embassy/embassy-stm32/src/timer/mod.rs
2023-12-28 20:09:12 +08:00

694 lines
26 KiB
Rust

//! Timers, PWM, quadrature decoder.
pub mod complementary_pwm;
pub mod qei;
pub mod simple_pwm;
use stm32_metapac::timer::vals;
use crate::interrupt;
use crate::rcc::RccPeripheral;
use crate::time::Hertz;
/// Low-level timer access.
#[cfg(feature = "unstable-pac")]
pub mod low_level {
pub use super::sealed::*;
}
pub(crate) mod sealed {
use super::*;
/// Basic 16-bit timer instance.
pub trait Basic16bitInstance: RccPeripheral {
/// Interrupt for this timer.
type Interrupt: interrupt::typelevel::Interrupt;
/// Get access to the basic 16bit timer registers.
///
/// Note: This works even if the timer is more capable, because registers
/// for the less capable timers are a subset. This allows writing a driver
/// for a given set of capabilities, and having it transparently work with
/// more capable timers.
fn regs() -> crate::pac::timer::TimBasic;
/// Start the timer.
fn start(&mut self) {
Self::regs().cr1().modify(|r| r.set_cen(true));
}
/// Stop the timer.
fn stop(&mut self) {
Self::regs().cr1().modify(|r| r.set_cen(false));
}
/// Reset the counter value to 0
fn reset(&mut self) {
Self::regs().cnt().write(|r| r.set_cnt(0));
}
/// Set the frequency of how many times per second the timer counts up to the max value or down to 0.
///
/// This means that in the default edge-aligned mode,
/// the timer counter will wrap around at the same frequency as is being set.
/// In center-aligned mode (which not all timers support), the wrap-around frequency is effectively halved
/// because it needs to count up and down.
fn set_frequency(&mut self, frequency: Hertz) {
let f = frequency.0;
let timer_f = Self::frequency().0;
assert!(f > 0);
let pclk_ticks_per_timer_period = timer_f / f;
let psc: u16 = unwrap!(((pclk_ticks_per_timer_period - 1) / (1 << 16)).try_into());
let divide_by = pclk_ticks_per_timer_period / (u32::from(psc) + 1);
// the timer counts `0..=arr`, we want it to count `0..divide_by`
let arr = unwrap!(u16::try_from(divide_by - 1));
let regs = Self::regs();
regs.psc().write(|r| r.set_psc(psc));
regs.arr().write(|r| r.set_arr(arr));
regs.cr1().modify(|r| r.set_urs(vals::Urs::COUNTERONLY));
regs.egr().write(|r| r.set_ug(true));
regs.cr1().modify(|r| r.set_urs(vals::Urs::ANYEVENT));
}
/// Clear update interrupt.
///
/// Returns whether the update interrupt flag was set.
fn clear_update_interrupt(&mut self) -> bool {
let regs = Self::regs();
let sr = regs.sr().read();
if sr.uif() {
regs.sr().modify(|r| {
r.set_uif(false);
});
true
} else {
false
}
}
/// Enable/disable the update interrupt.
fn enable_update_interrupt(&mut self, enable: bool) {
Self::regs().dier().modify(|r| r.set_uie(enable));
}
/// Enable/disable the update dma.
fn enable_update_dma(&mut self, enable: bool) {
Self::regs().dier().modify(|r| r.set_ude(enable));
}
/// Enable/disable autoreload preload.
fn set_autoreload_preload(&mut self, enable: bool) {
Self::regs().cr1().modify(|r| r.set_arpe(enable));
}
/// Get the timer frequency.
fn get_frequency(&self) -> Hertz {
let timer_f = Self::frequency();
let regs = Self::regs();
let arr = regs.arr().read().arr();
let psc = regs.psc().read().psc();
timer_f / arr / (psc + 1)
}
}
/// Gneral-purpose 16-bit timer instance.
pub trait GeneralPurpose16bitInstance: Basic16bitInstance {
/// Get access to the general purpose 16bit timer registers.
///
/// Note: This works even if the timer is more capable, because registers
/// for the less capable timers are a subset. This allows writing a driver
/// for a given set of capabilities, and having it transparently work with
/// more capable timers.
fn regs_gp16() -> crate::pac::timer::TimGp16;
/// Set counting mode.
fn set_counting_mode(&mut self, mode: CountingMode) {
let (cms, dir) = mode.into();
let timer_enabled = Self::regs().cr1().read().cen();
// Changing from edge aligned to center aligned (and vice versa) is not allowed while the timer is running.
// Changing direction is discouraged while the timer is running.
assert!(!timer_enabled);
Self::regs_gp16().cr1().modify(|r| r.set_dir(dir));
Self::regs_gp16().cr1().modify(|r| r.set_cms(cms))
}
/// Get counting mode.
fn get_counting_mode(&self) -> CountingMode {
let cr1 = Self::regs_gp16().cr1().read();
(cr1.cms(), cr1.dir()).into()
}
/// Set clock divider.
fn set_clock_division(&mut self, ckd: vals::Ckd) {
Self::regs_gp16().cr1().modify(|r| r.set_ckd(ckd));
}
}
/// Gneral-purpose 32-bit timer instance.
pub trait GeneralPurpose32bitInstance: GeneralPurpose16bitInstance {
/// Get access to the general purpose 32bit timer registers.
///
/// Note: This works even if the timer is more capable, because registers
/// for the less capable timers are a subset. This allows writing a driver
/// for a given set of capabilities, and having it transparently work with
/// more capable timers.
fn regs_gp32() -> crate::pac::timer::TimGp32;
/// Set timer frequency.
fn set_frequency(&mut self, frequency: Hertz) {
let f = frequency.0;
assert!(f > 0);
let timer_f = Self::frequency().0;
let pclk_ticks_per_timer_period = (timer_f / f) as u64;
let psc: u16 = unwrap!(((pclk_ticks_per_timer_period - 1) / (1 << 32)).try_into());
let arr: u32 = unwrap!((pclk_ticks_per_timer_period / (psc as u64 + 1)).try_into());
let regs = Self::regs_gp32();
regs.psc().write(|r| r.set_psc(psc));
regs.arr().write(|r| r.set_arr(arr));
regs.cr1().modify(|r| r.set_urs(vals::Urs::COUNTERONLY));
regs.egr().write(|r| r.set_ug(true));
regs.cr1().modify(|r| r.set_urs(vals::Urs::ANYEVENT));
}
/// Get timer frequency.
fn get_frequency(&self) -> Hertz {
let timer_f = Self::frequency();
let regs = Self::regs_gp32();
let arr = regs.arr().read().arr();
let psc = regs.psc().read().psc();
timer_f / arr / (psc + 1)
}
}
/// Advanced control timer instance.
pub trait AdvancedControlInstance: GeneralPurpose16bitInstance {
/// Get access to the advanced timer registers.
fn regs_advanced() -> crate::pac::timer::TimAdv;
}
/// Capture/Compare 16-bit timer instance.
pub trait CaptureCompare16bitInstance: GeneralPurpose16bitInstance {
/// Set input capture filter.
fn set_input_capture_filter(&mut self, channel: Channel, icf: vals::Icf) {
let raw_channel = channel.index();
Self::regs_gp16()
.ccmr_input(raw_channel / 2)
.modify(|r| r.set_icf(raw_channel % 2, icf));
}
/// Clear input interrupt.
fn clear_input_interrupt(&mut self, channel: Channel) {
Self::regs_gp16().sr().modify(|r| r.set_ccif(channel.index(), false));
}
/// Enable input interrupt.
fn enable_input_interrupt(&mut self, channel: Channel, enable: bool) {
Self::regs_gp16().dier().modify(|r| r.set_ccie(channel.index(), enable));
}
/// Set input capture prescaler.
fn set_input_capture_prescaler(&mut self, channel: Channel, factor: u8) {
let raw_channel = channel.index();
Self::regs_gp16()
.ccmr_input(raw_channel / 2)
.modify(|r| r.set_icpsc(raw_channel % 2, factor));
}
/// Set input TI selection.
fn set_input_ti_selection(&mut self, channel: Channel, tisel: InputTISelection) {
let raw_channel = channel.index();
Self::regs_gp16()
.ccmr_input(raw_channel / 2)
.modify(|r| r.set_ccs(raw_channel % 2, tisel.into()));
}
/// Set input capture mode.
fn set_input_capture_mode(&mut self, channel: Channel, mode: InputCaptureMode) {
Self::regs_gp16().ccer().modify(|r| match mode {
InputCaptureMode::Rising => {
r.set_ccnp(channel.index(), false);
r.set_ccp(channel.index(), false);
}
InputCaptureMode::Falling => {
r.set_ccnp(channel.index(), false);
r.set_ccp(channel.index(), true);
}
InputCaptureMode::BothEdges => {
r.set_ccnp(channel.index(), true);
r.set_ccp(channel.index(), true);
}
});
}
/// Enable timer outputs.
fn enable_outputs(&mut self);
/// Set output compare mode.
fn set_output_compare_mode(&mut self, channel: Channel, mode: OutputCompareMode) {
let r = Self::regs_gp16();
let raw_channel: usize = channel.index();
r.ccmr_output(raw_channel / 2)
.modify(|w| w.set_ocm(raw_channel % 2, mode.into()));
}
/// Set output polarity.
fn set_output_polarity(&mut self, channel: Channel, polarity: OutputPolarity) {
Self::regs_gp16()
.ccer()
.modify(|w| w.set_ccp(channel.index(), polarity.into()));
}
/// Enable/disable a channel.
fn enable_channel(&mut self, channel: Channel, enable: bool) {
Self::regs_gp16().ccer().modify(|w| w.set_cce(channel.index(), enable));
}
/// Set compare value for a channel.
fn set_compare_value(&mut self, channel: Channel, value: u16) {
Self::regs_gp16().ccr(channel.index()).modify(|w| w.set_ccr(value));
}
/// Get capture value for a channel.
fn get_capture_value(&mut self, channel: Channel) -> u16 {
Self::regs_gp16().ccr(channel.index()).read().ccr()
}
/// Get max compare value. This depends on the timer frequency and the clock frequency from RCC.
fn get_max_compare_value(&self) -> u16 {
Self::regs_gp16().arr().read().arr()
}
/// Get compare value for a channel.
fn get_compare_value(&self, channel: Channel) -> u16 {
Self::regs_gp16().ccr(channel.index()).read().ccr()
}
/// Set output compare preload.
fn set_output_compare_preload(&mut self, channel: Channel, preload: bool) {
let channel_index = channel.index();
Self::regs_gp16()
.ccmr_output(channel_index / 2)
.modify(|w| w.set_ocpe(channel_index % 2, preload));
}
}
/// Capture/Compare 16-bit timer instance with complementary pin support.
pub trait ComplementaryCaptureCompare16bitInstance: CaptureCompare16bitInstance + AdvancedControlInstance {
/// Set complementary output polarity.
fn set_complementary_output_polarity(&mut self, channel: Channel, polarity: OutputPolarity) {
Self::regs_advanced()
.ccer()
.modify(|w| w.set_ccnp(channel.index(), polarity.into()));
}
/// Set clock divider for the dead time.
fn set_dead_time_clock_division(&mut self, value: vals::Ckd) {
Self::regs_advanced().cr1().modify(|w| w.set_ckd(value));
}
/// Set dead time, as a fraction of the max duty value.
fn set_dead_time_value(&mut self, value: u8) {
Self::regs_advanced().bdtr().modify(|w| w.set_dtg(value));
}
/// Enable/disable a complementary channel.
fn enable_complementary_channel(&mut self, channel: Channel, enable: bool) {
Self::regs_advanced()
.ccer()
.modify(|w| w.set_ccne(channel.index(), enable));
}
}
/// Capture/Compare 32-bit timer instance.
pub trait CaptureCompare32bitInstance: GeneralPurpose32bitInstance + CaptureCompare16bitInstance {
/// Set comapre value for a channel.
fn set_compare_value(&mut self, channel: Channel, value: u32) {
Self::regs_gp32().ccr(channel.index()).modify(|w| w.set_ccr(value));
}
/// Get capture value for a channel.
fn get_capture_value(&mut self, channel: Channel) -> u32 {
Self::regs_gp32().ccr(channel.index()).read().ccr()
}
/// Get max compare value. This depends on the timer frequency and the clock frequency from RCC.
fn get_max_compare_value(&self) -> u32 {
Self::regs_gp32().arr().read().arr()
}
/// Get compare value for a channel.
fn get_compare_value(&self, channel: Channel) -> u32 {
Self::regs_gp32().ccr(channel.index()).read().ccr()
}
}
}
/// Timer channel.
#[derive(Clone, Copy)]
pub enum Channel {
/// Channel 1.
Ch1,
/// Channel 2.
Ch2,
/// Channel 3.
Ch3,
/// Channel 4.
Ch4,
}
impl Channel {
/// Get the channel index (0..3)
pub fn index(&self) -> usize {
match self {
Channel::Ch1 => 0,
Channel::Ch2 => 1,
Channel::Ch3 => 2,
Channel::Ch4 => 3,
}
}
}
/// Input capture mode.
#[derive(Clone, Copy)]
pub enum InputCaptureMode {
/// Rising edge only.
Rising,
/// Falling edge only.
Falling,
/// Both rising or falling edges.
BothEdges,
}
/// Input TI selection.
#[derive(Clone, Copy)]
pub enum InputTISelection {
/// Normal
Normal,
/// Alternate
Alternate,
/// TRC
TRC,
}
impl From<InputTISelection> for stm32_metapac::timer::vals::CcmrInputCcs {
fn from(tisel: InputTISelection) -> Self {
match tisel {
InputTISelection::Normal => stm32_metapac::timer::vals::CcmrInputCcs::TI4,
InputTISelection::Alternate => stm32_metapac::timer::vals::CcmrInputCcs::TI3,
InputTISelection::TRC => stm32_metapac::timer::vals::CcmrInputCcs::TRC,
}
}
}
/// Timer counting mode.
#[repr(u8)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
pub enum CountingMode {
#[default]
/// The timer counts up to the reload value and then resets back to 0.
EdgeAlignedUp,
/// The timer counts down to 0 and then resets back to the reload value.
EdgeAlignedDown,
/// The timer counts up to the reload value and then counts back to 0.
///
/// The output compare interrupt flags of channels configured in output are
/// set when the counter is counting down.
CenterAlignedDownInterrupts,
/// The timer counts up to the reload value and then counts back to 0.
///
/// The output compare interrupt flags of channels configured in output are
/// set when the counter is counting up.
CenterAlignedUpInterrupts,
/// The timer counts up to the reload value and then counts back to 0.
///
/// The output compare interrupt flags of channels configured in output are
/// set when the counter is counting both up or down.
CenterAlignedBothInterrupts,
}
impl CountingMode {
/// Return whether this mode is edge-aligned (up or down).
pub fn is_edge_aligned(&self) -> bool {
match self {
CountingMode::EdgeAlignedUp | CountingMode::EdgeAlignedDown => true,
_ => false,
}
}
/// Return whether this mode is center-aligned.
pub fn is_center_aligned(&self) -> bool {
match self {
CountingMode::CenterAlignedDownInterrupts
| CountingMode::CenterAlignedUpInterrupts
| CountingMode::CenterAlignedBothInterrupts => true,
_ => false,
}
}
}
impl From<CountingMode> for (vals::Cms, vals::Dir) {
fn from(value: CountingMode) -> Self {
match value {
CountingMode::EdgeAlignedUp => (vals::Cms::EDGEALIGNED, vals::Dir::UP),
CountingMode::EdgeAlignedDown => (vals::Cms::EDGEALIGNED, vals::Dir::DOWN),
CountingMode::CenterAlignedDownInterrupts => (vals::Cms::CENTERALIGNED1, vals::Dir::UP),
CountingMode::CenterAlignedUpInterrupts => (vals::Cms::CENTERALIGNED2, vals::Dir::UP),
CountingMode::CenterAlignedBothInterrupts => (vals::Cms::CENTERALIGNED3, vals::Dir::UP),
}
}
}
impl From<(vals::Cms, vals::Dir)> for CountingMode {
fn from(value: (vals::Cms, vals::Dir)) -> Self {
match value {
(vals::Cms::EDGEALIGNED, vals::Dir::UP) => CountingMode::EdgeAlignedUp,
(vals::Cms::EDGEALIGNED, vals::Dir::DOWN) => CountingMode::EdgeAlignedDown,
(vals::Cms::CENTERALIGNED1, _) => CountingMode::CenterAlignedDownInterrupts,
(vals::Cms::CENTERALIGNED2, _) => CountingMode::CenterAlignedUpInterrupts,
(vals::Cms::CENTERALIGNED3, _) => CountingMode::CenterAlignedBothInterrupts,
}
}
}
/// Output compare mode.
#[derive(Clone, Copy)]
pub enum OutputCompareMode {
/// The comparison between the output compare register TIMx_CCRx and
/// the counter TIMx_CNT has no effect on the outputs.
/// (this mode is used to generate a timing base).
Frozen,
/// Set channel to active level on match. OCxREF signal is forced high when the
/// counter TIMx_CNT matches the capture/compare register x (TIMx_CCRx).
ActiveOnMatch,
/// Set channel to inactive level on match. OCxREF signal is forced low when the
/// counter TIMx_CNT matches the capture/compare register x (TIMx_CCRx).
InactiveOnMatch,
/// Toggle - OCxREF toggles when TIMx_CNT=TIMx_CCRx.
Toggle,
/// Force inactive level - OCxREF is forced low.
ForceInactive,
/// Force active level - OCxREF is forced high.
ForceActive,
/// PWM mode 1 - In upcounting, channel is active as long as TIMx_CNT<TIMx_CCRx
/// else inactive. In downcounting, channel is inactive (OCxREF=0) as long as
/// TIMx_CNT>TIMx_CCRx else active (OCxREF=1).
PwmMode1,
/// PWM mode 2 - In upcounting, channel is inactive as long as
/// TIMx_CNT<TIMx_CCRx else active. In downcounting, channel is active as long as
/// TIMx_CNT>TIMx_CCRx else inactive.
PwmMode2,
// TODO: there's more modes here depending on the chip family.
}
impl From<OutputCompareMode> for stm32_metapac::timer::vals::Ocm {
fn from(mode: OutputCompareMode) -> Self {
match mode {
OutputCompareMode::Frozen => stm32_metapac::timer::vals::Ocm::FROZEN,
OutputCompareMode::ActiveOnMatch => stm32_metapac::timer::vals::Ocm::ACTIVEONMATCH,
OutputCompareMode::InactiveOnMatch => stm32_metapac::timer::vals::Ocm::INACTIVEONMATCH,
OutputCompareMode::Toggle => stm32_metapac::timer::vals::Ocm::TOGGLE,
OutputCompareMode::ForceInactive => stm32_metapac::timer::vals::Ocm::FORCEINACTIVE,
OutputCompareMode::ForceActive => stm32_metapac::timer::vals::Ocm::FORCEACTIVE,
OutputCompareMode::PwmMode1 => stm32_metapac::timer::vals::Ocm::PWMMODE1,
OutputCompareMode::PwmMode2 => stm32_metapac::timer::vals::Ocm::PWMMODE2,
}
}
}
/// Timer output pin polarity.
#[derive(Clone, Copy)]
pub enum OutputPolarity {
/// Active high (higher duty value makes the pin spend more time high).
ActiveHigh,
/// Active low (higher duty value makes the pin spend more time low).
ActiveLow,
}
impl From<OutputPolarity> for bool {
fn from(mode: OutputPolarity) -> Self {
match mode {
OutputPolarity::ActiveHigh => false,
OutputPolarity::ActiveLow => true,
}
}
}
/// Basic 16-bit timer instance.
pub trait Basic16bitInstance: sealed::Basic16bitInstance + 'static {}
/// Gneral-purpose 16-bit timer instance.
pub trait GeneralPurpose16bitInstance: sealed::GeneralPurpose16bitInstance + 'static {}
/// Gneral-purpose 32-bit timer instance.
pub trait GeneralPurpose32bitInstance: sealed::GeneralPurpose32bitInstance + 'static {}
/// Advanced control timer instance.
pub trait AdvancedControlInstance: sealed::AdvancedControlInstance + 'static {}
/// Capture/Compare 16-bit timer instance.
pub trait CaptureCompare16bitInstance:
sealed::CaptureCompare16bitInstance + GeneralPurpose16bitInstance + 'static
{
}
/// Capture/Compare 16-bit timer instance with complementary pin support.
pub trait ComplementaryCaptureCompare16bitInstance:
sealed::ComplementaryCaptureCompare16bitInstance + AdvancedControlInstance + 'static
{
}
/// Capture/Compare 32-bit timer instance.
pub trait CaptureCompare32bitInstance:
sealed::CaptureCompare32bitInstance + CaptureCompare16bitInstance + GeneralPurpose32bitInstance + 'static
{
}
pin_trait!(Channel1Pin, CaptureCompare16bitInstance);
pin_trait!(Channel1ComplementaryPin, CaptureCompare16bitInstance);
pin_trait!(Channel2Pin, CaptureCompare16bitInstance);
pin_trait!(Channel2ComplementaryPin, CaptureCompare16bitInstance);
pin_trait!(Channel3Pin, CaptureCompare16bitInstance);
pin_trait!(Channel3ComplementaryPin, CaptureCompare16bitInstance);
pin_trait!(Channel4Pin, CaptureCompare16bitInstance);
pin_trait!(Channel4ComplementaryPin, CaptureCompare16bitInstance);
pin_trait!(ExternalTriggerPin, CaptureCompare16bitInstance);
pin_trait!(BreakInputPin, CaptureCompare16bitInstance);
pin_trait!(BreakInputComparator1Pin, CaptureCompare16bitInstance);
pin_trait!(BreakInputComparator2Pin, CaptureCompare16bitInstance);
pin_trait!(BreakInput2Pin, CaptureCompare16bitInstance);
pin_trait!(BreakInput2Comparator1Pin, CaptureCompare16bitInstance);
pin_trait!(BreakInput2Comparator2Pin, CaptureCompare16bitInstance);
#[allow(unused)]
macro_rules! impl_basic_16bit_timer {
($inst:ident, $irq:ident) => {
impl sealed::Basic16bitInstance for crate::peripherals::$inst {
type Interrupt = crate::interrupt::typelevel::$irq;
fn regs() -> crate::pac::timer::TimBasic {
unsafe { crate::pac::timer::TimBasic::from_ptr(crate::pac::$inst.as_ptr()) }
}
}
};
}
#[allow(unused)]
macro_rules! impl_32bit_timer {
($inst:ident) => {
impl sealed::GeneralPurpose32bitInstance for crate::peripherals::$inst {
fn regs_gp32() -> crate::pac::timer::TimGp32 {
crate::pac::$inst
}
}
};
}
#[allow(unused)]
macro_rules! impl_compare_capable_16bit {
($inst:ident) => {
impl sealed::CaptureCompare16bitInstance for crate::peripherals::$inst {
fn enable_outputs(&mut self) {}
}
};
}
foreach_interrupt! {
($inst:ident, timer, TIM_BASIC, UP, $irq:ident) => {
impl_basic_16bit_timer!($inst, $irq);
impl Basic16bitInstance for crate::peripherals::$inst {}
};
($inst:ident, timer, TIM_GP16, UP, $irq:ident) => {
impl_basic_16bit_timer!($inst, $irq);
impl_compare_capable_16bit!($inst);
impl Basic16bitInstance for crate::peripherals::$inst {}
impl GeneralPurpose16bitInstance for crate::peripherals::$inst {}
impl CaptureCompare16bitInstance for crate::peripherals::$inst {}
impl sealed::GeneralPurpose16bitInstance for crate::peripherals::$inst {
fn regs_gp16() -> crate::pac::timer::TimGp16 {
crate::pac::$inst
}
}
};
($inst:ident, timer, TIM_GP32, UP, $irq:ident) => {
impl_basic_16bit_timer!($inst, $irq);
impl_32bit_timer!($inst);
impl_compare_capable_16bit!($inst);
impl Basic16bitInstance for crate::peripherals::$inst {}
impl CaptureCompare16bitInstance for crate::peripherals::$inst {}
impl CaptureCompare32bitInstance for crate::peripherals::$inst {}
impl GeneralPurpose16bitInstance for crate::peripherals::$inst {}
impl GeneralPurpose32bitInstance for crate::peripherals::$inst {}
impl sealed::CaptureCompare32bitInstance for crate::peripherals::$inst {}
impl sealed::GeneralPurpose16bitInstance for crate::peripherals::$inst {
fn regs_gp16() -> crate::pac::timer::TimGp16 {
unsafe { crate::pac::timer::TimGp16::from_ptr(crate::pac::$inst.as_ptr()) }
}
}
};
($inst:ident, timer, TIM_ADV, UP, $irq:ident) => {
impl_basic_16bit_timer!($inst, $irq);
impl Basic16bitInstance for crate::peripherals::$inst {}
impl GeneralPurpose16bitInstance for crate::peripherals::$inst {}
impl CaptureCompare16bitInstance for crate::peripherals::$inst {}
impl ComplementaryCaptureCompare16bitInstance for crate::peripherals::$inst {}
impl AdvancedControlInstance for crate::peripherals::$inst {}
impl sealed::CaptureCompare16bitInstance for crate::peripherals::$inst {
fn enable_outputs(&mut self) {
use crate::timer::sealed::AdvancedControlInstance;
let r = Self::regs_advanced();
r.bdtr().modify(|w| w.set_moe(true));
}
}
impl sealed::ComplementaryCaptureCompare16bitInstance for crate::peripherals::$inst {}
impl sealed::GeneralPurpose16bitInstance for crate::peripherals::$inst {
fn regs_gp16() -> crate::pac::timer::TimGp16 {
unsafe { crate::pac::timer::TimGp16::from_ptr(crate::pac::$inst.as_ptr()) }
}
}
impl sealed::AdvancedControlInstance for crate::peripherals::$inst {
fn regs_advanced() -> crate::pac::timer::TimAdv {
crate::pac::$inst
}
}
};
}
// Update Event trigger DMA for every timer
dma_trait!(UpDma, Basic16bitInstance);