embassy/embassy-rp/src/spi.rs

611 lines
18 KiB
Rust

//! Serial Peripheral Interface
use core::marker::PhantomData;
use embassy_embedded_hal::SetConfig;
use embassy_futures::join::join;
use embassy_hal_internal::{into_ref, PeripheralRef};
pub use embedded_hal_02::spi::{Phase, Polarity};
use crate::dma::{AnyChannel, Channel};
use crate::gpio::sealed::Pin as _;
use crate::gpio::{AnyPin, Pin as GpioPin};
use crate::{pac, peripherals, Peripheral};
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
// No errors for now
}
#[non_exhaustive]
#[derive(Clone)]
pub struct Config {
pub frequency: u32,
pub phase: Phase,
pub polarity: Polarity,
}
impl Default for Config {
fn default() -> Self {
Self {
frequency: 1_000_000,
phase: Phase::CaptureOnFirstTransition,
polarity: Polarity::IdleLow,
}
}
}
pub struct Spi<'d, T: Instance, M: Mode> {
inner: PeripheralRef<'d, T>,
tx_dma: Option<PeripheralRef<'d, AnyChannel>>,
rx_dma: Option<PeripheralRef<'d, AnyChannel>>,
phantom: PhantomData<(&'d mut T, M)>,
}
fn div_roundup(a: u32, b: u32) -> u32 {
(a + b - 1) / b
}
fn calc_prescs(freq: u32) -> (u8, u8) {
let clk_peri = crate::clocks::clk_peri_freq();
// final SPI frequency: spi_freq = clk_peri / presc / postdiv
// presc must be in 2..=254, and must be even
// postdiv must be in 1..=256
// divide extra by 2, so we get rid of the "presc must be even" requirement
let ratio = div_roundup(clk_peri, freq * 2);
if ratio > 127 * 256 {
panic!("Requested too low SPI frequency");
}
let presc = div_roundup(ratio, 256);
let postdiv = if presc == 1 { ratio } else { div_roundup(ratio, presc) };
((presc * 2) as u8, (postdiv - 1) as u8)
}
impl<'d, T: Instance, M: Mode> Spi<'d, T, M> {
fn new_inner(
inner: impl Peripheral<P = T> + 'd,
clk: Option<PeripheralRef<'d, AnyPin>>,
mosi: Option<PeripheralRef<'d, AnyPin>>,
miso: Option<PeripheralRef<'d, AnyPin>>,
cs: Option<PeripheralRef<'d, AnyPin>>,
tx_dma: Option<PeripheralRef<'d, AnyChannel>>,
rx_dma: Option<PeripheralRef<'d, AnyChannel>>,
config: Config,
) -> Self {
into_ref!(inner);
let p = inner.regs();
let (presc, postdiv) = calc_prescs(config.frequency);
p.cpsr().write(|w| w.set_cpsdvsr(presc));
p.cr0().write(|w| {
w.set_dss(0b0111); // 8bit
w.set_spo(config.polarity == Polarity::IdleHigh);
w.set_sph(config.phase == Phase::CaptureOnSecondTransition);
w.set_scr(postdiv);
});
// Always enable DREQ signals -- harmless if DMA is not listening
p.dmacr().write(|reg| {
reg.set_rxdmae(true);
reg.set_txdmae(true);
});
// finally, enable.
p.cr1().write(|w| w.set_sse(true));
if let Some(pin) = &clk {
pin.io().ctrl().write(|w| w.set_funcsel(1));
}
if let Some(pin) = &mosi {
pin.io().ctrl().write(|w| w.set_funcsel(1));
}
if let Some(pin) = &miso {
pin.io().ctrl().write(|w| w.set_funcsel(1));
}
if let Some(pin) = &cs {
pin.io().ctrl().write(|w| w.set_funcsel(1));
}
Self {
inner,
tx_dma,
rx_dma,
phantom: PhantomData,
}
}
pub fn blocking_write(&mut self, data: &[u8]) -> Result<(), Error> {
let p = self.inner.regs();
for &b in data {
while !p.sr().read().tnf() {}
p.dr().write(|w| w.set_data(b as _));
while !p.sr().read().rne() {}
let _ = p.dr().read();
}
self.flush()?;
Ok(())
}
pub fn blocking_transfer_in_place(&mut self, data: &mut [u8]) -> Result<(), Error> {
let p = self.inner.regs();
for b in data {
while !p.sr().read().tnf() {}
p.dr().write(|w| w.set_data(*b as _));
while !p.sr().read().rne() {}
*b = p.dr().read().data() as u8;
}
self.flush()?;
Ok(())
}
pub fn blocking_read(&mut self, data: &mut [u8]) -> Result<(), Error> {
let p = self.inner.regs();
for b in data {
while !p.sr().read().tnf() {}
p.dr().write(|w| w.set_data(0));
while !p.sr().read().rne() {}
*b = p.dr().read().data() as u8;
}
self.flush()?;
Ok(())
}
pub fn blocking_transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> {
let p = self.inner.regs();
let len = read.len().max(write.len());
for i in 0..len {
let wb = write.get(i).copied().unwrap_or(0);
while !p.sr().read().tnf() {}
p.dr().write(|w| w.set_data(wb as _));
while !p.sr().read().rne() {}
let rb = p.dr().read().data() as u8;
if let Some(r) = read.get_mut(i) {
*r = rb;
}
}
self.flush()?;
Ok(())
}
pub fn flush(&mut self) -> Result<(), Error> {
let p = self.inner.regs();
while p.sr().read().bsy() {}
Ok(())
}
pub fn set_frequency(&mut self, freq: u32) {
let (presc, postdiv) = calc_prescs(freq);
let p = self.inner.regs();
// disable
p.cr1().write(|w| w.set_sse(false));
// change stuff
p.cpsr().write(|w| w.set_cpsdvsr(presc));
p.cr0().modify(|w| {
w.set_scr(postdiv);
});
// enable
p.cr1().write(|w| w.set_sse(true));
}
}
impl<'d, T: Instance> Spi<'d, T, Blocking> {
pub fn new_blocking(
inner: impl Peripheral<P = T> + 'd,
clk: impl Peripheral<P = impl ClkPin<T> + 'd> + 'd,
mosi: impl Peripheral<P = impl MosiPin<T> + 'd> + 'd,
miso: impl Peripheral<P = impl MisoPin<T> + 'd> + 'd,
config: Config,
) -> Self {
into_ref!(clk, mosi, miso);
Self::new_inner(
inner,
Some(clk.map_into()),
Some(mosi.map_into()),
Some(miso.map_into()),
None,
None,
None,
config,
)
}
pub fn new_blocking_txonly(
inner: impl Peripheral<P = T> + 'd,
clk: impl Peripheral<P = impl ClkPin<T> + 'd> + 'd,
mosi: impl Peripheral<P = impl MosiPin<T> + 'd> + 'd,
config: Config,
) -> Self {
into_ref!(clk, mosi);
Self::new_inner(
inner,
Some(clk.map_into()),
Some(mosi.map_into()),
None,
None,
None,
None,
config,
)
}
pub fn new_blocking_rxonly(
inner: impl Peripheral<P = T> + 'd,
clk: impl Peripheral<P = impl ClkPin<T> + 'd> + 'd,
miso: impl Peripheral<P = impl MisoPin<T> + 'd> + 'd,
config: Config,
) -> Self {
into_ref!(clk, miso);
Self::new_inner(
inner,
Some(clk.map_into()),
None,
Some(miso.map_into()),
None,
None,
None,
config,
)
}
}
impl<'d, T: Instance> Spi<'d, T, Async> {
pub fn new(
inner: impl Peripheral<P = T> + 'd,
clk: impl Peripheral<P = impl ClkPin<T> + 'd> + 'd,
mosi: impl Peripheral<P = impl MosiPin<T> + 'd> + 'd,
miso: impl Peripheral<P = impl MisoPin<T> + 'd> + 'd,
tx_dma: impl Peripheral<P = impl Channel> + 'd,
rx_dma: impl Peripheral<P = impl Channel> + 'd,
config: Config,
) -> Self {
into_ref!(tx_dma, rx_dma, clk, mosi, miso);
Self::new_inner(
inner,
Some(clk.map_into()),
Some(mosi.map_into()),
Some(miso.map_into()),
None,
Some(tx_dma.map_into()),
Some(rx_dma.map_into()),
config,
)
}
pub fn new_txonly(
inner: impl Peripheral<P = T> + 'd,
clk: impl Peripheral<P = impl ClkPin<T> + 'd> + 'd,
mosi: impl Peripheral<P = impl MosiPin<T> + 'd> + 'd,
tx_dma: impl Peripheral<P = impl Channel> + 'd,
config: Config,
) -> Self {
into_ref!(tx_dma, clk, mosi);
Self::new_inner(
inner,
Some(clk.map_into()),
Some(mosi.map_into()),
None,
None,
Some(tx_dma.map_into()),
None,
config,
)
}
pub fn new_rxonly(
inner: impl Peripheral<P = T> + 'd,
clk: impl Peripheral<P = impl ClkPin<T> + 'd> + 'd,
miso: impl Peripheral<P = impl MisoPin<T> + 'd> + 'd,
rx_dma: impl Peripheral<P = impl Channel> + 'd,
config: Config,
) -> Self {
into_ref!(rx_dma, clk, miso);
Self::new_inner(
inner,
Some(clk.map_into()),
None,
Some(miso.map_into()),
None,
None,
Some(rx_dma.map_into()),
config,
)
}
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
let tx_ch = self.tx_dma.as_mut().unwrap();
let tx_transfer = unsafe {
// If we don't assign future to a variable, the data register pointer
// is held across an await and makes the future non-Send.
crate::dma::write(tx_ch, buffer, self.inner.regs().dr().as_ptr() as *mut _, T::TX_DREQ)
};
tx_transfer.await;
let p = self.inner.regs();
while p.sr().read().bsy() {}
// clear RX FIFO contents to prevent stale reads
while p.sr().read().rne() {
let _: u16 = p.dr().read().data();
}
// clear RX overrun interrupt
p.icr().write(|w| w.set_roric(true));
Ok(())
}
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
// Start RX first. Transfer starts when TX starts, if RX
// is not started yet we might lose bytes.
let rx_ch = self.rx_dma.as_mut().unwrap();
let rx_transfer = unsafe {
// If we don't assign future to a variable, the data register pointer
// is held across an await and makes the future non-Send.
crate::dma::read(rx_ch, self.inner.regs().dr().as_ptr() as *const _, buffer, T::RX_DREQ)
};
let tx_ch = self.tx_dma.as_mut().unwrap();
let tx_transfer = unsafe {
// If we don't assign future to a variable, the data register pointer
// is held across an await and makes the future non-Send.
crate::dma::write_repeated(
tx_ch,
self.inner.regs().dr().as_ptr() as *mut u8,
buffer.len(),
T::TX_DREQ,
)
};
join(tx_transfer, rx_transfer).await;
Ok(())
}
pub async fn transfer(&mut self, rx_buffer: &mut [u8], tx_buffer: &[u8]) -> Result<(), Error> {
self.transfer_inner(rx_buffer, tx_buffer).await
}
pub async fn transfer_in_place(&mut self, words: &mut [u8]) -> Result<(), Error> {
self.transfer_inner(words, words).await
}
async fn transfer_inner(&mut self, rx_ptr: *mut [u8], tx_ptr: *const [u8]) -> Result<(), Error> {
let (_, tx_len) = crate::dma::slice_ptr_parts(tx_ptr);
let (_, rx_len) = crate::dma::slice_ptr_parts_mut(rx_ptr);
// Start RX first. Transfer starts when TX starts, if RX
// is not started yet we might lose bytes.
let rx_ch = self.rx_dma.as_mut().unwrap();
let rx_transfer = unsafe {
// If we don't assign future to a variable, the data register pointer
// is held across an await and makes the future non-Send.
crate::dma::read(rx_ch, self.inner.regs().dr().as_ptr() as *const _, rx_ptr, T::RX_DREQ)
};
let mut tx_ch = self.tx_dma.as_mut().unwrap();
// If we don't assign future to a variable, the data register pointer
// is held across an await and makes the future non-Send.
let tx_transfer = async {
let p = self.inner.regs();
unsafe {
crate::dma::write(&mut tx_ch, tx_ptr, p.dr().as_ptr() as *mut _, T::TX_DREQ).await;
if rx_len > tx_len {
let write_bytes_len = rx_len - tx_len;
// write dummy data
// this will disable incrementation of the buffers
crate::dma::write_repeated(tx_ch, p.dr().as_ptr() as *mut u8, write_bytes_len, T::TX_DREQ).await
}
}
};
join(tx_transfer, rx_transfer).await;
// if tx > rx we should clear any overflow of the FIFO SPI buffer
if tx_len > rx_len {
let p = self.inner.regs();
while p.sr().read().bsy() {}
// clear RX FIFO contents to prevent stale reads
while p.sr().read().rne() {
let _: u16 = p.dr().read().data();
}
// clear RX overrun interrupt
p.icr().write(|w| w.set_roric(true));
}
Ok(())
}
}
mod sealed {
use super::*;
pub trait Mode {}
pub trait Instance {
const TX_DREQ: u8;
const RX_DREQ: u8;
fn regs(&self) -> pac::spi::Spi;
}
}
pub trait Mode: sealed::Mode {}
pub trait Instance: sealed::Instance {}
macro_rules! impl_instance {
($type:ident, $irq:ident, $tx_dreq:expr, $rx_dreq:expr) => {
impl sealed::Instance for peripherals::$type {
const TX_DREQ: u8 = $tx_dreq;
const RX_DREQ: u8 = $rx_dreq;
fn regs(&self) -> pac::spi::Spi {
pac::$type
}
}
impl Instance for peripherals::$type {}
};
}
impl_instance!(SPI0, Spi0, 16, 17);
impl_instance!(SPI1, Spi1, 18, 19);
pub trait ClkPin<T: Instance>: GpioPin {}
pub trait CsPin<T: Instance>: GpioPin {}
pub trait MosiPin<T: Instance>: GpioPin {}
pub trait MisoPin<T: Instance>: GpioPin {}
macro_rules! impl_pin {
($pin:ident, $instance:ident, $function:ident) => {
impl $function<peripherals::$instance> for peripherals::$pin {}
};
}
impl_pin!(PIN_0, SPI0, MisoPin);
impl_pin!(PIN_1, SPI0, CsPin);
impl_pin!(PIN_2, SPI0, ClkPin);
impl_pin!(PIN_3, SPI0, MosiPin);
impl_pin!(PIN_4, SPI0, MisoPin);
impl_pin!(PIN_5, SPI0, CsPin);
impl_pin!(PIN_6, SPI0, ClkPin);
impl_pin!(PIN_7, SPI0, MosiPin);
impl_pin!(PIN_8, SPI1, MisoPin);
impl_pin!(PIN_9, SPI1, CsPin);
impl_pin!(PIN_10, SPI1, ClkPin);
impl_pin!(PIN_11, SPI1, MosiPin);
impl_pin!(PIN_12, SPI1, MisoPin);
impl_pin!(PIN_13, SPI1, CsPin);
impl_pin!(PIN_14, SPI1, ClkPin);
impl_pin!(PIN_15, SPI1, MosiPin);
impl_pin!(PIN_16, SPI0, MisoPin);
impl_pin!(PIN_17, SPI0, CsPin);
impl_pin!(PIN_18, SPI0, ClkPin);
impl_pin!(PIN_19, SPI0, MosiPin);
impl_pin!(PIN_20, SPI0, MisoPin);
impl_pin!(PIN_21, SPI0, CsPin);
impl_pin!(PIN_22, SPI0, ClkPin);
impl_pin!(PIN_23, SPI0, MosiPin);
impl_pin!(PIN_24, SPI1, MisoPin);
impl_pin!(PIN_25, SPI1, CsPin);
impl_pin!(PIN_26, SPI1, ClkPin);
impl_pin!(PIN_27, SPI1, MosiPin);
impl_pin!(PIN_28, SPI1, MisoPin);
impl_pin!(PIN_29, SPI1, CsPin);
macro_rules! impl_mode {
($name:ident) => {
impl sealed::Mode for $name {}
impl Mode for $name {}
};
}
pub struct Blocking;
pub struct Async;
impl_mode!(Blocking);
impl_mode!(Async);
// ====================
mod eh02 {
use super::*;
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::spi::Transfer<u8> for Spi<'d, T, M> {
type Error = Error;
fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> {
self.blocking_transfer_in_place(words)?;
Ok(words)
}
}
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::spi::Write<u8> for Spi<'d, T, M> {
type Error = Error;
fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(words)
}
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl embedded_hal_1::spi::Error for Error {
fn kind(&self) -> embedded_hal_1::spi::ErrorKind {
match *self {}
}
}
impl<'d, T: Instance, M: Mode> embedded_hal_1::spi::ErrorType for Spi<'d, T, M> {
type Error = Error;
}
impl<'d, T: Instance, M: Mode> embedded_hal_1::spi::SpiBus<u8> for Spi<'d, T, M> {
fn flush(&mut self) -> Result<(), Self::Error> {
Ok(())
}
fn read(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_transfer(words, &[])
}
fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(words)
}
fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Self::Error> {
self.blocking_transfer(read, write)
}
fn transfer_in_place(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_transfer_in_place(words)
}
}
}
#[cfg(all(feature = "unstable-traits", feature = "nightly"))]
mod eha {
use super::*;
impl<'d, T: Instance> embedded_hal_async::spi::SpiBus<u8> for Spi<'d, T, Async> {
async fn flush(&mut self) -> Result<(), Self::Error> {
Ok(())
}
async fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> {
self.write(words).await
}
async fn read(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
self.read(words).await
}
async fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Self::Error> {
self.transfer(read, write).await
}
async fn transfer_in_place(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
self.transfer_in_place(words).await
}
}
}
impl<'d, T: Instance, M: Mode> SetConfig for Spi<'d, T, M> {
type Config = Config;
fn set_config(&mut self, config: &Self::Config) {
let p = self.inner.regs();
let (presc, postdiv) = calc_prescs(config.frequency);
p.cpsr().write(|w| w.set_cpsdvsr(presc));
p.cr0().write(|w| {
w.set_dss(0b0111); // 8bit
w.set_spo(config.polarity == Polarity::IdleHigh);
w.set_sph(config.phase == Phase::CaptureOnSecondTransition);
w.set_scr(postdiv);
});
}
}