d, T, M> {
fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, read)
}
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
fn transaction(
&mut self,
address: u8,
operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
Self::setup(address.into())?;
for i in 0..operations.len() {
let last = i == operations.len() - 1;
match &mut operations[i] {
embedded_hal_1::i2c::Operation::Read(buf) => self.read_blocking_internal(buf, false, last)?,
embedded_hal_1::i2c::Operation::Write(buf) => self.write_blocking_internal(buf, last)?,
}
}
Ok(())
}
}
}
#[cfg(all(feature = "unstable-traits", feature = "nightly"))]
mod nightly {
use embedded_hal_1::i2c::Operation;
use embedded_hal_async::i2c::AddressMode;
use super::*;
impl<'d, A, T> embedded_hal_async::i2c::I2c<A> for I2c<'d, T, Async>
where
A: AddressMode + Into<u16> + 'static,
T: Instance + 'd,
{
async fn read(&mut self, address: A, read: &mut [u8]) -> Result<(), Self::Error> {
let addr: u16 = address.into();
Self::setup(addr)?;
self.read_async_internal(read, false, true).await
}
async fn write(&mut self, address: A, write: &[u8]) -> Result<(), Self::Error> {
let addr: u16 = address.into();
Self::setup(addr)?;
self.write_async_internal(write.iter().copied(), true).await
}
async fn write_read(&mut self, address: A, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
let addr: u16 = address.into();
Self::setup(addr)?;
self.write_async_internal(write.iter().cloned(), false).await?;
self.read_async_internal(read, false, true).await
}
async fn transaction(&mut self, address: A, operations: &mut [Operation<'_>]) -> Result<(), Self::Error> {
let addr: u16 = address.into();
if operations.len() > 0 {
Self::setup(addr)?;
}
let mut iterator = operations.iter_mut();
while let Some(op) = iterator.next() {
let last = iterator.len() == 0;
match op {
Operation::Read(buffer) => {
self.read_async_internal(buffer, false, last).await?;
}
Operation::Write(buffer) => {
self.write_async_internal(buffer.into_iter().cloned(), last).await?;
}
}
}
Ok(())
}
}
}
pub fn i2c_reserved_addr(addr: u16) -> bool {
((addr & 0x78) == 0 || (addr & 0x78) == 0x78) && addr != 0
}
mod sealed {
use embassy_sync::waitqueue::AtomicWaker;
use crate::interrupt;
pub trait Instance {
const TX_DREQ: u8;
const RX_DREQ: u8;
type Interrupt: interrupt::typelevel::Interrupt;
fn regs() -> crate::pac::i2c::I2c;
fn reset() -> crate::pac::resets::regs::Peripherals;
fn waker() -> &'static AtomicWaker;
}
pub trait Mode {}
pub trait SdaPin<T: Instance> {}
pub trait SclPin<T: Instance> {}
}
pub trait Mode: sealed::Mode {}
macro_rules! impl_mode {
($name:ident) => {
impl sealed::Mode for $name {}
impl Mode for $name {}
};
}
pub struct Blocking;
pub struct Async;
impl_mode!(Blocking);
impl_mode!(Async);
pub trait Instance: sealed::Instance {}
macro_rules! impl_instance {
($type:ident, $irq:ident, $reset:ident, $tx_dreq:expr, $rx_dreq:expr) => {
impl sealed::Instance for peripherals::$type {
const TX_DREQ: u8 = $tx_dreq;
const RX_DREQ: u8 = $rx_dreq;
type Interrupt = crate::interrupt::typelevel::$irq;
#[inline]
fn regs() -> pac::i2c::I2c {
pac::$type
}
#[inline]
fn reset() -> pac::resets::regs::Peripherals {
let mut ret = pac::resets::regs::Peripherals::default();
ret.$reset(true);
ret
}
#[inline]
fn waker() -> &'static AtomicWaker {
static WAKER: AtomicWaker = AtomicWaker::new();
&WAKER
}
}
impl Instance for peripherals::$type {}
};
}
impl_instance!(I2C0, I2C0_IRQ, set_i2c0, 32, 33);
impl_instance!(I2C1, I2C1_IRQ, set_i2c1, 34, 35);
pub trait SdaPin<T: Instance>: sealed::SdaPin<T> + crate::gpio::Pin {}
pub trait SclPin<T: Instance>: sealed::SclPin<T> + crate::gpio::Pin {}
macro_rules! impl_pin {
($pin:ident, $instance:ident, $function:ident) => {
impl sealed::$function<peripherals::$instance> for peripherals::$pin {}
impl $function<peripherals::$instance> for peripherals::$pin {}
};
}
impl_pin!(PIN_0, I2C0, SdaPin);
impl_pin!(PIN_1, I2C0, SclPin);
impl_pin!(PIN_2, I2C1, SdaPin);
impl_pin!(PIN_3, I2C1, SclPin);
impl_pin!(PIN_4, I2C0, SdaPin);
impl_pin!(PIN_5, I2C0, SclPin);
impl_pin!(PIN_6, I2C1, SdaPin);
impl_pin!(PIN_7, I2C1, SclPin);
impl_pin!(PIN_8, I2C0, SdaPin);
impl_pin!(PIN_9, I2C0, SclPin);
impl_pin!(PIN_10, I2C1, SdaPin);
impl_pin!(PIN_11, I2C1, SclPin);
impl_pin!(PIN_12, I2C0, SdaPin);
impl_pin!(PIN_13, I2C0, SclPin);
impl_pin!(PIN_14, I2C1, SdaPin);
impl_pin!(PIN_15, I2C1, SclPin);
impl_pin!(PIN_16, I2C0, SdaPin);
impl_pin!(PIN_17, I2C0, SclPin);
impl_pin!(PIN_18, I2C1, SdaPin);
impl_pin!(PIN_19, I2C1, SclPin);
impl_pin!(PIN_20, I2C0, SdaPin);
impl_pin!(PIN_21, I2C0, SclPin);
impl_pin!(PIN_22, I2C1, SdaPin);
impl_pin!(PIN_23, I2C1, SclPin);
impl_pin!(PIN_24, I2C0, SdaPin);
impl_pin!(PIN_25, I2C0, SclPin);
impl_pin!(PIN_26, I2C1, SdaPin);
impl_pin!(PIN_27, I2C1, SclPin);
impl_pin!(PIN_28, I2C0, SdaPin);
impl_pin!(PIN_29, I2C0, SclPin);