921780e6bf
- Move typelevel interrupts to a special-purpose mod: `embassy_xx::interrupt::typelevel`. - Reexport the PAC interrupt enum in `embassy_xx::interrupt`. This has a few advantages: - The `embassy_xx::interrupt` module is now more "standard". - It works with `cortex-m` functions for manipulating interrupts, for example. - It works with RTIC. - the interrupt enum allows holding value that can be "any interrupt at runtime", this can't be done with typelevel irqs. - When "const-generics on enums" is stable, we can remove the typelevel interrupts without disruptive changes to `embassy_xx::interrupt`.
1252 lines
37 KiB
Rust
1252 lines
37 KiB
Rust
#![macro_use]
|
|
|
|
use core::future::poll_fn;
|
|
use core::marker::PhantomData;
|
|
use core::sync::atomic::{compiler_fence, Ordering};
|
|
use core::task::Poll;
|
|
|
|
use embassy_hal_common::drop::OnDrop;
|
|
use embassy_hal_common::{into_ref, PeripheralRef};
|
|
use futures::future::{select, Either};
|
|
|
|
use crate::dma::{NoDma, Transfer};
|
|
use crate::gpio::sealed::AFType;
|
|
use crate::interrupt::typelevel::Interrupt;
|
|
#[cfg(not(any(usart_v1, usart_v2)))]
|
|
#[allow(unused_imports)]
|
|
use crate::pac::usart::regs::Isr as Sr;
|
|
#[cfg(any(usart_v1, usart_v2))]
|
|
#[allow(unused_imports)]
|
|
use crate::pac::usart::regs::Sr;
|
|
#[cfg(not(any(usart_v1, usart_v2)))]
|
|
use crate::pac::usart::Lpuart as Regs;
|
|
#[cfg(any(usart_v1, usart_v2))]
|
|
use crate::pac::usart::Usart as Regs;
|
|
use crate::pac::usart::{regs, vals};
|
|
use crate::time::Hertz;
|
|
use crate::{interrupt, peripherals, Peripheral};
|
|
|
|
/// Interrupt handler.
|
|
pub struct InterruptHandler<T: BasicInstance> {
|
|
_phantom: PhantomData<T>,
|
|
}
|
|
|
|
impl<T: BasicInstance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
|
|
unsafe fn on_interrupt() {
|
|
let r = T::regs();
|
|
let s = T::state();
|
|
|
|
let (sr, cr1, cr3) = unsafe { (sr(r).read(), r.cr1().read(), r.cr3().read()) };
|
|
|
|
let has_errors = (sr.pe() && cr1.peie()) || ((sr.fe() || sr.ne() || sr.ore()) && cr3.eie());
|
|
if has_errors {
|
|
// clear all interrupts and DMA Rx Request
|
|
unsafe {
|
|
r.cr1().modify(|w| {
|
|
// disable RXNE interrupt
|
|
w.set_rxneie(false);
|
|
// disable parity interrupt
|
|
w.set_peie(false);
|
|
// disable idle line interrupt
|
|
w.set_idleie(false);
|
|
});
|
|
r.cr3().modify(|w| {
|
|
// disable Error Interrupt: (Frame error, Noise error, Overrun error)
|
|
w.set_eie(false);
|
|
// disable DMA Rx Request
|
|
w.set_dmar(false);
|
|
});
|
|
}
|
|
} else if cr1.idleie() && sr.idle() {
|
|
// IDLE detected: no more data will come
|
|
unsafe {
|
|
r.cr1().modify(|w| {
|
|
// disable idle line detection
|
|
w.set_idleie(false);
|
|
});
|
|
}
|
|
} else if cr1.rxneie() {
|
|
// We cannot check the RXNE flag as it is auto-cleared by the DMA controller
|
|
|
|
// It is up to the listener to determine if this in fact was a RX event and disable the RXNE detection
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
compiler_fence(Ordering::SeqCst);
|
|
s.rx_waker.wake();
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
|
pub enum DataBits {
|
|
DataBits8,
|
|
DataBits9,
|
|
}
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
|
pub enum Parity {
|
|
ParityNone,
|
|
ParityEven,
|
|
ParityOdd,
|
|
}
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
|
pub enum StopBits {
|
|
#[doc = "1 stop bit"]
|
|
STOP1,
|
|
#[doc = "0.5 stop bits"]
|
|
STOP0P5,
|
|
#[doc = "2 stop bits"]
|
|
STOP2,
|
|
#[doc = "1.5 stop bits"]
|
|
STOP1P5,
|
|
}
|
|
|
|
#[non_exhaustive]
|
|
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
|
pub struct Config {
|
|
pub baudrate: u32,
|
|
pub data_bits: DataBits,
|
|
pub stop_bits: StopBits,
|
|
pub parity: Parity,
|
|
/// if true, on read-like method, if there is a latent error pending,
|
|
/// read will abort, the error reported and cleared
|
|
/// if false, the error is ignored and cleared
|
|
pub detect_previous_overrun: bool,
|
|
|
|
/// Set this to true if the line is considered noise free.
|
|
/// This will increase the receivers tolerance to clock deviations,
|
|
/// but will effectively disable noise detection.
|
|
#[cfg(not(usart_v1))]
|
|
pub assume_noise_free: bool,
|
|
}
|
|
|
|
impl Default for Config {
|
|
fn default() -> Self {
|
|
Self {
|
|
baudrate: 115200,
|
|
data_bits: DataBits::DataBits8,
|
|
stop_bits: StopBits::STOP1,
|
|
parity: Parity::ParityNone,
|
|
// historical behavior
|
|
detect_previous_overrun: false,
|
|
#[cfg(not(usart_v1))]
|
|
assume_noise_free: false,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Serial error
|
|
#[derive(Debug, Eq, PartialEq, Copy, Clone)]
|
|
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
|
#[non_exhaustive]
|
|
pub enum Error {
|
|
/// Framing error
|
|
Framing,
|
|
/// Noise error
|
|
Noise,
|
|
/// RX buffer overrun
|
|
Overrun,
|
|
/// Parity check error
|
|
Parity,
|
|
/// Buffer too large for DMA
|
|
BufferTooLong,
|
|
}
|
|
|
|
enum ReadCompletionEvent {
|
|
// DMA Read transfer completed first
|
|
DmaCompleted,
|
|
// Idle line detected first
|
|
Idle(usize),
|
|
}
|
|
|
|
pub struct Uart<'d, T: BasicInstance, TxDma = NoDma, RxDma = NoDma> {
|
|
tx: UartTx<'d, T, TxDma>,
|
|
rx: UartRx<'d, T, RxDma>,
|
|
}
|
|
|
|
pub struct UartTx<'d, T: BasicInstance, TxDma = NoDma> {
|
|
phantom: PhantomData<&'d mut T>,
|
|
tx_dma: PeripheralRef<'d, TxDma>,
|
|
}
|
|
|
|
pub struct UartRx<'d, T: BasicInstance, RxDma = NoDma> {
|
|
_peri: PeripheralRef<'d, T>,
|
|
rx_dma: PeripheralRef<'d, RxDma>,
|
|
detect_previous_overrun: bool,
|
|
#[cfg(any(usart_v1, usart_v2))]
|
|
buffered_sr: stm32_metapac::usart::regs::Sr,
|
|
}
|
|
|
|
impl<'d, T: BasicInstance, TxDma> UartTx<'d, T, TxDma> {
|
|
/// Useful if you only want Uart Tx. It saves 1 pin and consumes a little less power.
|
|
pub fn new(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
|
|
tx_dma: impl Peripheral<P = TxDma> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
T::enable();
|
|
T::reset();
|
|
|
|
Self::new_inner(peri, tx, tx_dma, config)
|
|
}
|
|
|
|
pub fn new_with_cts(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
|
|
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
|
|
tx_dma: impl Peripheral<P = TxDma> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(cts);
|
|
|
|
T::enable();
|
|
T::reset();
|
|
|
|
unsafe {
|
|
cts.set_as_af(cts.af_num(), AFType::Input);
|
|
T::regs().cr3().write(|w| {
|
|
w.set_ctse(true);
|
|
});
|
|
}
|
|
Self::new_inner(peri, tx, tx_dma, config)
|
|
}
|
|
|
|
fn new_inner(
|
|
_peri: impl Peripheral<P = T> + 'd,
|
|
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
|
|
tx_dma: impl Peripheral<P = TxDma> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(_peri, tx, tx_dma);
|
|
|
|
let r = T::regs();
|
|
|
|
unsafe {
|
|
tx.set_as_af(tx.af_num(), AFType::OutputPushPull);
|
|
}
|
|
|
|
configure(r, &config, T::frequency(), T::KIND, false, true);
|
|
|
|
// create state once!
|
|
let _s = T::state();
|
|
|
|
Self {
|
|
tx_dma,
|
|
phantom: PhantomData,
|
|
}
|
|
}
|
|
|
|
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error>
|
|
where
|
|
TxDma: crate::usart::TxDma<T>,
|
|
{
|
|
let ch = &mut self.tx_dma;
|
|
let request = ch.request();
|
|
unsafe {
|
|
T::regs().cr3().modify(|reg| {
|
|
reg.set_dmat(true);
|
|
});
|
|
}
|
|
// If we don't assign future to a variable, the data register pointer
|
|
// is held across an await and makes the future non-Send.
|
|
let transfer = unsafe { Transfer::new_write(ch, request, buffer, tdr(T::regs()), Default::default()) };
|
|
transfer.await;
|
|
Ok(())
|
|
}
|
|
|
|
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
|
|
unsafe {
|
|
let r = T::regs();
|
|
for &b in buffer {
|
|
while !sr(r).read().txe() {}
|
|
tdr(r).write_volatile(b);
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
pub fn blocking_flush(&mut self) -> Result<(), Error> {
|
|
unsafe {
|
|
let r = T::regs();
|
|
while !sr(r).read().tc() {}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl<'d, T: BasicInstance, RxDma> UartRx<'d, T, RxDma> {
|
|
/// Useful if you only want Uart Rx. It saves 1 pin and consumes a little less power.
|
|
pub fn new(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
|
|
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
|
|
rx_dma: impl Peripheral<P = RxDma> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
T::enable();
|
|
T::reset();
|
|
|
|
Self::new_inner(peri, rx, rx_dma, config)
|
|
}
|
|
|
|
pub fn new_with_rts(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
|
|
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
|
|
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
|
|
rx_dma: impl Peripheral<P = RxDma> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(rts);
|
|
|
|
T::enable();
|
|
T::reset();
|
|
|
|
unsafe {
|
|
rts.set_as_af(rts.af_num(), AFType::OutputPushPull);
|
|
T::regs().cr3().write(|w| {
|
|
w.set_rtse(true);
|
|
});
|
|
}
|
|
|
|
Self::new_inner(peri, rx, rx_dma, config)
|
|
}
|
|
|
|
fn new_inner(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
|
|
rx_dma: impl Peripheral<P = RxDma> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(peri, rx, rx_dma);
|
|
|
|
let r = T::regs();
|
|
|
|
unsafe {
|
|
rx.set_as_af(rx.af_num(), AFType::Input);
|
|
}
|
|
|
|
configure(r, &config, T::frequency(), T::KIND, true, false);
|
|
|
|
T::Interrupt::unpend();
|
|
unsafe { T::Interrupt::enable() };
|
|
|
|
// create state once!
|
|
let _s = T::state();
|
|
|
|
Self {
|
|
_peri: peri,
|
|
rx_dma,
|
|
detect_previous_overrun: config.detect_previous_overrun,
|
|
#[cfg(any(usart_v1, usart_v2))]
|
|
buffered_sr: stm32_metapac::usart::regs::Sr(0),
|
|
}
|
|
}
|
|
|
|
#[cfg(any(usart_v1, usart_v2))]
|
|
unsafe fn check_rx_flags(&mut self) -> Result<bool, Error> {
|
|
let r = T::regs();
|
|
loop {
|
|
// Handle all buffered error flags.
|
|
if self.buffered_sr.pe() {
|
|
self.buffered_sr.set_pe(false);
|
|
return Err(Error::Parity);
|
|
} else if self.buffered_sr.fe() {
|
|
self.buffered_sr.set_fe(false);
|
|
return Err(Error::Framing);
|
|
} else if self.buffered_sr.ne() {
|
|
self.buffered_sr.set_ne(false);
|
|
return Err(Error::Noise);
|
|
} else if self.buffered_sr.ore() {
|
|
self.buffered_sr.set_ore(false);
|
|
return Err(Error::Overrun);
|
|
} else if self.buffered_sr.rxne() {
|
|
self.buffered_sr.set_rxne(false);
|
|
return Ok(true);
|
|
} else {
|
|
// No error flags from previous iterations were set: Check the actual status register
|
|
let sr = r.sr().read();
|
|
if !sr.rxne() {
|
|
return Ok(false);
|
|
}
|
|
|
|
// Buffer the status register and let the loop handle the error flags.
|
|
self.buffered_sr = sr;
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(any(usart_v3, usart_v4))]
|
|
unsafe fn check_rx_flags(&mut self) -> Result<bool, Error> {
|
|
let r = T::regs();
|
|
let sr = r.isr().read();
|
|
if sr.pe() {
|
|
r.icr().write(|w| w.set_pe(true));
|
|
return Err(Error::Parity);
|
|
} else if sr.fe() {
|
|
r.icr().write(|w| w.set_fe(true));
|
|
return Err(Error::Framing);
|
|
} else if sr.ne() {
|
|
r.icr().write(|w| w.set_ne(true));
|
|
return Err(Error::Noise);
|
|
} else if sr.ore() {
|
|
r.icr().write(|w| w.set_ore(true));
|
|
return Err(Error::Overrun);
|
|
}
|
|
Ok(sr.rxne())
|
|
}
|
|
|
|
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error>
|
|
where
|
|
RxDma: crate::usart::RxDma<T>,
|
|
{
|
|
self.inner_read(buffer, false).await?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
pub fn nb_read(&mut self) -> Result<u8, nb::Error<Error>> {
|
|
let r = T::regs();
|
|
unsafe {
|
|
if self.check_rx_flags()? {
|
|
Ok(rdr(r).read_volatile())
|
|
} else {
|
|
Err(nb::Error::WouldBlock)
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
|
|
unsafe {
|
|
let r = T::regs();
|
|
for b in buffer {
|
|
while !self.check_rx_flags()? {}
|
|
*b = rdr(r).read_volatile();
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
pub async fn read_until_idle(&mut self, buffer: &mut [u8]) -> Result<usize, Error>
|
|
where
|
|
RxDma: crate::usart::RxDma<T>,
|
|
{
|
|
self.inner_read(buffer, true).await
|
|
}
|
|
|
|
async fn inner_read_run(
|
|
&mut self,
|
|
buffer: &mut [u8],
|
|
enable_idle_line_detection: bool,
|
|
) -> Result<ReadCompletionEvent, Error>
|
|
where
|
|
RxDma: crate::usart::RxDma<T>,
|
|
{
|
|
let r = T::regs();
|
|
|
|
// make sure USART state is restored to neutral state when this future is dropped
|
|
let on_drop = OnDrop::new(move || {
|
|
// defmt::trace!("Clear all USART interrupts and DMA Read Request");
|
|
// clear all interrupts and DMA Rx Request
|
|
// SAFETY: only clears Rx related flags
|
|
unsafe {
|
|
r.cr1().modify(|w| {
|
|
// disable RXNE interrupt
|
|
w.set_rxneie(false);
|
|
// disable parity interrupt
|
|
w.set_peie(false);
|
|
// disable idle line interrupt
|
|
w.set_idleie(false);
|
|
});
|
|
r.cr3().modify(|w| {
|
|
// disable Error Interrupt: (Frame error, Noise error, Overrun error)
|
|
w.set_eie(false);
|
|
// disable DMA Rx Request
|
|
w.set_dmar(false);
|
|
});
|
|
}
|
|
});
|
|
|
|
let ch = &mut self.rx_dma;
|
|
let request = ch.request();
|
|
|
|
let buffer_len = buffer.len();
|
|
|
|
// Start USART DMA
|
|
// will not do anything yet because DMAR is not yet set
|
|
// future which will complete when DMA Read request completes
|
|
let transfer = unsafe { Transfer::new_read(ch, request, rdr(T::regs()), buffer, Default::default()) };
|
|
|
|
// SAFETY: The only way we might have a problem is using split rx and tx
|
|
// here we only modify or read Rx related flags, interrupts and DMA channel
|
|
unsafe {
|
|
// clear ORE flag just before enabling DMA Rx Request: can be mandatory for the second transfer
|
|
if !self.detect_previous_overrun {
|
|
let sr = sr(r).read();
|
|
// This read also clears the error and idle interrupt flags on v1.
|
|
rdr(r).read_volatile();
|
|
clear_interrupt_flags(r, sr);
|
|
}
|
|
|
|
r.cr1().modify(|w| {
|
|
// disable RXNE interrupt
|
|
w.set_rxneie(false);
|
|
// enable parity interrupt if not ParityNone
|
|
w.set_peie(w.pce());
|
|
});
|
|
|
|
r.cr3().modify(|w| {
|
|
// enable Error Interrupt: (Frame error, Noise error, Overrun error)
|
|
w.set_eie(true);
|
|
// enable DMA Rx Request
|
|
w.set_dmar(true);
|
|
});
|
|
|
|
compiler_fence(Ordering::SeqCst);
|
|
|
|
// In case of errors already pending when reception started, interrupts may have already been raised
|
|
// and lead to reception abortion (Overrun error for instance). In such a case, all interrupts
|
|
// have been disabled in interrupt handler and DMA Rx Request has been disabled.
|
|
|
|
let cr3 = r.cr3().read();
|
|
|
|
if !cr3.dmar() {
|
|
// something went wrong
|
|
// because the only way to get this flag cleared is to have an interrupt
|
|
|
|
// DMA will be stopped when transfer is dropped
|
|
|
|
let sr = sr(r).read();
|
|
// This read also clears the error and idle interrupt flags on v1.
|
|
rdr(r).read_volatile();
|
|
clear_interrupt_flags(r, sr);
|
|
|
|
if sr.pe() {
|
|
return Err(Error::Parity);
|
|
}
|
|
if sr.fe() {
|
|
return Err(Error::Framing);
|
|
}
|
|
if sr.ne() {
|
|
return Err(Error::Noise);
|
|
}
|
|
if sr.ore() {
|
|
return Err(Error::Overrun);
|
|
}
|
|
|
|
unreachable!();
|
|
}
|
|
|
|
if enable_idle_line_detection {
|
|
// clear idle flag
|
|
let sr = sr(r).read();
|
|
// This read also clears the error and idle interrupt flags on v1.
|
|
rdr(r).read_volatile();
|
|
clear_interrupt_flags(r, sr);
|
|
|
|
// enable idle interrupt
|
|
r.cr1().modify(|w| {
|
|
w.set_idleie(true);
|
|
});
|
|
}
|
|
}
|
|
|
|
compiler_fence(Ordering::SeqCst);
|
|
|
|
// future which completes when idle line or error is detected
|
|
let abort = poll_fn(move |cx| {
|
|
let s = T::state();
|
|
|
|
s.rx_waker.register(cx.waker());
|
|
|
|
// SAFETY: read only and we only use Rx related flags
|
|
let sr = unsafe { sr(r).read() };
|
|
|
|
// SAFETY: only clears Rx related flags
|
|
unsafe {
|
|
// This read also clears the error and idle interrupt flags on v1.
|
|
rdr(r).read_volatile();
|
|
clear_interrupt_flags(r, sr);
|
|
}
|
|
|
|
compiler_fence(Ordering::SeqCst);
|
|
|
|
let has_errors = sr.pe() || sr.fe() || sr.ne() || sr.ore();
|
|
|
|
if has_errors {
|
|
// all Rx interrupts and Rx DMA Request have already been cleared in interrupt handler
|
|
|
|
if sr.pe() {
|
|
return Poll::Ready(Err(Error::Parity));
|
|
}
|
|
if sr.fe() {
|
|
return Poll::Ready(Err(Error::Framing));
|
|
}
|
|
if sr.ne() {
|
|
return Poll::Ready(Err(Error::Noise));
|
|
}
|
|
if sr.ore() {
|
|
return Poll::Ready(Err(Error::Overrun));
|
|
}
|
|
}
|
|
|
|
if enable_idle_line_detection && sr.idle() {
|
|
// Idle line detected
|
|
return Poll::Ready(Ok(()));
|
|
}
|
|
|
|
Poll::Pending
|
|
});
|
|
|
|
// wait for the first of DMA request or idle line detected to completes
|
|
// select consumes its arguments
|
|
// when transfer is dropped, it will stop the DMA request
|
|
let r = match select(transfer, abort).await {
|
|
// DMA transfer completed first
|
|
Either::Left(((), _)) => Ok(ReadCompletionEvent::DmaCompleted),
|
|
|
|
// Idle line detected first
|
|
Either::Right((Ok(()), transfer)) => Ok(ReadCompletionEvent::Idle(
|
|
buffer_len - transfer.get_remaining_transfers() as usize,
|
|
)),
|
|
|
|
// error occurred
|
|
Either::Right((Err(e), _)) => Err(e),
|
|
};
|
|
|
|
drop(on_drop);
|
|
|
|
r
|
|
}
|
|
|
|
async fn inner_read(&mut self, buffer: &mut [u8], enable_idle_line_detection: bool) -> Result<usize, Error>
|
|
where
|
|
RxDma: crate::usart::RxDma<T>,
|
|
{
|
|
if buffer.is_empty() {
|
|
return Ok(0);
|
|
} else if buffer.len() > 0xFFFF {
|
|
return Err(Error::BufferTooLong);
|
|
}
|
|
|
|
let buffer_len = buffer.len();
|
|
|
|
// wait for DMA to complete or IDLE line detection if requested
|
|
let res = self.inner_read_run(buffer, enable_idle_line_detection).await;
|
|
|
|
match res {
|
|
Ok(ReadCompletionEvent::DmaCompleted) => Ok(buffer_len),
|
|
Ok(ReadCompletionEvent::Idle(n)) => Ok(n),
|
|
Err(e) => Err(e),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'d, T: BasicInstance, TxDma, RxDma> Uart<'d, T, TxDma, RxDma> {
|
|
pub fn new(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
|
|
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
|
|
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
|
|
tx_dma: impl Peripheral<P = TxDma> + 'd,
|
|
rx_dma: impl Peripheral<P = RxDma> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
T::enable();
|
|
T::reset();
|
|
|
|
Self::new_inner(peri, rx, tx, tx_dma, rx_dma, config)
|
|
}
|
|
|
|
pub fn new_with_rtscts(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
|
|
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
|
|
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
|
|
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
|
|
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
|
|
tx_dma: impl Peripheral<P = TxDma> + 'd,
|
|
rx_dma: impl Peripheral<P = RxDma> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(cts, rts);
|
|
|
|
T::enable();
|
|
T::reset();
|
|
|
|
unsafe {
|
|
rts.set_as_af(rts.af_num(), AFType::OutputPushPull);
|
|
cts.set_as_af(cts.af_num(), AFType::Input);
|
|
T::regs().cr3().write(|w| {
|
|
w.set_rtse(true);
|
|
w.set_ctse(true);
|
|
});
|
|
}
|
|
Self::new_inner(peri, rx, tx, tx_dma, rx_dma, config)
|
|
}
|
|
|
|
#[cfg(not(any(usart_v1, usart_v2)))]
|
|
pub fn new_with_de(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
|
|
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
|
|
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
|
|
de: impl Peripheral<P = impl DePin<T>> + 'd,
|
|
tx_dma: impl Peripheral<P = TxDma> + 'd,
|
|
rx_dma: impl Peripheral<P = RxDma> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(de);
|
|
|
|
T::enable();
|
|
T::reset();
|
|
|
|
unsafe {
|
|
de.set_as_af(de.af_num(), AFType::OutputPushPull);
|
|
T::regs().cr3().write(|w| {
|
|
w.set_dem(true);
|
|
});
|
|
}
|
|
Self::new_inner(peri, rx, tx, tx_dma, rx_dma, config)
|
|
}
|
|
|
|
fn new_inner(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
|
|
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
|
|
tx_dma: impl Peripheral<P = TxDma> + 'd,
|
|
rx_dma: impl Peripheral<P = RxDma> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(peri, rx, tx, tx_dma, rx_dma);
|
|
|
|
let r = T::regs();
|
|
|
|
unsafe {
|
|
rx.set_as_af(rx.af_num(), AFType::Input);
|
|
tx.set_as_af(tx.af_num(), AFType::OutputPushPull);
|
|
}
|
|
|
|
configure(r, &config, T::frequency(), T::KIND, true, true);
|
|
|
|
T::Interrupt::unpend();
|
|
unsafe { T::Interrupt::enable() };
|
|
|
|
// create state once!
|
|
let _s = T::state();
|
|
|
|
Self {
|
|
tx: UartTx {
|
|
tx_dma,
|
|
phantom: PhantomData,
|
|
},
|
|
rx: UartRx {
|
|
_peri: peri,
|
|
rx_dma,
|
|
detect_previous_overrun: config.detect_previous_overrun,
|
|
#[cfg(any(usart_v1, usart_v2))]
|
|
buffered_sr: stm32_metapac::usart::regs::Sr(0),
|
|
},
|
|
}
|
|
}
|
|
|
|
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error>
|
|
where
|
|
TxDma: crate::usart::TxDma<T>,
|
|
{
|
|
self.tx.write(buffer).await
|
|
}
|
|
|
|
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
|
|
self.tx.blocking_write(buffer)
|
|
}
|
|
|
|
pub fn blocking_flush(&mut self) -> Result<(), Error> {
|
|
self.tx.blocking_flush()
|
|
}
|
|
|
|
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error>
|
|
where
|
|
RxDma: crate::usart::RxDma<T>,
|
|
{
|
|
self.rx.read(buffer).await
|
|
}
|
|
|
|
pub fn nb_read(&mut self) -> Result<u8, nb::Error<Error>> {
|
|
self.rx.nb_read()
|
|
}
|
|
|
|
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
|
|
self.rx.blocking_read(buffer)
|
|
}
|
|
|
|
pub async fn read_until_idle(&mut self, buffer: &mut [u8]) -> Result<usize, Error>
|
|
where
|
|
RxDma: crate::usart::RxDma<T>,
|
|
{
|
|
self.rx.read_until_idle(buffer).await
|
|
}
|
|
|
|
/// Split the Uart into a transmitter and receiver, which is
|
|
/// particularly useful when having two tasks correlating to
|
|
/// transmitting and receiving.
|
|
pub fn split(self) -> (UartTx<'d, T, TxDma>, UartRx<'d, T, RxDma>) {
|
|
(self.tx, self.rx)
|
|
}
|
|
}
|
|
|
|
fn configure(r: Regs, config: &Config, pclk_freq: Hertz, kind: Kind, enable_rx: bool, enable_tx: bool) {
|
|
if !enable_rx && !enable_tx {
|
|
panic!("USART: At least one of RX or TX should be enabled");
|
|
}
|
|
|
|
#[cfg(not(usart_v4))]
|
|
static DIVS: [(u16, ()); 1] = [(1, ())];
|
|
|
|
#[cfg(usart_v4)]
|
|
static DIVS: [(u16, vals::Presc); 12] = [
|
|
(1, vals::Presc::DIV1),
|
|
(2, vals::Presc::DIV2),
|
|
(4, vals::Presc::DIV4),
|
|
(6, vals::Presc::DIV6),
|
|
(8, vals::Presc::DIV8),
|
|
(10, vals::Presc::DIV10),
|
|
(12, vals::Presc::DIV12),
|
|
(16, vals::Presc::DIV16),
|
|
(32, vals::Presc::DIV32),
|
|
(64, vals::Presc::DIV64),
|
|
(128, vals::Presc::DIV128),
|
|
(256, vals::Presc::DIV256),
|
|
];
|
|
|
|
let (mul, brr_min, brr_max) = match kind {
|
|
#[cfg(any(usart_v3, usart_v4))]
|
|
Kind::Lpuart => (256, 0x300, 0x10_0000),
|
|
Kind::Uart => (1, 0x10, 0x1_0000),
|
|
};
|
|
|
|
#[cfg(not(usart_v1))]
|
|
let mut over8 = false;
|
|
let mut found = None;
|
|
for &(presc, _presc_val) in &DIVS {
|
|
let denom = (config.baudrate * presc as u32) as u64;
|
|
let div = (pclk_freq.0 as u64 * mul + (denom / 2)) / denom;
|
|
trace!(
|
|
"USART: presc={}, div=0x{:08x} (mantissa = {}, fraction = {})",
|
|
presc,
|
|
div,
|
|
div >> 4,
|
|
div & 0x0F
|
|
);
|
|
|
|
if div < brr_min {
|
|
#[cfg(not(usart_v1))]
|
|
if div * 2 >= brr_min && kind == Kind::Uart && !cfg!(usart_v1) {
|
|
over8 = true;
|
|
let div = div as u32;
|
|
unsafe {
|
|
r.brr().write_value(regs::Brr(((div << 1) & !0xF) | (div & 0x07)));
|
|
#[cfg(usart_v4)]
|
|
r.presc().write(|w| w.set_prescaler(_presc_val));
|
|
}
|
|
found = Some(div);
|
|
break;
|
|
}
|
|
panic!("USART: baudrate too high");
|
|
}
|
|
|
|
if div < brr_max {
|
|
let div = div as u32;
|
|
unsafe {
|
|
r.brr().write_value(regs::Brr(div));
|
|
#[cfg(usart_v4)]
|
|
r.presc().write(|w| w.set_prescaler(_presc_val));
|
|
}
|
|
found = Some(div);
|
|
break;
|
|
}
|
|
}
|
|
|
|
let div = found.expect("USART: baudrate too low");
|
|
|
|
#[cfg(not(usart_v1))]
|
|
let oversampling = if over8 { "8 bit" } else { "16 bit" };
|
|
#[cfg(usart_v1)]
|
|
let oversampling = "default";
|
|
trace!(
|
|
"Using {} oversampling, desired baudrate: {}, actual baudrate: {}",
|
|
oversampling,
|
|
config.baudrate,
|
|
pclk_freq.0 / div
|
|
);
|
|
|
|
unsafe {
|
|
r.cr2().write(|w| {
|
|
w.set_stop(match config.stop_bits {
|
|
StopBits::STOP0P5 => vals::Stop::STOP0P5,
|
|
StopBits::STOP1 => vals::Stop::STOP1,
|
|
StopBits::STOP1P5 => vals::Stop::STOP1P5,
|
|
StopBits::STOP2 => vals::Stop::STOP2,
|
|
});
|
|
});
|
|
r.cr1().write(|w| {
|
|
// enable uart
|
|
w.set_ue(true);
|
|
// enable transceiver
|
|
w.set_te(enable_tx);
|
|
// enable receiver
|
|
w.set_re(enable_rx);
|
|
// configure word size
|
|
w.set_m0(if config.parity != Parity::ParityNone {
|
|
vals::M0::BIT9
|
|
} else {
|
|
vals::M0::BIT8
|
|
});
|
|
// configure parity
|
|
w.set_pce(config.parity != Parity::ParityNone);
|
|
w.set_ps(match config.parity {
|
|
Parity::ParityOdd => vals::Ps::ODD,
|
|
Parity::ParityEven => vals::Ps::EVEN,
|
|
_ => vals::Ps::EVEN,
|
|
});
|
|
#[cfg(not(usart_v1))]
|
|
w.set_over8(vals::Over8(over8 as _));
|
|
});
|
|
|
|
#[cfg(not(usart_v1))]
|
|
r.cr3().modify(|w| {
|
|
w.set_onebit(config.assume_noise_free);
|
|
});
|
|
}
|
|
}
|
|
|
|
mod eh02 {
|
|
use super::*;
|
|
|
|
impl<'d, T: BasicInstance, RxDma> embedded_hal_02::serial::Read<u8> for UartRx<'d, T, RxDma> {
|
|
type Error = Error;
|
|
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
|
|
self.nb_read()
|
|
}
|
|
}
|
|
|
|
impl<'d, T: BasicInstance, TxDma> embedded_hal_02::blocking::serial::Write<u8> for UartTx<'d, T, TxDma> {
|
|
type Error = Error;
|
|
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write(buffer)
|
|
}
|
|
fn bflush(&mut self) -> Result<(), Self::Error> {
|
|
self.blocking_flush()
|
|
}
|
|
}
|
|
|
|
impl<'d, T: BasicInstance, TxDma, RxDma> embedded_hal_02::serial::Read<u8> for Uart<'d, T, TxDma, RxDma> {
|
|
type Error = Error;
|
|
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
|
|
self.nb_read()
|
|
}
|
|
}
|
|
|
|
impl<'d, T: BasicInstance, TxDma, RxDma> embedded_hal_02::blocking::serial::Write<u8> for Uart<'d, T, TxDma, RxDma> {
|
|
type Error = Error;
|
|
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write(buffer)
|
|
}
|
|
fn bflush(&mut self) -> Result<(), Self::Error> {
|
|
self.blocking_flush()
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "unstable-traits")]
|
|
mod eh1 {
|
|
use super::*;
|
|
|
|
impl embedded_hal_1::serial::Error for Error {
|
|
fn kind(&self) -> embedded_hal_1::serial::ErrorKind {
|
|
match *self {
|
|
Self::Framing => embedded_hal_1::serial::ErrorKind::FrameFormat,
|
|
Self::Noise => embedded_hal_1::serial::ErrorKind::Noise,
|
|
Self::Overrun => embedded_hal_1::serial::ErrorKind::Overrun,
|
|
Self::Parity => embedded_hal_1::serial::ErrorKind::Parity,
|
|
Self::BufferTooLong => embedded_hal_1::serial::ErrorKind::Other,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'d, T: BasicInstance, TxDma, RxDma> embedded_hal_1::serial::ErrorType for Uart<'d, T, TxDma, RxDma> {
|
|
type Error = Error;
|
|
}
|
|
|
|
impl<'d, T: BasicInstance, TxDma> embedded_hal_1::serial::ErrorType for UartTx<'d, T, TxDma> {
|
|
type Error = Error;
|
|
}
|
|
|
|
impl<'d, T: BasicInstance, RxDma> embedded_hal_1::serial::ErrorType for UartRx<'d, T, RxDma> {
|
|
type Error = Error;
|
|
}
|
|
|
|
impl<'d, T: BasicInstance, RxDma> embedded_hal_nb::serial::Read for UartRx<'d, T, RxDma> {
|
|
fn read(&mut self) -> nb::Result<u8, Self::Error> {
|
|
self.nb_read()
|
|
}
|
|
}
|
|
|
|
impl<'d, T: BasicInstance, TxDma> embedded_hal_1::serial::Write for UartTx<'d, T, TxDma> {
|
|
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write(buffer)
|
|
}
|
|
|
|
fn flush(&mut self) -> Result<(), Self::Error> {
|
|
self.blocking_flush()
|
|
}
|
|
}
|
|
|
|
impl<'d, T: BasicInstance, TxDma> embedded_hal_nb::serial::Write for UartTx<'d, T, TxDma> {
|
|
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
|
|
self.blocking_write(&[char]).map_err(nb::Error::Other)
|
|
}
|
|
|
|
fn flush(&mut self) -> nb::Result<(), Self::Error> {
|
|
self.blocking_flush().map_err(nb::Error::Other)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: BasicInstance, TxDma, RxDma> embedded_hal_nb::serial::Read for Uart<'d, T, TxDma, RxDma> {
|
|
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
|
|
self.nb_read()
|
|
}
|
|
}
|
|
|
|
impl<'d, T: BasicInstance, TxDma, RxDma> embedded_hal_1::serial::Write for Uart<'d, T, TxDma, RxDma> {
|
|
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write(buffer)
|
|
}
|
|
|
|
fn flush(&mut self) -> Result<(), Self::Error> {
|
|
self.blocking_flush()
|
|
}
|
|
}
|
|
|
|
impl<'d, T: BasicInstance, TxDma, RxDma> embedded_hal_nb::serial::Write for Uart<'d, T, TxDma, RxDma> {
|
|
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
|
|
self.blocking_write(&[char]).map_err(nb::Error::Other)
|
|
}
|
|
|
|
fn flush(&mut self) -> nb::Result<(), Self::Error> {
|
|
self.blocking_flush().map_err(nb::Error::Other)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(all(feature = "unstable-traits", feature = "nightly"))]
|
|
mod eio {
|
|
use embedded_io::asynch::Write;
|
|
use embedded_io::Io;
|
|
|
|
use super::*;
|
|
|
|
impl<T, TxDma, RxDma> Io for Uart<'_, T, TxDma, RxDma>
|
|
where
|
|
T: BasicInstance,
|
|
{
|
|
type Error = Error;
|
|
}
|
|
|
|
impl<T, TxDma, RxDma> Write for Uart<'_, T, TxDma, RxDma>
|
|
where
|
|
T: BasicInstance,
|
|
TxDma: super::TxDma<T>,
|
|
{
|
|
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
|
|
self.write(buf).await?;
|
|
Ok(buf.len())
|
|
}
|
|
|
|
async fn flush(&mut self) -> Result<(), Self::Error> {
|
|
self.blocking_flush()
|
|
}
|
|
}
|
|
|
|
impl<T, TxDma> Io for UartTx<'_, T, TxDma>
|
|
where
|
|
T: BasicInstance,
|
|
{
|
|
type Error = Error;
|
|
}
|
|
|
|
impl<T, TxDma> Write for UartTx<'_, T, TxDma>
|
|
where
|
|
T: BasicInstance,
|
|
TxDma: super::TxDma<T>,
|
|
{
|
|
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
|
|
self.write(buf).await?;
|
|
Ok(buf.len())
|
|
}
|
|
|
|
async fn flush(&mut self) -> Result<(), Self::Error> {
|
|
self.blocking_flush()
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "nightly")]
|
|
pub use buffered::*;
|
|
|
|
#[cfg(feature = "nightly")]
|
|
pub use crate::usart::buffered::InterruptHandler as BufferedInterruptHandler;
|
|
#[cfg(feature = "nightly")]
|
|
mod buffered;
|
|
|
|
#[cfg(not(gpdma))]
|
|
mod ringbuffered;
|
|
#[cfg(not(gpdma))]
|
|
pub use ringbuffered::RingBufferedUartRx;
|
|
|
|
use self::sealed::Kind;
|
|
|
|
#[cfg(any(usart_v1, usart_v2))]
|
|
fn tdr(r: crate::pac::usart::Usart) -> *mut u8 {
|
|
r.dr().ptr() as _
|
|
}
|
|
|
|
#[cfg(any(usart_v1, usart_v2))]
|
|
fn rdr(r: crate::pac::usart::Usart) -> *mut u8 {
|
|
r.dr().ptr() as _
|
|
}
|
|
|
|
#[cfg(any(usart_v1, usart_v2))]
|
|
fn sr(r: crate::pac::usart::Usart) -> crate::pac::common::Reg<regs::Sr, crate::pac::common::RW> {
|
|
r.sr()
|
|
}
|
|
|
|
#[cfg(any(usart_v1, usart_v2))]
|
|
#[allow(unused)]
|
|
unsafe fn clear_interrupt_flags(_r: Regs, _sr: regs::Sr) {
|
|
// On v1 the flags are cleared implicitly by reads and writes to DR.
|
|
}
|
|
|
|
#[cfg(any(usart_v3, usart_v4))]
|
|
fn tdr(r: Regs) -> *mut u8 {
|
|
r.tdr().ptr() as _
|
|
}
|
|
|
|
#[cfg(any(usart_v3, usart_v4))]
|
|
fn rdr(r: Regs) -> *mut u8 {
|
|
r.rdr().ptr() as _
|
|
}
|
|
|
|
#[cfg(any(usart_v3, usart_v4))]
|
|
fn sr(r: Regs) -> crate::pac::common::Reg<regs::Isr, crate::pac::common::R> {
|
|
r.isr()
|
|
}
|
|
|
|
#[cfg(any(usart_v3, usart_v4))]
|
|
#[allow(unused)]
|
|
unsafe fn clear_interrupt_flags(r: Regs, sr: regs::Isr) {
|
|
r.icr().write(|w| *w = regs::Icr(sr.0));
|
|
}
|
|
|
|
pub(crate) mod sealed {
|
|
use embassy_sync::waitqueue::AtomicWaker;
|
|
|
|
use super::*;
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq)]
|
|
pub enum Kind {
|
|
Uart,
|
|
#[cfg(any(usart_v3, usart_v4))]
|
|
Lpuart,
|
|
}
|
|
|
|
pub struct State {
|
|
pub rx_waker: AtomicWaker,
|
|
pub tx_waker: AtomicWaker,
|
|
}
|
|
|
|
impl State {
|
|
pub const fn new() -> Self {
|
|
Self {
|
|
rx_waker: AtomicWaker::new(),
|
|
tx_waker: AtomicWaker::new(),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub trait BasicInstance: crate::rcc::RccPeripheral {
|
|
const KIND: Kind;
|
|
type Interrupt: interrupt::typelevel::Interrupt;
|
|
|
|
fn regs() -> Regs;
|
|
fn state() -> &'static State;
|
|
|
|
#[cfg(feature = "nightly")]
|
|
fn buffered_state() -> &'static buffered::State;
|
|
}
|
|
|
|
pub trait FullInstance: BasicInstance {
|
|
fn regs_uart() -> crate::pac::usart::Usart;
|
|
}
|
|
}
|
|
|
|
pub trait BasicInstance: Peripheral<P = Self> + sealed::BasicInstance + 'static + Send {}
|
|
|
|
pub trait FullInstance: sealed::FullInstance {}
|
|
|
|
pin_trait!(RxPin, BasicInstance);
|
|
pin_trait!(TxPin, BasicInstance);
|
|
pin_trait!(CtsPin, BasicInstance);
|
|
pin_trait!(RtsPin, BasicInstance);
|
|
pin_trait!(CkPin, BasicInstance);
|
|
pin_trait!(DePin, BasicInstance);
|
|
|
|
dma_trait!(TxDma, BasicInstance);
|
|
dma_trait!(RxDma, BasicInstance);
|
|
|
|
macro_rules! impl_usart {
|
|
($inst:ident, $irq:ident, $kind:expr) => {
|
|
impl sealed::BasicInstance for crate::peripherals::$inst {
|
|
const KIND: Kind = $kind;
|
|
type Interrupt = crate::interrupt::typelevel::$irq;
|
|
|
|
fn regs() -> Regs {
|
|
Regs(crate::pac::$inst.0)
|
|
}
|
|
|
|
fn state() -> &'static crate::usart::sealed::State {
|
|
static STATE: crate::usart::sealed::State = crate::usart::sealed::State::new();
|
|
&STATE
|
|
}
|
|
|
|
#[cfg(feature = "nightly")]
|
|
fn buffered_state() -> &'static buffered::State {
|
|
static STATE: buffered::State = buffered::State::new();
|
|
&STATE
|
|
}
|
|
}
|
|
|
|
impl BasicInstance for peripherals::$inst {}
|
|
};
|
|
}
|
|
|
|
foreach_interrupt!(
|
|
($inst:ident, usart, LPUART, $signal_name:ident, $irq:ident) => {
|
|
impl_usart!($inst, $irq, Kind::Lpuart);
|
|
};
|
|
|
|
($inst:ident, usart, $block:ident, $signal_name:ident, $irq:ident) => {
|
|
impl_usart!($inst, $irq, Kind::Uart);
|
|
|
|
impl sealed::FullInstance for peripherals::$inst {
|
|
fn regs_uart() -> crate::pac::usart::Usart {
|
|
crate::pac::$inst
|
|
}
|
|
}
|
|
|
|
impl FullInstance for peripherals::$inst {}
|
|
};
|
|
);
|