embassy/tests/stm32/src/bin/cordic.rs

135 lines
4.1 KiB
Rust

// required-features: rng, cordic
// Test Cordic driver, with Q1.31 format, Sin function, at 24 iterations (aka PRECISION = 6), using DMA transfer
#![no_std]
#![no_main]
#[path = "../common.rs"]
mod common;
use common::*;
use embassy_executor::Spawner;
use embassy_stm32::cordic::utils;
use embassy_stm32::{bind_interrupts, cordic, peripherals, rng};
use num_traits::Float;
use {defmt_rtt as _, panic_probe as _};
bind_interrupts!(struct Irqs {
RNG => rng::InterruptHandler<peripherals::RNG>;
});
/* input value control, can be changed */
const INPUT_U32_COUNT: usize = 9;
const INPUT_U8_COUNT: usize = 4 * INPUT_U32_COUNT;
// Assume first calculation needs 2 arguments, the reset needs 1 argument.
// And all calculation generate 2 results.
const OUTPUT_LENGTH: usize = (INPUT_U32_COUNT - 1) * 2;
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let dp = embassy_stm32::init(config());
//
// use RNG generate random Q1.31 value
//
// we don't generate floating-point value, since not all binary value are valid floating-point value,
// and Q1.31 only accept a fixed range of value.
let mut rng = rng::Rng::new(dp.RNG, Irqs);
let mut input_buf_u8 = [0u8; INPUT_U8_COUNT];
defmt::unwrap!(rng.async_fill_bytes(&mut input_buf_u8).await);
// convert every [u8; 4] to a u32, for a Q1.31 value
let mut input_q1_31 = unsafe { core::mem::transmute::<[u8; INPUT_U8_COUNT], [u32; INPUT_U32_COUNT]>(input_buf_u8) };
// ARG2 for Sin function should be inside [0, 1], set MSB to 0 of a Q1.31 value, will make sure it's no less than 0.
input_q1_31[1] &= !(1u32 << 31);
//
// CORDIC calculation
//
let mut output_q1_31 = [0u32; OUTPUT_LENGTH];
// setup Cordic driver
let mut cordic = cordic::Cordic::new(
dp.CORDIC,
defmt::unwrap!(cordic::Config::new(
cordic::Function::Sin,
Default::default(),
Default::default(),
)),
);
#[cfg(feature = "stm32g491re")]
let (mut write_dma, mut read_dma) = (dp.DMA1_CH4, dp.DMA1_CH5);
#[cfg(any(feature = "stm32h563zi", feature = "stm32u585ai", feature = "stm32u5a5zj"))]
let (mut write_dma, mut read_dma) = (dp.GPDMA1_CH0, dp.GPDMA1_CH1);
// calculate first result using blocking mode
let cnt0 = defmt::unwrap!(cordic.blocking_calc_32bit(&input_q1_31[..2], &mut output_q1_31, false, false));
// calculate rest results using async mode
let cnt1 = defmt::unwrap!(
cordic
.async_calc_32bit(
&mut write_dma,
&mut read_dma,
&input_q1_31[2..],
&mut output_q1_31[cnt0..],
true,
false,
)
.await
);
// all output value length should be the same as our output buffer size
defmt::assert_eq!(cnt0 + cnt1, output_q1_31.len());
let mut cordic_result_f64 = [0.0f64; OUTPUT_LENGTH];
for (f64_val, u32_val) in cordic_result_f64.iter_mut().zip(output_q1_31) {
*f64_val = utils::q1_31_to_f64(u32_val);
}
//
// software calculation
//
let mut software_result_f64 = [0.0f64; OUTPUT_LENGTH];
let arg2 = utils::q1_31_to_f64(input_q1_31[1]);
for (&arg1, res) in input_q1_31
.iter()
.enumerate()
.filter_map(|(idx, val)| if idx != 1 { Some(val) } else { None })
.zip(software_result_f64.chunks_mut(2))
{
let arg1 = utils::q1_31_to_f64(arg1);
let (raw_res1, raw_res2) = (arg1 * core::f64::consts::PI).sin_cos();
(res[0], res[1]) = (raw_res1 * arg2, raw_res2 * arg2);
}
//
// check result are the same
//
for (cordic_res, software_res) in cordic_result_f64[..cnt0 + cnt1]
.chunks(2)
.zip(software_result_f64.chunks(2))
{
for (cord_res, soft_res) in cordic_res.iter().zip(software_res.iter()) {
// 2.0.powi(-19) is the max residual error for Sin function, in q1.31 format, with 24 iterations (aka PRECISION = 6)
defmt::assert!((cord_res - soft_res).abs() <= 2.0.powi(-19));
}
}
info!("Test OK");
cortex_m::asm::bkpt();
}