1317 lines
39 KiB
Rust
1317 lines
39 KiB
Rust
//! Serial Peripheral Interface (SPI)
|
|
#![macro_use]
|
|
|
|
use core::marker::PhantomData;
|
|
use core::ptr;
|
|
|
|
use embassy_embedded_hal::SetConfig;
|
|
use embassy_futures::join::join;
|
|
use embassy_hal_internal::PeripheralRef;
|
|
pub use embedded_hal_02::spi::{Mode, Phase, Polarity, MODE_0, MODE_1, MODE_2, MODE_3};
|
|
|
|
use crate::dma::{word, ChannelAndRequest};
|
|
use crate::gpio::{AfType, AnyPin, OutputType, Pull, SealedPin as _, Speed};
|
|
use crate::mode::{Async, Blocking, Mode as PeriMode};
|
|
use crate::pac::spi::{regs, vals, Spi as Regs};
|
|
use crate::rcc::{RccInfo, SealedRccPeripheral};
|
|
use crate::time::Hertz;
|
|
use crate::Peripheral;
|
|
|
|
/// SPI error.
|
|
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
|
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
|
pub enum Error {
|
|
/// Invalid framing.
|
|
Framing,
|
|
/// CRC error (only if hardware CRC checking is enabled).
|
|
Crc,
|
|
/// Mode fault
|
|
ModeFault,
|
|
/// Overrun.
|
|
Overrun,
|
|
}
|
|
|
|
/// SPI bit order
|
|
#[derive(Copy, Clone)]
|
|
pub enum BitOrder {
|
|
/// Least significant bit first.
|
|
LsbFirst,
|
|
/// Most significant bit first.
|
|
MsbFirst,
|
|
}
|
|
|
|
/// SPI configuration.
|
|
#[non_exhaustive]
|
|
#[derive(Copy, Clone)]
|
|
pub struct Config {
|
|
/// SPI mode.
|
|
pub mode: Mode,
|
|
/// Bit order.
|
|
pub bit_order: BitOrder,
|
|
/// Clock frequency.
|
|
pub frequency: Hertz,
|
|
/// Enable internal pullup on MISO.
|
|
///
|
|
/// There are some ICs that require a pull-up on the MISO pin for some applications.
|
|
/// If you are unsure, you probably don't need this.
|
|
pub miso_pull: Pull,
|
|
}
|
|
|
|
impl Default for Config {
|
|
fn default() -> Self {
|
|
Self {
|
|
mode: MODE_0,
|
|
bit_order: BitOrder::MsbFirst,
|
|
frequency: Hertz(1_000_000),
|
|
miso_pull: Pull::None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Config {
|
|
fn raw_phase(&self) -> vals::Cpha {
|
|
match self.mode.phase {
|
|
Phase::CaptureOnSecondTransition => vals::Cpha::SECONDEDGE,
|
|
Phase::CaptureOnFirstTransition => vals::Cpha::FIRSTEDGE,
|
|
}
|
|
}
|
|
|
|
fn raw_polarity(&self) -> vals::Cpol {
|
|
match self.mode.polarity {
|
|
Polarity::IdleHigh => vals::Cpol::IDLEHIGH,
|
|
Polarity::IdleLow => vals::Cpol::IDLELOW,
|
|
}
|
|
}
|
|
|
|
fn raw_byte_order(&self) -> vals::Lsbfirst {
|
|
match self.bit_order {
|
|
BitOrder::LsbFirst => vals::Lsbfirst::LSBFIRST,
|
|
BitOrder::MsbFirst => vals::Lsbfirst::MSBFIRST,
|
|
}
|
|
}
|
|
|
|
#[cfg(gpio_v1)]
|
|
fn sck_af(&self) -> AfType {
|
|
AfType::output(OutputType::PushPull, Speed::VeryHigh)
|
|
}
|
|
|
|
#[cfg(gpio_v2)]
|
|
fn sck_af(&self) -> AfType {
|
|
AfType::output_pull(
|
|
OutputType::PushPull,
|
|
Speed::VeryHigh,
|
|
match self.mode.polarity {
|
|
Polarity::IdleLow => Pull::Down,
|
|
Polarity::IdleHigh => Pull::Up,
|
|
},
|
|
)
|
|
}
|
|
}
|
|
/// SPI driver.
|
|
pub struct Spi<'d, M: PeriMode> {
|
|
pub(crate) info: &'static Info,
|
|
kernel_clock: Hertz,
|
|
sck: Option<PeripheralRef<'d, AnyPin>>,
|
|
mosi: Option<PeripheralRef<'d, AnyPin>>,
|
|
miso: Option<PeripheralRef<'d, AnyPin>>,
|
|
tx_dma: Option<ChannelAndRequest<'d>>,
|
|
rx_dma: Option<ChannelAndRequest<'d>>,
|
|
_phantom: PhantomData<M>,
|
|
current_word_size: word_impl::Config,
|
|
}
|
|
|
|
impl<'d, M: PeriMode> Spi<'d, M> {
|
|
fn new_inner<T: Instance>(
|
|
_peri: impl Peripheral<P = T> + 'd,
|
|
sck: Option<PeripheralRef<'d, AnyPin>>,
|
|
mosi: Option<PeripheralRef<'d, AnyPin>>,
|
|
miso: Option<PeripheralRef<'d, AnyPin>>,
|
|
tx_dma: Option<ChannelAndRequest<'d>>,
|
|
rx_dma: Option<ChannelAndRequest<'d>>,
|
|
config: Config,
|
|
) -> Self {
|
|
let mut this = Self {
|
|
info: T::info(),
|
|
kernel_clock: T::frequency(),
|
|
sck,
|
|
mosi,
|
|
miso,
|
|
tx_dma,
|
|
rx_dma,
|
|
current_word_size: <u8 as SealedWord>::CONFIG,
|
|
_phantom: PhantomData,
|
|
};
|
|
this.enable_and_init(config);
|
|
this
|
|
}
|
|
|
|
fn enable_and_init(&mut self, config: Config) {
|
|
let br = compute_baud_rate(self.kernel_clock, config.frequency);
|
|
let cpha = config.raw_phase();
|
|
let cpol = config.raw_polarity();
|
|
let lsbfirst = config.raw_byte_order();
|
|
|
|
self.info.rcc.enable_and_reset();
|
|
|
|
let regs = self.info.regs;
|
|
#[cfg(any(spi_v1, spi_f1))]
|
|
{
|
|
regs.cr2().modify(|w| {
|
|
w.set_ssoe(false);
|
|
});
|
|
regs.cr1().modify(|w| {
|
|
w.set_cpha(cpha);
|
|
w.set_cpol(cpol);
|
|
|
|
w.set_mstr(vals::Mstr::MASTER);
|
|
w.set_br(br);
|
|
w.set_spe(true);
|
|
w.set_lsbfirst(lsbfirst);
|
|
w.set_ssi(true);
|
|
w.set_ssm(true);
|
|
w.set_crcen(false);
|
|
w.set_bidimode(vals::Bidimode::UNIDIRECTIONAL);
|
|
// we're doing "fake rxonly", by actually writing one
|
|
// byte to TXDR for each byte we want to receive. if we
|
|
// set OUTPUTDISABLED here, this hangs.
|
|
w.set_rxonly(vals::Rxonly::FULLDUPLEX);
|
|
w.set_dff(<u8 as SealedWord>::CONFIG)
|
|
});
|
|
}
|
|
#[cfg(spi_v2)]
|
|
{
|
|
regs.cr2().modify(|w| {
|
|
let (ds, frxth) = <u8 as SealedWord>::CONFIG;
|
|
w.set_frxth(frxth);
|
|
w.set_ds(ds);
|
|
w.set_ssoe(false);
|
|
});
|
|
regs.cr1().modify(|w| {
|
|
w.set_cpha(cpha);
|
|
w.set_cpol(cpol);
|
|
|
|
w.set_mstr(vals::Mstr::MASTER);
|
|
w.set_br(br);
|
|
w.set_lsbfirst(lsbfirst);
|
|
w.set_ssi(true);
|
|
w.set_ssm(true);
|
|
w.set_crcen(false);
|
|
w.set_bidimode(vals::Bidimode::UNIDIRECTIONAL);
|
|
w.set_spe(true);
|
|
});
|
|
}
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
{
|
|
regs.ifcr().write(|w| w.0 = 0xffff_ffff);
|
|
regs.cfg2().modify(|w| {
|
|
//w.set_ssoe(true);
|
|
w.set_ssoe(false);
|
|
w.set_cpha(cpha);
|
|
w.set_cpol(cpol);
|
|
w.set_lsbfirst(lsbfirst);
|
|
w.set_ssm(true);
|
|
w.set_master(vals::Master::MASTER);
|
|
w.set_comm(vals::Comm::FULLDUPLEX);
|
|
w.set_ssom(vals::Ssom::ASSERTED);
|
|
w.set_midi(0);
|
|
w.set_mssi(0);
|
|
w.set_afcntr(true);
|
|
w.set_ssiop(vals::Ssiop::ACTIVEHIGH);
|
|
});
|
|
regs.cfg1().modify(|w| {
|
|
w.set_crcen(false);
|
|
w.set_mbr(br);
|
|
w.set_dsize(<u8 as SealedWord>::CONFIG);
|
|
w.set_fthlv(vals::Fthlv::ONEFRAME);
|
|
});
|
|
regs.cr2().modify(|w| {
|
|
w.set_tsize(0);
|
|
});
|
|
regs.cr1().modify(|w| {
|
|
w.set_ssi(false);
|
|
w.set_spe(true);
|
|
});
|
|
}
|
|
}
|
|
|
|
/// Reconfigures it with the supplied config.
|
|
pub fn set_config(&mut self, config: &Config) -> Result<(), ()> {
|
|
let cpha = config.raw_phase();
|
|
let cpol = config.raw_polarity();
|
|
|
|
let lsbfirst = config.raw_byte_order();
|
|
|
|
let br = compute_baud_rate(self.kernel_clock, config.frequency);
|
|
|
|
#[cfg(any(spi_v1, spi_f1, spi_v2))]
|
|
self.info.regs.cr1().modify(|w| {
|
|
w.set_cpha(cpha);
|
|
w.set_cpol(cpol);
|
|
w.set_br(br);
|
|
w.set_lsbfirst(lsbfirst);
|
|
});
|
|
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
{
|
|
self.info.regs.cfg2().modify(|w| {
|
|
w.set_cpha(cpha);
|
|
w.set_cpol(cpol);
|
|
w.set_lsbfirst(lsbfirst);
|
|
});
|
|
self.info.regs.cfg1().modify(|w| {
|
|
w.set_mbr(br);
|
|
});
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Get current SPI configuration.
|
|
pub fn get_current_config(&self) -> Config {
|
|
#[cfg(any(spi_v1, spi_f1, spi_v2))]
|
|
let cfg = self.info.regs.cr1().read();
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
let cfg = self.info.regs.cfg2().read();
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
let cfg1 = self.info.regs.cfg1().read();
|
|
|
|
let polarity = if cfg.cpol() == vals::Cpol::IDLELOW {
|
|
Polarity::IdleLow
|
|
} else {
|
|
Polarity::IdleHigh
|
|
};
|
|
let phase = if cfg.cpha() == vals::Cpha::FIRSTEDGE {
|
|
Phase::CaptureOnFirstTransition
|
|
} else {
|
|
Phase::CaptureOnSecondTransition
|
|
};
|
|
|
|
let bit_order = if cfg.lsbfirst() == vals::Lsbfirst::LSBFIRST {
|
|
BitOrder::LsbFirst
|
|
} else {
|
|
BitOrder::MsbFirst
|
|
};
|
|
|
|
let miso_pull = match &self.miso {
|
|
None => Pull::None,
|
|
Some(pin) => pin.pull(),
|
|
};
|
|
|
|
#[cfg(any(spi_v1, spi_f1, spi_v2))]
|
|
let br = cfg.br();
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
let br = cfg1.mbr();
|
|
|
|
let frequency = compute_frequency(self.kernel_clock, br);
|
|
|
|
Config {
|
|
mode: Mode { polarity, phase },
|
|
bit_order,
|
|
frequency,
|
|
miso_pull,
|
|
}
|
|
}
|
|
|
|
fn set_word_size(&mut self, word_size: word_impl::Config) {
|
|
if self.current_word_size == word_size {
|
|
return;
|
|
}
|
|
|
|
#[cfg(any(spi_v1, spi_f1))]
|
|
{
|
|
self.info.regs.cr1().modify(|reg| {
|
|
reg.set_spe(false);
|
|
reg.set_dff(word_size)
|
|
});
|
|
self.info.regs.cr1().modify(|reg| {
|
|
reg.set_spe(true);
|
|
});
|
|
}
|
|
#[cfg(spi_v2)]
|
|
{
|
|
self.info.regs.cr1().modify(|w| {
|
|
w.set_spe(false);
|
|
});
|
|
self.info.regs.cr2().modify(|w| {
|
|
w.set_frxth(word_size.1);
|
|
w.set_ds(word_size.0);
|
|
});
|
|
self.info.regs.cr1().modify(|w| {
|
|
w.set_spe(true);
|
|
});
|
|
}
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
{
|
|
self.info.regs.cr1().modify(|w| {
|
|
w.set_csusp(true);
|
|
});
|
|
while self.info.regs.sr().read().eot() {}
|
|
self.info.regs.cr1().modify(|w| {
|
|
w.set_spe(false);
|
|
});
|
|
self.info.regs.cfg1().modify(|w| {
|
|
w.set_dsize(word_size);
|
|
});
|
|
self.info.regs.cr1().modify(|w| {
|
|
w.set_csusp(false);
|
|
w.set_spe(true);
|
|
});
|
|
}
|
|
|
|
self.current_word_size = word_size;
|
|
}
|
|
|
|
/// Blocking write.
|
|
pub fn blocking_write<W: Word>(&mut self, words: &[W]) -> Result<(), Error> {
|
|
// needed in v3+ to avoid overrun causing the SPI RX state machine to get stuck...?
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
self.info.regs.cr1().modify(|w| w.set_spe(false));
|
|
self.info.regs.cr1().modify(|w| w.set_spe(true));
|
|
flush_rx_fifo(self.info.regs);
|
|
self.set_word_size(W::CONFIG);
|
|
for word in words.iter() {
|
|
// this cannot use `transfer_word` because on SPIv2 and higher,
|
|
// the SPI RX state machine hangs if no physical pin is connected to the SCK AF.
|
|
// This is the case when the SPI has been created with `new_(blocking_?)txonly_nosck`.
|
|
// See https://github.com/embassy-rs/embassy/issues/2902
|
|
// This is not documented as an errata by ST, and I've been unable to find anything online...
|
|
#[cfg(not(any(spi_v1, spi_f1)))]
|
|
write_word(self.info.regs, *word)?;
|
|
|
|
// if we're doing tx only, after writing the last byte to FIFO we have to wait
|
|
// until it's actually sent. On SPIv1 you're supposed to use the BSY flag for this
|
|
// but apparently it's broken, it clears too soon. Workaround is to wait for RXNE:
|
|
// when it gets set you know the transfer is done, even if you don't care about rx.
|
|
// Luckily this doesn't affect SPIv2+.
|
|
// See http://efton.sk/STM32/gotcha/g68.html
|
|
// ST doesn't seem to document this in errata sheets (?)
|
|
#[cfg(any(spi_v1, spi_f1))]
|
|
transfer_word(self.info.regs, *word)?;
|
|
}
|
|
|
|
// wait until last word is transmitted. (except on v1, see above)
|
|
#[cfg(not(any(spi_v1, spi_f1, spi_v2)))]
|
|
while !self.info.regs.sr().read().txc() {}
|
|
#[cfg(spi_v2)]
|
|
while self.info.regs.sr().read().bsy() {}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Blocking read.
|
|
pub fn blocking_read<W: Word>(&mut self, words: &mut [W]) -> Result<(), Error> {
|
|
// needed in v3+ to avoid overrun causing the SPI RX state machine to get stuck...?
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
self.info.regs.cr1().modify(|w| w.set_spe(false));
|
|
self.info.regs.cr1().modify(|w| w.set_spe(true));
|
|
flush_rx_fifo(self.info.regs);
|
|
self.set_word_size(W::CONFIG);
|
|
for word in words.iter_mut() {
|
|
*word = transfer_word(self.info.regs, W::default())?;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Blocking in-place bidirectional transfer.
|
|
///
|
|
/// This writes the contents of `data` on MOSI, and puts the received data on MISO in `data`, at the same time.
|
|
pub fn blocking_transfer_in_place<W: Word>(&mut self, words: &mut [W]) -> Result<(), Error> {
|
|
// needed in v3+ to avoid overrun causing the SPI RX state machine to get stuck...?
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
self.info.regs.cr1().modify(|w| w.set_spe(false));
|
|
self.info.regs.cr1().modify(|w| w.set_spe(true));
|
|
flush_rx_fifo(self.info.regs);
|
|
self.set_word_size(W::CONFIG);
|
|
for word in words.iter_mut() {
|
|
*word = transfer_word(self.info.regs, *word)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Blocking bidirectional transfer.
|
|
///
|
|
/// This transfers both buffers at the same time, so it is NOT equivalent to `write` followed by `read`.
|
|
///
|
|
/// The transfer runs for `max(read.len(), write.len())` bytes. If `read` is shorter extra bytes are ignored.
|
|
/// If `write` is shorter it is padded with zero bytes.
|
|
pub fn blocking_transfer<W: Word>(&mut self, read: &mut [W], write: &[W]) -> Result<(), Error> {
|
|
// needed in v3+ to avoid overrun causing the SPI RX state machine to get stuck...?
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
self.info.regs.cr1().modify(|w| w.set_spe(false));
|
|
self.info.regs.cr1().modify(|w| w.set_spe(true));
|
|
flush_rx_fifo(self.info.regs);
|
|
self.set_word_size(W::CONFIG);
|
|
let len = read.len().max(write.len());
|
|
for i in 0..len {
|
|
let wb = write.get(i).copied().unwrap_or_default();
|
|
let rb = transfer_word(self.info.regs, wb)?;
|
|
if let Some(r) = read.get_mut(i) {
|
|
*r = rb;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl<'d> Spi<'d, Blocking> {
|
|
/// Create a new blocking SPI driver.
|
|
pub fn new_blocking<T: Instance>(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
sck: impl Peripheral<P = impl SckPin<T>> + 'd,
|
|
mosi: impl Peripheral<P = impl MosiPin<T>> + 'd,
|
|
miso: impl Peripheral<P = impl MisoPin<T>> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
Self::new_inner(
|
|
peri,
|
|
new_pin!(sck, config.sck_af()),
|
|
new_pin!(mosi, AfType::output(OutputType::PushPull, Speed::VeryHigh)),
|
|
new_pin!(miso, AfType::input(config.miso_pull)),
|
|
None,
|
|
None,
|
|
config,
|
|
)
|
|
}
|
|
|
|
/// Create a new blocking SPI driver, in RX-only mode (only MISO pin, no MOSI).
|
|
pub fn new_blocking_rxonly<T: Instance>(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
sck: impl Peripheral<P = impl SckPin<T>> + 'd,
|
|
miso: impl Peripheral<P = impl MisoPin<T>> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
Self::new_inner(
|
|
peri,
|
|
new_pin!(sck, config.sck_af()),
|
|
None,
|
|
new_pin!(miso, AfType::input(config.miso_pull)),
|
|
None,
|
|
None,
|
|
config,
|
|
)
|
|
}
|
|
|
|
/// Create a new blocking SPI driver, in TX-only mode (only MOSI pin, no MISO).
|
|
pub fn new_blocking_txonly<T: Instance>(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
sck: impl Peripheral<P = impl SckPin<T>> + 'd,
|
|
mosi: impl Peripheral<P = impl MosiPin<T>> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
Self::new_inner(
|
|
peri,
|
|
new_pin!(sck, config.sck_af()),
|
|
new_pin!(mosi, AfType::output(OutputType::PushPull, Speed::VeryHigh)),
|
|
None,
|
|
None,
|
|
None,
|
|
config,
|
|
)
|
|
}
|
|
|
|
/// Create a new SPI driver, in TX-only mode, without SCK pin.
|
|
///
|
|
/// This can be useful for bit-banging non-SPI protocols.
|
|
pub fn new_blocking_txonly_nosck<T: Instance>(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
mosi: impl Peripheral<P = impl MosiPin<T>> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
Self::new_inner(
|
|
peri,
|
|
None,
|
|
new_pin!(mosi, AfType::output(OutputType::PushPull, Speed::VeryHigh)),
|
|
None,
|
|
None,
|
|
None,
|
|
config,
|
|
)
|
|
}
|
|
}
|
|
|
|
impl<'d> Spi<'d, Async> {
|
|
/// Create a new SPI driver.
|
|
pub fn new<T: Instance>(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
sck: impl Peripheral<P = impl SckPin<T>> + 'd,
|
|
mosi: impl Peripheral<P = impl MosiPin<T>> + 'd,
|
|
miso: impl Peripheral<P = impl MisoPin<T>> + 'd,
|
|
tx_dma: impl Peripheral<P = impl TxDma<T>> + 'd,
|
|
rx_dma: impl Peripheral<P = impl RxDma<T>> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
Self::new_inner(
|
|
peri,
|
|
new_pin!(sck, config.sck_af()),
|
|
new_pin!(mosi, AfType::output(OutputType::PushPull, Speed::VeryHigh)),
|
|
new_pin!(miso, AfType::input(config.miso_pull)),
|
|
new_dma!(tx_dma),
|
|
new_dma!(rx_dma),
|
|
config,
|
|
)
|
|
}
|
|
|
|
/// Create a new SPI driver, in RX-only mode (only MISO pin, no MOSI).
|
|
pub fn new_rxonly<T: Instance>(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
sck: impl Peripheral<P = impl SckPin<T>> + 'd,
|
|
miso: impl Peripheral<P = impl MisoPin<T>> + 'd,
|
|
#[cfg(any(spi_v1, spi_f1, spi_v2))] tx_dma: impl Peripheral<P = impl TxDma<T>> + 'd,
|
|
rx_dma: impl Peripheral<P = impl RxDma<T>> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
Self::new_inner(
|
|
peri,
|
|
new_pin!(sck, config.sck_af()),
|
|
None,
|
|
new_pin!(miso, AfType::input(config.miso_pull)),
|
|
#[cfg(any(spi_v1, spi_f1, spi_v2))]
|
|
new_dma!(tx_dma),
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
None,
|
|
new_dma!(rx_dma),
|
|
config,
|
|
)
|
|
}
|
|
|
|
/// Create a new SPI driver, in TX-only mode (only MOSI pin, no MISO).
|
|
pub fn new_txonly<T: Instance>(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
sck: impl Peripheral<P = impl SckPin<T>> + 'd,
|
|
mosi: impl Peripheral<P = impl MosiPin<T>> + 'd,
|
|
tx_dma: impl Peripheral<P = impl TxDma<T>> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
Self::new_inner(
|
|
peri,
|
|
new_pin!(sck, config.sck_af()),
|
|
new_pin!(mosi, AfType::output(OutputType::PushPull, Speed::VeryHigh)),
|
|
None,
|
|
new_dma!(tx_dma),
|
|
None,
|
|
config,
|
|
)
|
|
}
|
|
|
|
/// Create a new SPI driver, in TX-only mode, without SCK pin.
|
|
///
|
|
/// This can be useful for bit-banging non-SPI protocols.
|
|
pub fn new_txonly_nosck<T: Instance>(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
mosi: impl Peripheral<P = impl MosiPin<T>> + 'd,
|
|
tx_dma: impl Peripheral<P = impl TxDma<T>> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
Self::new_inner(
|
|
peri,
|
|
None,
|
|
new_pin!(mosi, AfType::output(OutputType::PushPull, Speed::VeryHigh)),
|
|
None,
|
|
new_dma!(tx_dma),
|
|
None,
|
|
config,
|
|
)
|
|
}
|
|
|
|
#[cfg(stm32wl)]
|
|
/// Useful for on chip peripherals like SUBGHZ which are hardwired.
|
|
pub fn new_subghz<T: Instance>(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
tx_dma: impl Peripheral<P = impl TxDma<T>> + 'd,
|
|
rx_dma: impl Peripheral<P = impl RxDma<T>> + 'd,
|
|
) -> Self {
|
|
// see RM0453 rev 1 section 7.2.13 page 291
|
|
// The SUBGHZSPI_SCK frequency is obtained by PCLK3 divided by two.
|
|
// The SUBGHZSPI_SCK clock maximum speed must not exceed 16 MHz.
|
|
let pclk3_freq = <crate::peripherals::SUBGHZSPI as SealedRccPeripheral>::frequency().0;
|
|
let freq = Hertz(core::cmp::min(pclk3_freq / 2, 16_000_000));
|
|
let mut config = Config::default();
|
|
config.mode = MODE_0;
|
|
config.bit_order = BitOrder::MsbFirst;
|
|
config.frequency = freq;
|
|
|
|
Self::new_inner(peri, None, None, None, new_dma!(tx_dma), new_dma!(rx_dma), config)
|
|
}
|
|
|
|
#[allow(dead_code)]
|
|
pub(crate) fn new_internal<T: Instance>(
|
|
peri: impl Peripheral<P = T> + 'd,
|
|
tx_dma: Option<ChannelAndRequest<'d>>,
|
|
rx_dma: Option<ChannelAndRequest<'d>>,
|
|
config: Config,
|
|
) -> Self {
|
|
Self::new_inner(peri, None, None, None, tx_dma, rx_dma, config)
|
|
}
|
|
|
|
/// SPI write, using DMA.
|
|
pub async fn write<W: Word>(&mut self, data: &[W]) -> Result<(), Error> {
|
|
if data.is_empty() {
|
|
return Ok(());
|
|
}
|
|
|
|
self.set_word_size(W::CONFIG);
|
|
self.info.regs.cr1().modify(|w| {
|
|
w.set_spe(false);
|
|
});
|
|
|
|
let tx_dst = self.info.regs.tx_ptr();
|
|
let tx_f = unsafe { self.tx_dma.as_mut().unwrap().write(data, tx_dst, Default::default()) };
|
|
|
|
set_txdmaen(self.info.regs, true);
|
|
self.info.regs.cr1().modify(|w| {
|
|
w.set_spe(true);
|
|
});
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
self.info.regs.cr1().modify(|w| {
|
|
w.set_cstart(true);
|
|
});
|
|
|
|
tx_f.await;
|
|
|
|
finish_dma(self.info.regs);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// SPI read, using DMA.
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
pub async fn read<W: Word>(&mut self, data: &mut [W]) -> Result<(), Error> {
|
|
if data.is_empty() {
|
|
return Ok(());
|
|
}
|
|
|
|
let regs = self.info.regs;
|
|
|
|
regs.cr1().modify(|w| {
|
|
w.set_spe(false);
|
|
});
|
|
|
|
let comm = regs.cfg2().modify(|w| {
|
|
let prev = w.comm();
|
|
w.set_comm(vals::Comm::RECEIVER);
|
|
prev
|
|
});
|
|
|
|
#[cfg(spi_v3)]
|
|
let i2scfg = regs.i2scfgr().modify(|w| {
|
|
w.i2smod().then(|| {
|
|
let prev = w.i2scfg();
|
|
w.set_i2scfg(match prev {
|
|
vals::I2scfg::SLAVERX | vals::I2scfg::SLAVEFULLDUPLEX => vals::I2scfg::SLAVERX,
|
|
vals::I2scfg::MASTERRX | vals::I2scfg::MASTERFULLDUPLEX => vals::I2scfg::MASTERRX,
|
|
_ => panic!("unsupported configuration"),
|
|
});
|
|
prev
|
|
})
|
|
});
|
|
|
|
let rx_src = regs.rx_ptr();
|
|
|
|
for mut chunk in data.chunks_mut(u16::max_value().into()) {
|
|
self.set_word_size(W::CONFIG);
|
|
set_rxdmaen(regs, true);
|
|
|
|
let tsize = chunk.len();
|
|
|
|
let transfer = unsafe {
|
|
self.rx_dma
|
|
.as_mut()
|
|
.unwrap()
|
|
.read(rx_src, &mut chunk, Default::default())
|
|
};
|
|
|
|
regs.cr2().modify(|w| {
|
|
w.set_tsize(tsize as u16);
|
|
});
|
|
|
|
regs.cr1().modify(|w| {
|
|
w.set_spe(true);
|
|
});
|
|
|
|
regs.cr1().modify(|w| {
|
|
w.set_cstart(true);
|
|
});
|
|
|
|
transfer.await;
|
|
|
|
finish_dma(regs);
|
|
}
|
|
|
|
regs.cr1().modify(|w| {
|
|
w.set_spe(false);
|
|
});
|
|
|
|
regs.cfg2().modify(|w| {
|
|
w.set_comm(comm);
|
|
});
|
|
|
|
regs.cr2().modify(|w| {
|
|
w.set_tsize(0);
|
|
});
|
|
|
|
#[cfg(spi_v3)]
|
|
if let Some(i2scfg) = i2scfg {
|
|
regs.i2scfgr().modify(|w| {
|
|
w.set_i2scfg(i2scfg);
|
|
});
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// SPI read, using DMA.
|
|
#[cfg(any(spi_v1, spi_f1, spi_v2))]
|
|
pub async fn read<W: Word>(&mut self, data: &mut [W]) -> Result<(), Error> {
|
|
if data.is_empty() {
|
|
return Ok(());
|
|
}
|
|
|
|
self.set_word_size(W::CONFIG);
|
|
|
|
self.info.regs.cr1().modify(|w| {
|
|
w.set_spe(false);
|
|
});
|
|
|
|
// SPIv3 clears rxfifo on SPE=0
|
|
#[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
|
|
flush_rx_fifo(self.info.regs);
|
|
|
|
set_rxdmaen(self.info.regs, true);
|
|
|
|
let clock_byte_count = data.len();
|
|
|
|
let rx_src = self.info.regs.rx_ptr();
|
|
let rx_f = unsafe { self.rx_dma.as_mut().unwrap().read(rx_src, data, Default::default()) };
|
|
|
|
let tx_dst = self.info.regs.tx_ptr();
|
|
let clock_byte = 0x00u8;
|
|
let tx_f = unsafe {
|
|
self.tx_dma
|
|
.as_mut()
|
|
.unwrap()
|
|
.write_repeated(&clock_byte, clock_byte_count, tx_dst, Default::default())
|
|
};
|
|
|
|
set_txdmaen(self.info.regs, true);
|
|
self.info.regs.cr1().modify(|w| {
|
|
w.set_spe(true);
|
|
});
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
self.info.regs.cr1().modify(|w| {
|
|
w.set_cstart(true);
|
|
});
|
|
|
|
join(tx_f, rx_f).await;
|
|
|
|
finish_dma(self.info.regs);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
async fn transfer_inner<W: Word>(&mut self, read: *mut [W], write: *const [W]) -> Result<(), Error> {
|
|
assert_eq!(read.len(), write.len());
|
|
if read.len() == 0 {
|
|
return Ok(());
|
|
}
|
|
|
|
self.set_word_size(W::CONFIG);
|
|
self.info.regs.cr1().modify(|w| {
|
|
w.set_spe(false);
|
|
});
|
|
|
|
// SPIv3 clears rxfifo on SPE=0
|
|
#[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
|
|
flush_rx_fifo(self.info.regs);
|
|
|
|
set_rxdmaen(self.info.regs, true);
|
|
|
|
let rx_src = self.info.regs.rx_ptr();
|
|
let rx_f = unsafe { self.rx_dma.as_mut().unwrap().read_raw(rx_src, read, Default::default()) };
|
|
|
|
let tx_dst = self.info.regs.tx_ptr();
|
|
let tx_f = unsafe {
|
|
self.tx_dma
|
|
.as_mut()
|
|
.unwrap()
|
|
.write_raw(write, tx_dst, Default::default())
|
|
};
|
|
|
|
set_txdmaen(self.info.regs, true);
|
|
self.info.regs.cr1().modify(|w| {
|
|
w.set_spe(true);
|
|
});
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
self.info.regs.cr1().modify(|w| {
|
|
w.set_cstart(true);
|
|
});
|
|
|
|
join(tx_f, rx_f).await;
|
|
|
|
finish_dma(self.info.regs);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Bidirectional transfer, using DMA.
|
|
///
|
|
/// This transfers both buffers at the same time, so it is NOT equivalent to `write` followed by `read`.
|
|
///
|
|
/// The transfer runs for `max(read.len(), write.len())` bytes. If `read` is shorter extra bytes are ignored.
|
|
/// If `write` is shorter it is padded with zero bytes.
|
|
pub async fn transfer<W: Word>(&mut self, read: &mut [W], write: &[W]) -> Result<(), Error> {
|
|
self.transfer_inner(read, write).await
|
|
}
|
|
|
|
/// In-place bidirectional transfer, using DMA.
|
|
///
|
|
/// This writes the contents of `data` on MOSI, and puts the received data on MISO in `data`, at the same time.
|
|
pub async fn transfer_in_place<W: Word>(&mut self, data: &mut [W]) -> Result<(), Error> {
|
|
self.transfer_inner(data, data).await
|
|
}
|
|
}
|
|
|
|
impl<'d, M: PeriMode> Drop for Spi<'d, M> {
|
|
fn drop(&mut self) {
|
|
self.sck.as_ref().map(|x| x.set_as_disconnected());
|
|
self.mosi.as_ref().map(|x| x.set_as_disconnected());
|
|
self.miso.as_ref().map(|x| x.set_as_disconnected());
|
|
|
|
self.info.rcc.disable();
|
|
}
|
|
}
|
|
|
|
#[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
|
|
use vals::Br;
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
use vals::Mbr as Br;
|
|
|
|
fn compute_baud_rate(kernel_clock: Hertz, freq: Hertz) -> Br {
|
|
let val = match kernel_clock.0 / freq.0 {
|
|
0 => panic!("You are trying to reach a frequency higher than the clock"),
|
|
1..=2 => 0b000,
|
|
3..=5 => 0b001,
|
|
6..=11 => 0b010,
|
|
12..=23 => 0b011,
|
|
24..=39 => 0b100,
|
|
40..=95 => 0b101,
|
|
96..=191 => 0b110,
|
|
_ => 0b111,
|
|
};
|
|
|
|
Br::from_bits(val)
|
|
}
|
|
|
|
fn compute_frequency(kernel_clock: Hertz, br: Br) -> Hertz {
|
|
let div: u16 = match br {
|
|
Br::DIV2 => 2,
|
|
Br::DIV4 => 4,
|
|
Br::DIV8 => 8,
|
|
Br::DIV16 => 16,
|
|
Br::DIV32 => 32,
|
|
Br::DIV64 => 64,
|
|
Br::DIV128 => 128,
|
|
Br::DIV256 => 256,
|
|
};
|
|
|
|
kernel_clock / div
|
|
}
|
|
|
|
trait RegsExt {
|
|
fn tx_ptr<W>(&self) -> *mut W;
|
|
fn rx_ptr<W>(&self) -> *mut W;
|
|
}
|
|
|
|
impl RegsExt for Regs {
|
|
fn tx_ptr<W>(&self) -> *mut W {
|
|
#[cfg(any(spi_v1, spi_f1))]
|
|
let dr = self.dr();
|
|
#[cfg(spi_v2)]
|
|
let dr = self.dr16();
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
let dr = self.txdr32();
|
|
dr.as_ptr() as *mut W
|
|
}
|
|
|
|
fn rx_ptr<W>(&self) -> *mut W {
|
|
#[cfg(any(spi_v1, spi_f1))]
|
|
let dr = self.dr();
|
|
#[cfg(spi_v2)]
|
|
let dr = self.dr16();
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
let dr = self.rxdr32();
|
|
dr.as_ptr() as *mut W
|
|
}
|
|
}
|
|
|
|
fn check_error_flags(sr: regs::Sr, ovr: bool) -> Result<(), Error> {
|
|
if sr.ovr() && ovr {
|
|
return Err(Error::Overrun);
|
|
}
|
|
#[cfg(not(any(spi_f1, spi_v3, spi_v4, spi_v5)))]
|
|
if sr.fre() {
|
|
return Err(Error::Framing);
|
|
}
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
if sr.tifre() {
|
|
return Err(Error::Framing);
|
|
}
|
|
if sr.modf() {
|
|
return Err(Error::ModeFault);
|
|
}
|
|
#[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
|
|
if sr.crcerr() {
|
|
return Err(Error::Crc);
|
|
}
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
if sr.crce() {
|
|
return Err(Error::Crc);
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn spin_until_tx_ready(regs: Regs, ovr: bool) -> Result<(), Error> {
|
|
loop {
|
|
let sr = regs.sr().read();
|
|
|
|
check_error_flags(sr, ovr)?;
|
|
|
|
#[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
|
|
if sr.txe() {
|
|
return Ok(());
|
|
}
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
if sr.txp() {
|
|
return Ok(());
|
|
}
|
|
}
|
|
}
|
|
|
|
fn spin_until_rx_ready(regs: Regs) -> Result<(), Error> {
|
|
loop {
|
|
let sr = regs.sr().read();
|
|
|
|
check_error_flags(sr, true)?;
|
|
|
|
#[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
|
|
if sr.rxne() {
|
|
return Ok(());
|
|
}
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
if sr.rxp() {
|
|
return Ok(());
|
|
}
|
|
}
|
|
}
|
|
|
|
fn flush_rx_fifo(regs: Regs) {
|
|
#[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
|
|
while regs.sr().read().rxne() {
|
|
#[cfg(not(spi_v2))]
|
|
let _ = regs.dr().read();
|
|
#[cfg(spi_v2)]
|
|
let _ = regs.dr16().read();
|
|
}
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
while regs.sr().read().rxp() {
|
|
let _ = regs.rxdr32().read();
|
|
}
|
|
}
|
|
|
|
fn set_txdmaen(regs: Regs, val: bool) {
|
|
#[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
|
|
regs.cr2().modify(|reg| {
|
|
reg.set_txdmaen(val);
|
|
});
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
regs.cfg1().modify(|reg| {
|
|
reg.set_txdmaen(val);
|
|
});
|
|
}
|
|
|
|
fn set_rxdmaen(regs: Regs, val: bool) {
|
|
#[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
|
|
regs.cr2().modify(|reg| {
|
|
reg.set_rxdmaen(val);
|
|
});
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
regs.cfg1().modify(|reg| {
|
|
reg.set_rxdmaen(val);
|
|
});
|
|
}
|
|
|
|
fn finish_dma(regs: Regs) {
|
|
#[cfg(spi_v2)]
|
|
while regs.sr().read().ftlvl().to_bits() > 0 {}
|
|
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
{
|
|
if regs.cr2().read().tsize() == 0 {
|
|
while !regs.sr().read().txc() {}
|
|
} else {
|
|
while !regs.sr().read().eot() {}
|
|
}
|
|
}
|
|
#[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
|
|
while regs.sr().read().bsy() {}
|
|
|
|
// Disable the spi peripheral
|
|
regs.cr1().modify(|w| {
|
|
w.set_spe(false);
|
|
});
|
|
|
|
// The peripheral automatically disables the DMA stream on completion without error,
|
|
// but it does not clear the RXDMAEN/TXDMAEN flag in CR2.
|
|
#[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
|
|
regs.cr2().modify(|reg| {
|
|
reg.set_txdmaen(false);
|
|
reg.set_rxdmaen(false);
|
|
});
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
regs.cfg1().modify(|reg| {
|
|
reg.set_txdmaen(false);
|
|
reg.set_rxdmaen(false);
|
|
});
|
|
}
|
|
|
|
fn transfer_word<W: Word>(regs: Regs, tx_word: W) -> Result<W, Error> {
|
|
spin_until_tx_ready(regs, true)?;
|
|
|
|
unsafe {
|
|
ptr::write_volatile(regs.tx_ptr(), tx_word);
|
|
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
regs.cr1().modify(|reg| reg.set_cstart(true));
|
|
}
|
|
|
|
spin_until_rx_ready(regs)?;
|
|
|
|
let rx_word = unsafe { ptr::read_volatile(regs.rx_ptr()) };
|
|
Ok(rx_word)
|
|
}
|
|
|
|
#[allow(unused)] // unused in SPIv1
|
|
fn write_word<W: Word>(regs: Regs, tx_word: W) -> Result<(), Error> {
|
|
// for write, we intentionally ignore the rx fifo, which will cause
|
|
// overrun errors that we have to ignore.
|
|
spin_until_tx_ready(regs, false)?;
|
|
|
|
unsafe {
|
|
ptr::write_volatile(regs.tx_ptr(), tx_word);
|
|
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
regs.cr1().modify(|reg| reg.set_cstart(true));
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
// Note: It is not possible to impl these traits generically in embedded-hal 0.2 due to a conflict with
|
|
// some marker traits. For details, see https://github.com/rust-embedded/embedded-hal/pull/289
|
|
macro_rules! impl_blocking {
|
|
($w:ident) => {
|
|
impl<'d, M: PeriMode> embedded_hal_02::blocking::spi::Write<$w> for Spi<'d, M> {
|
|
type Error = Error;
|
|
|
|
fn write(&mut self, words: &[$w]) -> Result<(), Self::Error> {
|
|
self.blocking_write(words)
|
|
}
|
|
}
|
|
|
|
impl<'d, M: PeriMode> embedded_hal_02::blocking::spi::Transfer<$w> for Spi<'d, M> {
|
|
type Error = Error;
|
|
|
|
fn transfer<'w>(&mut self, words: &'w mut [$w]) -> Result<&'w [$w], Self::Error> {
|
|
self.blocking_transfer_in_place(words)?;
|
|
Ok(words)
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
impl_blocking!(u8);
|
|
impl_blocking!(u16);
|
|
|
|
impl<'d, M: PeriMode> embedded_hal_1::spi::ErrorType for Spi<'d, M> {
|
|
type Error = Error;
|
|
}
|
|
|
|
impl<'d, W: Word, M: PeriMode> embedded_hal_1::spi::SpiBus<W> for Spi<'d, M> {
|
|
fn flush(&mut self) -> Result<(), Self::Error> {
|
|
Ok(())
|
|
}
|
|
|
|
fn read(&mut self, words: &mut [W]) -> Result<(), Self::Error> {
|
|
self.blocking_read(words)
|
|
}
|
|
|
|
fn write(&mut self, words: &[W]) -> Result<(), Self::Error> {
|
|
self.blocking_write(words)
|
|
}
|
|
|
|
fn transfer(&mut self, read: &mut [W], write: &[W]) -> Result<(), Self::Error> {
|
|
self.blocking_transfer(read, write)
|
|
}
|
|
|
|
fn transfer_in_place(&mut self, words: &mut [W]) -> Result<(), Self::Error> {
|
|
self.blocking_transfer_in_place(words)
|
|
}
|
|
}
|
|
|
|
impl embedded_hal_1::spi::Error for Error {
|
|
fn kind(&self) -> embedded_hal_1::spi::ErrorKind {
|
|
match *self {
|
|
Self::Framing => embedded_hal_1::spi::ErrorKind::FrameFormat,
|
|
Self::Crc => embedded_hal_1::spi::ErrorKind::Other,
|
|
Self::ModeFault => embedded_hal_1::spi::ErrorKind::ModeFault,
|
|
Self::Overrun => embedded_hal_1::spi::ErrorKind::Overrun,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'d, W: Word> embedded_hal_async::spi::SpiBus<W> for Spi<'d, Async> {
|
|
async fn flush(&mut self) -> Result<(), Self::Error> {
|
|
Ok(())
|
|
}
|
|
|
|
async fn write(&mut self, words: &[W]) -> Result<(), Self::Error> {
|
|
self.write(words).await
|
|
}
|
|
|
|
async fn read(&mut self, words: &mut [W]) -> Result<(), Self::Error> {
|
|
self.read(words).await
|
|
}
|
|
|
|
async fn transfer(&mut self, read: &mut [W], write: &[W]) -> Result<(), Self::Error> {
|
|
self.transfer(read, write).await
|
|
}
|
|
|
|
async fn transfer_in_place(&mut self, words: &mut [W]) -> Result<(), Self::Error> {
|
|
self.transfer_in_place(words).await
|
|
}
|
|
}
|
|
|
|
trait SealedWord {
|
|
const CONFIG: word_impl::Config;
|
|
}
|
|
|
|
/// Word sizes usable for SPI.
|
|
#[allow(private_bounds)]
|
|
pub trait Word: word::Word + SealedWord {}
|
|
|
|
macro_rules! impl_word {
|
|
($T:ty, $config:expr) => {
|
|
impl SealedWord for $T {
|
|
const CONFIG: Config = $config;
|
|
}
|
|
impl Word for $T {}
|
|
};
|
|
}
|
|
|
|
#[cfg(any(spi_v1, spi_f1))]
|
|
mod word_impl {
|
|
use super::*;
|
|
|
|
pub type Config = vals::Dff;
|
|
|
|
impl_word!(u8, vals::Dff::BITS8);
|
|
impl_word!(u16, vals::Dff::BITS16);
|
|
}
|
|
|
|
#[cfg(spi_v2)]
|
|
mod word_impl {
|
|
use super::*;
|
|
|
|
pub type Config = (vals::Ds, vals::Frxth);
|
|
|
|
impl_word!(word::U4, (vals::Ds::BITS4, vals::Frxth::QUARTER));
|
|
impl_word!(word::U5, (vals::Ds::BITS5, vals::Frxth::QUARTER));
|
|
impl_word!(word::U6, (vals::Ds::BITS6, vals::Frxth::QUARTER));
|
|
impl_word!(word::U7, (vals::Ds::BITS7, vals::Frxth::QUARTER));
|
|
impl_word!(u8, (vals::Ds::BITS8, vals::Frxth::QUARTER));
|
|
impl_word!(word::U9, (vals::Ds::BITS9, vals::Frxth::HALF));
|
|
impl_word!(word::U10, (vals::Ds::BITS10, vals::Frxth::HALF));
|
|
impl_word!(word::U11, (vals::Ds::BITS11, vals::Frxth::HALF));
|
|
impl_word!(word::U12, (vals::Ds::BITS12, vals::Frxth::HALF));
|
|
impl_word!(word::U13, (vals::Ds::BITS13, vals::Frxth::HALF));
|
|
impl_word!(word::U14, (vals::Ds::BITS14, vals::Frxth::HALF));
|
|
impl_word!(word::U15, (vals::Ds::BITS15, vals::Frxth::HALF));
|
|
impl_word!(u16, (vals::Ds::BITS16, vals::Frxth::HALF));
|
|
}
|
|
|
|
#[cfg(any(spi_v3, spi_v4, spi_v5))]
|
|
mod word_impl {
|
|
use super::*;
|
|
|
|
pub type Config = u8;
|
|
|
|
impl_word!(word::U4, 4 - 1);
|
|
impl_word!(word::U5, 5 - 1);
|
|
impl_word!(word::U6, 6 - 1);
|
|
impl_word!(word::U7, 7 - 1);
|
|
impl_word!(u8, 8 - 1);
|
|
impl_word!(word::U9, 9 - 1);
|
|
impl_word!(word::U10, 10 - 1);
|
|
impl_word!(word::U11, 11 - 1);
|
|
impl_word!(word::U12, 12 - 1);
|
|
impl_word!(word::U13, 13 - 1);
|
|
impl_word!(word::U14, 14 - 1);
|
|
impl_word!(word::U15, 15 - 1);
|
|
impl_word!(u16, 16 - 1);
|
|
impl_word!(word::U17, 17 - 1);
|
|
impl_word!(word::U18, 18 - 1);
|
|
impl_word!(word::U19, 19 - 1);
|
|
impl_word!(word::U20, 20 - 1);
|
|
impl_word!(word::U21, 21 - 1);
|
|
impl_word!(word::U22, 22 - 1);
|
|
impl_word!(word::U23, 23 - 1);
|
|
impl_word!(word::U24, 24 - 1);
|
|
impl_word!(word::U25, 25 - 1);
|
|
impl_word!(word::U26, 26 - 1);
|
|
impl_word!(word::U27, 27 - 1);
|
|
impl_word!(word::U28, 28 - 1);
|
|
impl_word!(word::U29, 29 - 1);
|
|
impl_word!(word::U30, 30 - 1);
|
|
impl_word!(word::U31, 31 - 1);
|
|
impl_word!(u32, 32 - 1);
|
|
}
|
|
|
|
pub(crate) struct Info {
|
|
pub(crate) regs: Regs,
|
|
pub(crate) rcc: RccInfo,
|
|
}
|
|
|
|
struct State {}
|
|
|
|
impl State {
|
|
const fn new() -> Self {
|
|
Self {}
|
|
}
|
|
}
|
|
|
|
peri_trait!();
|
|
|
|
pin_trait!(SckPin, Instance);
|
|
pin_trait!(MosiPin, Instance);
|
|
pin_trait!(MisoPin, Instance);
|
|
pin_trait!(CsPin, Instance);
|
|
pin_trait!(MckPin, Instance);
|
|
pin_trait!(CkPin, Instance);
|
|
pin_trait!(WsPin, Instance);
|
|
dma_trait!(RxDma, Instance);
|
|
dma_trait!(TxDma, Instance);
|
|
|
|
foreach_peripheral!(
|
|
(spi, $inst:ident) => {
|
|
peri_trait_impl!($inst, Info {
|
|
regs: crate::pac::$inst,
|
|
rcc: crate::peripherals::$inst::RCC_INFO,
|
|
});
|
|
};
|
|
);
|
|
|
|
impl<'d, M: PeriMode> SetConfig for Spi<'d, M> {
|
|
type Config = Config;
|
|
type ConfigError = ();
|
|
fn set_config(&mut self, config: &Self::Config) -> Result<(), ()> {
|
|
self.set_config(config)
|
|
}
|
|
}
|