952f525af5
Currently this looks up the frequency in the global singleton that must be initialized by the per-chip RCC implementation. At present, this is only done for the L0 family of chips.
372 lines
11 KiB
Rust
372 lines
11 KiB
Rust
#![macro_use]
|
|
|
|
use core::cell::Cell;
|
|
use core::convert::TryInto;
|
|
use core::sync::atomic::{compiler_fence, Ordering};
|
|
|
|
use atomic_polyfill::AtomicU32;
|
|
use embassy::interrupt::InterruptExt;
|
|
use embassy::time::{Clock as EmbassyClock, TICKS_PER_SECOND};
|
|
|
|
use crate::interrupt::{CriticalSection, Interrupt, Mutex};
|
|
use crate::pac::timer::TimGp16;
|
|
use crate::peripherals;
|
|
use crate::rcc::RccPeripheral;
|
|
use crate::time::Hertz;
|
|
|
|
// Clock timekeeping works with something we call "periods", which are time intervals
|
|
// of 2^15 ticks. The Clock counter value is 16 bits, so one "overflow cycle" is 2 periods.
|
|
//
|
|
// A `period` count is maintained in parallel to the Timer hardware `counter`, like this:
|
|
// - `period` and `counter` start at 0
|
|
// - `period` is incremented on overflow (at counter value 0)
|
|
// - `period` is incremented "midway" between overflows (at counter value 0x8000)
|
|
//
|
|
// Therefore, when `period` is even, counter is in 0..0x7FFF. When odd, counter is in 0x8000..0xFFFF
|
|
// This allows for now() to return the correct value even if it races an overflow.
|
|
//
|
|
// To get `now()`, `period` is read first, then `counter` is read. If the counter value matches
|
|
// the expected range for the `period` parity, we're done. If it doesn't, this means that
|
|
// a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value
|
|
// corresponds to the next period.
|
|
//
|
|
// `period` is a 32bit integer, so It overflows on 2^32 * 2^15 / 32768 seconds of uptime, which is 136 years.
|
|
fn calc_now(period: u32, counter: u16) -> u64 {
|
|
((period as u64) << 15) + ((counter as u32 ^ ((period & 1) << 15)) as u64)
|
|
}
|
|
|
|
struct AlarmState {
|
|
timestamp: Cell<u64>,
|
|
#[allow(clippy::type_complexity)]
|
|
callback: Cell<Option<(fn(*mut ()), *mut ())>>,
|
|
}
|
|
|
|
impl AlarmState {
|
|
fn new() -> Self {
|
|
Self {
|
|
timestamp: Cell::new(u64::MAX),
|
|
callback: Cell::new(None),
|
|
}
|
|
}
|
|
}
|
|
|
|
const ALARM_COUNT: usize = 3;
|
|
|
|
/// Clock timer that can be used by the executor and to set alarms.
|
|
///
|
|
/// It can work with Timers 2, 3, 4, 5. This timer works internally with a unit of 2^15 ticks, which
|
|
/// means that if a call to [`embassy::time::Clock::now`] is blocked for that amount of ticks the
|
|
/// returned value will be wrong (an old value). The current default tick rate is 32768 ticks per
|
|
/// second.
|
|
pub struct Clock<T: Instance> {
|
|
_inner: T,
|
|
irq: T::Interrupt,
|
|
/// Number of 2^23 periods elapsed since boot.
|
|
period: AtomicU32,
|
|
/// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled.
|
|
alarms: Mutex<[AlarmState; ALARM_COUNT]>,
|
|
}
|
|
|
|
impl<T: Instance> Clock<T> {
|
|
pub fn new(peripheral: T, irq: T::Interrupt) -> Self {
|
|
Self {
|
|
_inner: peripheral,
|
|
irq,
|
|
period: AtomicU32::new(0),
|
|
alarms: Mutex::new([AlarmState::new(), AlarmState::new(), AlarmState::new()]),
|
|
}
|
|
}
|
|
|
|
pub fn start(&'static self) {
|
|
let inner = T::inner();
|
|
|
|
T::enable();
|
|
T::reset();
|
|
|
|
let timer_freq = T::frequency();
|
|
|
|
// NOTE(unsafe) Critical section to use the unsafe methods
|
|
critical_section::with(|_| {
|
|
unsafe {
|
|
inner.prepare(timer_freq);
|
|
}
|
|
|
|
self.irq.set_handler_context(self as *const _ as *mut _);
|
|
self.irq.set_handler(|ptr| unsafe {
|
|
let this = &*(ptr as *const () as *const Self);
|
|
this.on_interrupt();
|
|
});
|
|
self.irq.unpend();
|
|
self.irq.enable();
|
|
|
|
unsafe {
|
|
inner.start_counter();
|
|
}
|
|
})
|
|
}
|
|
|
|
fn on_interrupt(&self) {
|
|
let inner = T::inner();
|
|
|
|
// NOTE(unsafe) Use critical section to access the methods
|
|
// XXX: reduce the size of this critical section ?
|
|
critical_section::with(|cs| unsafe {
|
|
if inner.overflow_interrupt_status() {
|
|
inner.overflow_clear_flag();
|
|
self.next_period();
|
|
}
|
|
|
|
// Half overflow
|
|
if inner.compare_interrupt_status(0) {
|
|
inner.compare_clear_flag(0);
|
|
self.next_period();
|
|
}
|
|
|
|
for n in 1..=ALARM_COUNT {
|
|
if inner.compare_interrupt_status(n) {
|
|
inner.compare_clear_flag(n);
|
|
self.trigger_alarm(n, cs);
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
fn next_period(&self) {
|
|
let inner = T::inner();
|
|
|
|
let period = self.period.fetch_add(1, Ordering::Relaxed) + 1;
|
|
let t = (period as u64) << 15;
|
|
|
|
critical_section::with(move |cs| {
|
|
for n in 1..=ALARM_COUNT {
|
|
let alarm = &self.alarms.borrow(cs)[n - 1];
|
|
let at = alarm.timestamp.get();
|
|
|
|
let diff = at - t;
|
|
if diff < 0xc000 {
|
|
inner.set_compare(n, at as u16);
|
|
// NOTE(unsafe) We're in a critical section
|
|
unsafe {
|
|
inner.set_compare_interrupt(n, true);
|
|
}
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
fn trigger_alarm(&self, n: usize, cs: CriticalSection) {
|
|
let inner = T::inner();
|
|
// NOTE(unsafe) We have a critical section
|
|
unsafe {
|
|
inner.set_compare_interrupt(n, false);
|
|
}
|
|
|
|
let alarm = &self.alarms.borrow(cs)[n - 1];
|
|
alarm.timestamp.set(u64::MAX);
|
|
|
|
// Call after clearing alarm, so the callback can set another alarm.
|
|
if let Some((f, ctx)) = alarm.callback.get() {
|
|
f(ctx);
|
|
}
|
|
}
|
|
|
|
fn set_alarm_callback(&self, n: usize, callback: fn(*mut ()), ctx: *mut ()) {
|
|
critical_section::with(|cs| {
|
|
let alarm = &self.alarms.borrow(cs)[n - 1];
|
|
alarm.callback.set(Some((callback, ctx)));
|
|
})
|
|
}
|
|
|
|
fn set_alarm(&self, n: usize, timestamp: u64) {
|
|
critical_section::with(|cs| {
|
|
let inner = T::inner();
|
|
|
|
let alarm = &self.alarms.borrow(cs)[n - 1];
|
|
alarm.timestamp.set(timestamp);
|
|
|
|
let t = self.now();
|
|
if timestamp <= t {
|
|
self.trigger_alarm(n, cs);
|
|
return;
|
|
}
|
|
|
|
let diff = timestamp - t;
|
|
if diff < 0xc000 {
|
|
let safe_timestamp = timestamp.max(t + 3);
|
|
inner.set_compare(n, safe_timestamp as u16);
|
|
|
|
// NOTE(unsafe) We're in a critical section
|
|
unsafe {
|
|
inner.set_compare_interrupt(n, true);
|
|
}
|
|
} else {
|
|
unsafe {
|
|
inner.set_compare_interrupt(n, false);
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
pub fn alarm1(&'static self) -> Alarm<T> {
|
|
Alarm { n: 1, rtc: self }
|
|
}
|
|
pub fn alarm2(&'static self) -> Alarm<T> {
|
|
Alarm { n: 2, rtc: self }
|
|
}
|
|
pub fn alarm3(&'static self) -> Alarm<T> {
|
|
Alarm { n: 3, rtc: self }
|
|
}
|
|
}
|
|
|
|
impl<T: Instance> EmbassyClock for Clock<T> {
|
|
fn now(&self) -> u64 {
|
|
let inner = T::inner();
|
|
|
|
let period = self.period.load(Ordering::Relaxed);
|
|
compiler_fence(Ordering::Acquire);
|
|
let counter = inner.counter();
|
|
calc_now(period, counter)
|
|
}
|
|
}
|
|
|
|
pub struct Alarm<T: Instance> {
|
|
n: usize,
|
|
rtc: &'static Clock<T>,
|
|
}
|
|
|
|
impl<T: Instance> embassy::time::Alarm for Alarm<T> {
|
|
fn set_callback(&self, callback: fn(*mut ()), ctx: *mut ()) {
|
|
self.rtc.set_alarm_callback(self.n, callback, ctx);
|
|
}
|
|
|
|
fn set(&self, timestamp: u64) {
|
|
self.rtc.set_alarm(self.n, timestamp);
|
|
}
|
|
|
|
fn clear(&self) {
|
|
self.rtc.set_alarm(self.n, u64::MAX);
|
|
}
|
|
}
|
|
|
|
pub struct TimerInner(pub(crate) TimGp16);
|
|
|
|
impl TimerInner {
|
|
unsafe fn prepare(&self, timer_freq: Hertz) {
|
|
self.stop_and_reset();
|
|
|
|
let psc = timer_freq.0 / TICKS_PER_SECOND as u32 - 1;
|
|
let psc: u16 = psc.try_into().unwrap();
|
|
|
|
self.set_psc_arr(psc, u16::MAX);
|
|
// Mid-way point
|
|
self.set_compare(0, 0x8000);
|
|
self.set_compare_interrupt(0, true);
|
|
}
|
|
|
|
unsafe fn start_counter(&self) {
|
|
self.0.cr1().modify(|w| w.set_cen(true));
|
|
}
|
|
|
|
unsafe fn stop_and_reset(&self) {
|
|
let regs = self.0;
|
|
|
|
regs.cr1().modify(|w| w.set_cen(false));
|
|
regs.cnt().write(|w| w.set_cnt(0));
|
|
}
|
|
|
|
fn overflow_interrupt_status(&self) -> bool {
|
|
// NOTE(unsafe) Atomic read with no side-effects
|
|
unsafe { self.0.sr().read().uif() }
|
|
}
|
|
|
|
unsafe fn overflow_clear_flag(&self) {
|
|
self.0.sr().modify(|w| w.set_uif(false));
|
|
}
|
|
|
|
unsafe fn set_psc_arr(&self, psc: u16, arr: u16) {
|
|
use crate::pac::timer::vals::Urs;
|
|
|
|
let regs = self.0;
|
|
|
|
regs.psc().write(|w| w.set_psc(psc));
|
|
regs.arr().write(|w| w.set_arr(arr));
|
|
|
|
// Set URS, generate update and clear URS
|
|
regs.cr1().modify(|w| w.set_urs(Urs::COUNTERONLY));
|
|
regs.egr().write(|w| w.set_ug(true));
|
|
regs.cr1().modify(|w| w.set_urs(Urs::ANYEVENT));
|
|
}
|
|
|
|
fn compare_interrupt_status(&self, n: usize) -> bool {
|
|
if n > 3 {
|
|
false
|
|
} else {
|
|
// NOTE(unsafe) Atomic read with no side-effects
|
|
unsafe { self.0.sr().read().ccif(n) }
|
|
}
|
|
}
|
|
|
|
unsafe fn compare_clear_flag(&self, n: usize) {
|
|
if n > 3 {
|
|
return;
|
|
}
|
|
self.0.sr().modify(|w| w.set_ccif(n, false));
|
|
}
|
|
|
|
fn set_compare(&self, n: usize, value: u16) {
|
|
if n > 3 {
|
|
return;
|
|
}
|
|
// NOTE(unsafe) Atomic write
|
|
unsafe {
|
|
self.0.ccr(n).write(|w| w.set_ccr(value));
|
|
}
|
|
}
|
|
|
|
unsafe fn set_compare_interrupt(&self, n: usize, enable: bool) {
|
|
if n > 3 {
|
|
return;
|
|
}
|
|
self.0.dier().modify(|w| w.set_ccie(n, enable));
|
|
}
|
|
|
|
fn counter(&self) -> u16 {
|
|
// NOTE(unsafe) Atomic read with no side-effects
|
|
unsafe { self.0.cnt().read().cnt() }
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------
|
|
|
|
pub(crate) mod sealed {
|
|
use super::*;
|
|
pub trait Instance {
|
|
type Interrupt: Interrupt;
|
|
|
|
fn inner() -> TimerInner;
|
|
}
|
|
}
|
|
|
|
pub trait Instance: sealed::Instance + Sized + RccPeripheral + 'static {}
|
|
|
|
macro_rules! impl_timer {
|
|
($inst:ident) => {
|
|
impl sealed::Instance for peripherals::$inst {
|
|
type Interrupt = crate::interrupt::$inst;
|
|
|
|
fn inner() -> crate::clock::TimerInner {
|
|
const INNER: TimerInner = TimerInner(crate::pac::$inst);
|
|
INNER
|
|
}
|
|
}
|
|
|
|
impl Instance for peripherals::$inst {}
|
|
};
|
|
}
|
|
|
|
crate::pac::peripherals!(
|
|
(timer, TIM2) => { impl_timer!(TIM2); };
|
|
(timer, TIM3) => { impl_timer!(TIM3); };
|
|
(timer, TIM4) => { impl_timer!(TIM4); };
|
|
(timer, TIM5) => { impl_timer!(TIM5); };
|
|
);
|