embassy/embassy-stm32/build.rs

1756 lines
68 KiB
Rust

use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet};
use std::fmt::Write as _;
use std::io::Write;
use std::path::{Path, PathBuf};
use std::process::Command;
use std::{env, fs};
use proc_macro2::{Ident, TokenStream};
use quote::{format_ident, quote};
use stm32_metapac::metadata::ir::BitOffset;
use stm32_metapac::metadata::{
MemoryRegionKind, PeripheralRccKernelClock, PeripheralRccRegister, PeripheralRegisters, StopMode, ALL_CHIPS,
ALL_PERIPHERAL_VERSIONS, METADATA,
};
#[path = "./build_common.rs"]
mod common;
fn main() {
let mut cfgs = common::CfgSet::new();
common::set_target_cfgs(&mut cfgs);
let chip_name = match env::vars()
.map(|(a, _)| a)
.filter(|x| x.starts_with("CARGO_FEATURE_STM32"))
.get_one()
{
Ok(x) => x,
Err(GetOneError::None) => panic!("No stm32xx Cargo feature enabled"),
Err(GetOneError::Multiple) => panic!("Multiple stm32xx Cargo features enabled"),
}
.strip_prefix("CARGO_FEATURE_")
.unwrap()
.to_ascii_lowercase();
eprintln!("chip: {chip_name}");
for p in METADATA.peripherals {
if let Some(r) = &p.registers {
cfgs.enable(r.kind);
cfgs.enable(format!("{}_{}", r.kind, r.version));
}
}
for &(kind, versions) in ALL_PERIPHERAL_VERSIONS.iter() {
cfgs.declare(kind);
for &version in versions.iter() {
cfgs.declare(format!("{}_{}", kind, version));
}
}
// ========
// Generate singletons
let mut singletons: Vec<String> = Vec::new();
for p in METADATA.peripherals {
if let Some(r) = &p.registers {
if r.kind == "adccommon" || r.kind == "sai" || r.kind == "ucpd" {
// TODO: should we emit this for all peripherals? if so, we will need a list of all
// possible peripherals across all chips, so that we can declare the configs
// (replacing the hard-coded list of `peri_*` cfgs below)
cfgs.enable(format!("peri_{}", p.name.to_ascii_lowercase()));
}
match r.kind {
// Generate singletons per pin, not per port
"gpio" => {
let port_letter = p.name.strip_prefix("GPIO").unwrap();
for pin_num in 0..16 {
singletons.push(format!("P{}{}", port_letter, pin_num));
}
}
// No singleton for these, the HAL handles them specially.
"exti" => {}
// We *shouldn't* have singletons for these, but the HAL currently requires
// singletons, for using with RccPeripheral to enable/disable clocks to them.
"rcc" => {
for pin in p.pins {
if pin.signal.starts_with("MCO") {
let name = pin.signal.replace('_', "").to_string();
if !singletons.contains(&name) {
cfgs.enable(name.to_ascii_lowercase());
singletons.push(name);
}
}
}
singletons.push(p.name.to_string());
}
//"dbgmcu" => {}
//"syscfg" => {}
//"dma" => {}
//"bdma" => {}
//"dmamux" => {}
// For other peripherals, one singleton per peri
_ => singletons.push(p.name.to_string()),
}
}
}
cfgs.declare_all(&[
"peri_adc1_common",
"peri_adc3_common",
"peri_adc12_common",
"peri_adc34_common",
"peri_sai1",
"peri_sai2",
"peri_sai3",
"peri_sai4",
"peri_ucpd1",
"peri_ucpd2",
]);
cfgs.declare_all(&["mco", "mco1", "mco2"]);
// One singleton per EXTI line
for pin_num in 0..16 {
singletons.push(format!("EXTI{}", pin_num));
}
// One singleton per DMA channel
for c in METADATA.dma_channels {
singletons.push(c.name.to_string());
}
let mut pin_set = std::collections::HashSet::new();
for p in METADATA.peripherals {
for pin in p.pins {
pin_set.insert(pin.pin);
}
}
struct SplitFeature {
feature_name: String,
pin_name_with_c: String,
#[cfg(feature = "_split-pins-enabled")]
pin_name_without_c: String,
}
// Extra analog switch pins available on most H7 chips
let split_features: Vec<SplitFeature> = vec![
#[cfg(feature = "split-pa0")]
SplitFeature {
feature_name: "split-pa0".to_string(),
pin_name_with_c: "PA0_C".to_string(),
pin_name_without_c: "PA0".to_string(),
},
#[cfg(feature = "split-pa1")]
SplitFeature {
feature_name: "split-pa1".to_string(),
pin_name_with_c: "PA1_C".to_string(),
pin_name_without_c: "PA1".to_string(),
},
#[cfg(feature = "split-pc2")]
SplitFeature {
feature_name: "split-pc2".to_string(),
pin_name_with_c: "PC2_C".to_string(),
pin_name_without_c: "PC2".to_string(),
},
#[cfg(feature = "split-pc3")]
SplitFeature {
feature_name: "split-pc3".to_string(),
pin_name_with_c: "PC3_C".to_string(),
pin_name_without_c: "PC3".to_string(),
},
];
for split_feature in &split_features {
if pin_set.contains(split_feature.pin_name_with_c.as_str()) {
singletons.push(split_feature.pin_name_with_c.clone());
} else {
panic!(
"'{}' feature invalid for this chip! No pin '{}' found.\n
Found pins: {:#?}",
split_feature.feature_name, split_feature.pin_name_with_c, pin_set
)
}
}
// ========
// Handle time-driver-XXXX features.
let time_driver = match env::vars()
.map(|(a, _)| a)
.filter(|x| x.starts_with("CARGO_FEATURE_TIME_DRIVER_"))
.get_one()
{
Ok(x) => Some(
x.strip_prefix("CARGO_FEATURE_TIME_DRIVER_")
.unwrap()
.to_ascii_lowercase(),
),
Err(GetOneError::None) => None,
Err(GetOneError::Multiple) => panic!("Multiple stm32xx Cargo features enabled"),
};
let time_driver_singleton = match time_driver.as_ref().map(|x| x.as_ref()) {
None => "",
Some("tim1") => "TIM1",
Some("tim2") => "TIM2",
Some("tim3") => "TIM3",
Some("tim4") => "TIM4",
Some("tim5") => "TIM5",
Some("tim8") => "TIM8",
Some("tim9") => "TIM9",
Some("tim12") => "TIM12",
Some("tim15") => "TIM15",
Some("tim20") => "TIM20",
Some("tim21") => "TIM21",
Some("tim22") => "TIM22",
Some("tim23") => "TIM23",
Some("tim24") => "TIM24",
Some("any") => {
// Order of TIM candidators:
// 1. 2CH -> 2CH_CMP -> GP16 -> GP32 -> ADV
// 2. In same catagory: larger TIM number first
[
"TIM22", "TIM21", "TIM12", "TIM9", // 2CH
"TIM15", // 2CH_CMP
"TIM19", "TIM4", "TIM3", // GP16
"TIM24", "TIM23", "TIM5", "TIM2", // GP32
"TIM20", "TIM8", "TIM1", //ADV
]
.iter()
.find(|tim| singletons.contains(&tim.to_string())).expect("time-driver-any requested, but the chip doesn't have TIM1, TIM2, TIM3, TIM4, TIM5, TIM8, TIM9, TIM12, TIM15, TIM20, TIM21, TIM22, TIM23 or TIM24.")
}
_ => panic!("unknown time_driver {:?}", time_driver),
};
if !time_driver_singleton.is_empty() {
cfgs.enable(format!("time_driver_{}", time_driver_singleton.to_lowercase()));
}
for tim in [
"tim1", "tim2", "tim3", "tim4", "tim5", "tim8", "tim9", "tim12", "tim15", "tim20", "tim21", "tim22", "tim23",
"tim24",
] {
cfgs.declare(format!("time_driver_{}", tim));
}
// ========
// Write singletons
let mut g = TokenStream::new();
let singleton_tokens: Vec<_> = singletons.iter().map(|s| format_ident!("{}", s)).collect();
g.extend(quote! {
embassy_hal_internal::peripherals_definition!(#(#singleton_tokens),*);
});
let singleton_tokens: Vec<_> = singletons
.iter()
.filter(|s| *s != &time_driver_singleton.to_string())
.map(|s| format_ident!("{}", s))
.collect();
g.extend(quote! {
embassy_hal_internal::peripherals_struct!(#(#singleton_tokens),*);
});
// ========
// Generate interrupt declarations
let mut irqs = Vec::new();
for irq in METADATA.interrupts {
irqs.push(format_ident!("{}", irq.name));
}
g.extend(quote! {
embassy_hal_internal::interrupt_mod!(
#(
#irqs,
)*
);
});
// ========
// Generate FLASH regions
let mut flash_regions = TokenStream::new();
let flash_memory_regions: Vec<_> = METADATA
.memory
.iter()
.filter(|x| x.kind == MemoryRegionKind::Flash && x.settings.is_some())
.collect();
for region in flash_memory_regions.iter() {
let region_name = format_ident!("{}", get_flash_region_name(region.name));
let bank_variant = format_ident!(
"{}",
if region.name.starts_with("BANK_1") {
"Bank1"
} else if region.name.starts_with("BANK_2") {
"Bank2"
} else {
continue;
}
);
let base = region.address;
let size = region.size;
let settings = region.settings.as_ref().unwrap();
let erase_size = settings.erase_size;
let write_size = settings.write_size;
let erase_value = settings.erase_value;
flash_regions.extend(quote! {
pub const #region_name: crate::flash::FlashRegion = crate::flash::FlashRegion {
bank: crate::flash::FlashBank::#bank_variant,
base: #base,
size: #size,
erase_size: #erase_size,
write_size: #write_size,
erase_value: #erase_value,
_ensure_internal: (),
};
});
let region_type = format_ident!("{}", get_flash_region_type_name(region.name));
flash_regions.extend(quote! {
#[cfg(flash)]
pub struct #region_type<'d, MODE = crate::flash::Async>(pub &'static crate::flash::FlashRegion, pub(crate) embassy_hal_internal::PeripheralRef<'d, crate::peripherals::FLASH>, pub(crate) core::marker::PhantomData<MODE>);
});
}
let (fields, (inits, region_names)): (Vec<TokenStream>, (Vec<TokenStream>, Vec<Ident>)) = flash_memory_regions
.iter()
.map(|f| {
let region_name = get_flash_region_name(f.name);
let field_name = format_ident!("{}", region_name.to_lowercase());
let field_type = format_ident!("{}", get_flash_region_type_name(f.name));
let field = quote! {
pub #field_name: #field_type<'d, MODE>
};
let region_name = format_ident!("{}", region_name);
let init = quote! {
#field_name: #field_type(&#region_name, unsafe { p.clone_unchecked()}, core::marker::PhantomData)
};
(field, (init, region_name))
})
.unzip();
let regions_len = flash_memory_regions.len();
flash_regions.extend(quote! {
#[cfg(flash)]
pub struct FlashLayout<'d, MODE = crate::flash::Async> {
#(#fields),*,
_mode: core::marker::PhantomData<MODE>,
}
#[cfg(flash)]
impl<'d, MODE> FlashLayout<'d, MODE> {
pub(crate) fn new(p: embassy_hal_internal::PeripheralRef<'d, crate::peripherals::FLASH>) -> Self {
Self {
#(#inits),*,
_mode: core::marker::PhantomData,
}
}
}
pub const FLASH_REGIONS: [&crate::flash::FlashRegion; #regions_len] = [
#(&#region_names),*
];
});
let max_erase_size = flash_memory_regions
.iter()
.map(|region| region.settings.as_ref().unwrap().erase_size)
.max()
.unwrap();
g.extend(quote! { pub const MAX_ERASE_SIZE: usize = #max_erase_size as usize; });
g.extend(quote! { pub mod flash_regions { #flash_regions } });
// ========
// Extract the rcc registers
let rcc_registers = METADATA
.peripherals
.iter()
.filter_map(|p| p.registers.as_ref())
.find(|r| r.kind == "rcc")
.unwrap();
let rcc_block = rcc_registers.ir.blocks.iter().find(|b| b.name == "Rcc").unwrap();
// ========
// Generate RccPeripheral impls
// count how many times each xxENR field is used, to enable refcounting if used more than once.
let mut rcc_field_count: HashMap<_, usize> = HashMap::new();
for p in METADATA.peripherals {
if let Some(rcc) = &p.rcc {
let en = rcc.enable.as_ref().unwrap();
*rcc_field_count.entry((en.register, en.field)).or_insert(0) += 1;
}
}
struct ClockGen<'a> {
rcc_registers: &'a PeripheralRegisters,
chained_muxes: HashMap<&'a str, &'a PeripheralRccRegister>,
clock_names: BTreeSet<String>,
muxes: BTreeSet<(Ident, Ident, Ident)>,
}
let mut clock_gen = ClockGen {
rcc_registers,
chained_muxes: HashMap::new(),
clock_names: BTreeSet::new(),
muxes: BTreeSet::new(),
};
if chip_name.starts_with("stm32h5") {
clock_gen.chained_muxes.insert(
"PER",
&PeripheralRccRegister {
register: "CCIPR5",
field: "PERSEL",
},
);
}
if chip_name.starts_with("stm32h7r") || chip_name.starts_with("stm32h7s") {
clock_gen.chained_muxes.insert(
"PER",
&PeripheralRccRegister {
register: "AHBPERCKSELR",
field: "PERSEL",
},
);
} else if chip_name.starts_with("stm32h7") {
clock_gen.chained_muxes.insert(
"PER",
&PeripheralRccRegister {
register: "D1CCIPR",
field: "PERSEL",
},
);
}
if chip_name.starts_with("stm32u5") {
clock_gen.chained_muxes.insert(
"ICLK",
&PeripheralRccRegister {
register: "CCIPR1",
field: "ICLKSEL",
},
);
}
if chip_name.starts_with("stm32wb") && !chip_name.starts_with("stm32wba") {
clock_gen.chained_muxes.insert(
"CLK48",
&PeripheralRccRegister {
register: "CCIPR",
field: "CLK48SEL",
},
);
}
if chip_name.starts_with("stm32f7") {
clock_gen.chained_muxes.insert(
"CLK48",
&PeripheralRccRegister {
register: "DCKCFGR2",
field: "CLK48SEL",
},
);
}
if chip_name.starts_with("stm32f4") && !chip_name.starts_with("stm32f410") {
clock_gen.chained_muxes.insert(
"CLK48",
&PeripheralRccRegister {
register: "DCKCFGR",
field: "CLK48SEL",
},
);
}
impl<'a> ClockGen<'a> {
fn gen_clock(&mut self, name: &str) -> TokenStream {
let clock_name = format_ident!("{}", name.to_ascii_lowercase());
self.clock_names.insert(name.to_ascii_lowercase());
quote!( unsafe { crate::rcc::get_freqs().#clock_name.unwrap() } )
}
fn gen_mux(&mut self, mux: &PeripheralRccRegister) -> TokenStream {
let ir = &self.rcc_registers.ir;
let fieldset_name = mux.register.to_ascii_lowercase();
let fieldset = ir
.fieldsets
.iter()
.find(|i| i.name.eq_ignore_ascii_case(&fieldset_name))
.unwrap();
let field_name = mux.field.to_ascii_lowercase();
let field = fieldset.fields.iter().find(|i| i.name == field_name).unwrap();
let enum_name = field.enumm.unwrap();
let enumm = ir.enums.iter().find(|i| i.name == enum_name).unwrap();
let fieldset_name = format_ident!("{}", fieldset_name);
let field_name = format_ident!("{}", field_name);
let enum_name = format_ident!("{}", enum_name);
self.muxes
.insert((fieldset_name.clone(), field_name.clone(), enum_name.clone()));
let mut match_arms = TokenStream::new();
for v in enumm.variants.iter().filter(|v| v.name != "DISABLE") {
let variant_name = format_ident!("{}", v.name);
let expr = if let Some(mux) = self.chained_muxes.get(&v.name) {
self.gen_mux(mux)
} else {
self.gen_clock(v.name)
};
match_arms.extend(quote! {
crate::pac::rcc::vals::#enum_name::#variant_name => #expr,
});
}
quote! {
match crate::pac::RCC.#fieldset_name().read().#field_name() {
#match_arms
#[allow(unreachable_patterns)]
_ => unreachable!(),
}
}
}
}
let mut refcount_idxs = HashMap::new();
for p in METADATA.peripherals {
if !singletons.contains(&p.name.to_string()) {
continue;
}
if let Some(rcc) = &p.rcc {
let rst_reg = rcc.reset.as_ref();
let en_reg = rcc.enable.as_ref().unwrap();
let pname = format_ident!("{}", p.name);
let get_offset_and_bit = |reg: &PeripheralRccRegister| -> TokenStream {
let reg_offset = rcc_block
.items
.iter()
.find(|i| i.name.eq_ignore_ascii_case(reg.register))
.unwrap()
.byte_offset;
let reg_offset: u8 = (reg_offset / 4).try_into().unwrap();
let bit_offset = &rcc_registers
.ir
.fieldsets
.iter()
.find(|i| i.name.eq_ignore_ascii_case(reg.register))
.unwrap()
.fields
.iter()
.find(|i| i.name.eq_ignore_ascii_case(reg.field))
.unwrap()
.bit_offset;
let BitOffset::Regular(bit_offset) = bit_offset else {
panic!("cursed bit offset")
};
let bit_offset: u8 = bit_offset.offset.try_into().unwrap();
quote! { (#reg_offset, #bit_offset) }
};
let reset_offset_and_bit = match rst_reg {
Some(rst_reg) => {
let reset_offset_and_bit = get_offset_and_bit(rst_reg);
quote! { Some(#reset_offset_and_bit) }
}
None => quote! { None },
};
let enable_offset_and_bit = get_offset_and_bit(en_reg);
let needs_refcount = *rcc_field_count.get(&(en_reg.register, en_reg.field)).unwrap() > 1;
let refcount_idx = if needs_refcount {
let next_refcount_idx = refcount_idxs.len() as u8;
let refcount_idx = *refcount_idxs
.entry((en_reg.register, en_reg.field))
.or_insert(next_refcount_idx);
quote! { Some(#refcount_idx) }
} else {
quote! { None }
};
let clock_frequency = match &rcc.kernel_clock {
PeripheralRccKernelClock::Mux(mux) => clock_gen.gen_mux(mux),
PeripheralRccKernelClock::Clock(clock) => clock_gen.gen_clock(clock),
};
// A refcount leak can result if the same field is shared by peripherals with different stop modes
// This condition should be checked in stm32-data
let stop_mode = match rcc.stop_mode {
StopMode::Standby => quote! { crate::rcc::StopMode::Standby },
StopMode::Stop2 => quote! { crate::rcc::StopMode::Stop2 },
StopMode::Stop1 => quote! { crate::rcc::StopMode::Stop1 },
};
g.extend(quote! {
impl crate::rcc::SealedRccPeripheral for peripherals::#pname {
fn frequency() -> crate::time::Hertz {
#clock_frequency
}
const RCC_INFO: crate::rcc::RccInfo = unsafe {
crate::rcc::RccInfo::new(
#reset_offset_and_bit,
#enable_offset_and_bit,
#refcount_idx,
#[cfg(feature = "low-power")]
#stop_mode,
)
};
}
impl crate::rcc::RccPeripheral for peripherals::#pname {}
});
}
}
g.extend({
let refcounts_len = refcount_idxs.len();
let refcount_zeros: TokenStream = refcount_idxs.iter().map(|_| quote! { 0u8, }).collect();
quote! {
pub(crate) static mut REFCOUNTS: [u8; #refcounts_len] = [#refcount_zeros];
}
});
let struct_fields: Vec<_> = clock_gen
.muxes
.iter()
.map(|(_fieldset, fieldname, enum_name)| {
quote! {
pub #fieldname: #enum_name
}
})
.collect();
let mut inits = TokenStream::new();
for fieldset in clock_gen
.muxes
.iter()
.map(|(f, _, _)| f)
.collect::<BTreeSet<_>>()
.into_iter()
{
let setters: Vec<_> = clock_gen
.muxes
.iter()
.filter(|(f, _, _)| f == fieldset)
.map(|(_, fieldname, _)| {
let setter = format_ident!("set_{}", fieldname);
quote! {
w.#setter(self.#fieldname);
}
})
.collect();
inits.extend(quote! {
crate::pac::RCC.#fieldset().modify(|w| {
#(#setters)*
});
})
}
let enum_names: BTreeSet<_> = clock_gen.muxes.iter().map(|(_, _, enum_name)| enum_name).collect();
g.extend(quote! {
pub mod mux {
#(pub use crate::pac::rcc::vals::#enum_names as #enum_names; )*
#[derive(Clone, Copy)]
#[non_exhaustive]
pub struct ClockMux {
#( #struct_fields, )*
}
impl ClockMux {
pub(crate) const fn default() -> Self {
// safety: zero value is valid for all PAC enums.
unsafe { ::core::mem::zeroed() }
}
}
impl Default for ClockMux {
fn default() -> Self {
Self::default()
}
}
impl ClockMux {
pub(crate) fn init(&self) {
#inits
}
}
}
});
// Generate RCC
clock_gen.clock_names.insert("sys".to_string());
clock_gen.clock_names.insert("rtc".to_string());
let clock_idents: Vec<_> = clock_gen.clock_names.iter().map(|n| format_ident!("{}", n)).collect();
g.extend(quote! {
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct Clocks {
#(
pub #clock_idents: Option<crate::time::Hertz>,
)*
}
});
let clocks_macro = quote!(
macro_rules! set_clocks {
($($(#[$m:meta])* $k:ident: $v:expr,)*) => {
{
#[allow(unused)]
struct Temp {
$($(#[$m])* $k: Option<crate::time::Hertz>,)*
}
let all = Temp {
$($(#[$m])* $k: $v,)*
};
crate::rcc::set_freqs(crate::rcc::Clocks {
#( #clock_idents: all.#clock_idents, )*
});
}
};
}
);
// ========
// Generate fns to enable GPIO, DMA in RCC
for kind in ["dma", "bdma", "dmamux", "gpdma", "gpio"] {
let mut gg = TokenStream::new();
for p in METADATA.peripherals {
if p.registers.is_some() && p.registers.as_ref().unwrap().kind == kind {
if let Some(rcc) = &p.rcc {
let en = rcc.enable.as_ref().unwrap();
let en_reg = format_ident!("{}", en.register.to_ascii_lowercase());
let set_en_field = format_ident!("set_{}", en.field.to_ascii_lowercase());
gg.extend(quote! {
crate::pac::RCC.#en_reg().modify(|w| w.#set_en_field(true));
})
}
}
}
let fname = format_ident!("init_{}", kind);
g.extend(quote! {
pub unsafe fn #fname(){
#gg
}
})
}
// ========
// Generate pin_trait_impl!
#[rustfmt::skip]
let signals: HashMap<_, _> = [
// (kind, signal) => trait
(("ucpd", "CC1"), quote!(crate::ucpd::Cc1Pin)),
(("ucpd", "CC2"), quote!(crate::ucpd::Cc2Pin)),
(("usart", "TX"), quote!(crate::usart::TxPin)),
(("usart", "RX"), quote!(crate::usart::RxPin)),
(("usart", "CTS"), quote!(crate::usart::CtsPin)),
(("usart", "RTS"), quote!(crate::usart::RtsPin)),
(("usart", "CK"), quote!(crate::usart::CkPin)),
(("usart", "DE"), quote!(crate::usart::DePin)),
(("lpuart", "TX"), quote!(crate::usart::TxPin)),
(("lpuart", "RX"), quote!(crate::usart::RxPin)),
(("lpuart", "CTS"), quote!(crate::usart::CtsPin)),
(("lpuart", "RTS"), quote!(crate::usart::RtsPin)),
(("lpuart", "CK"), quote!(crate::usart::CkPin)),
(("lpuart", "DE"), quote!(crate::usart::DePin)),
(("sai", "SCK_A"), quote!(crate::sai::SckPin<A>)),
(("sai", "SCK_B"), quote!(crate::sai::SckPin<B>)),
(("sai", "FS_A"), quote!(crate::sai::FsPin<A>)),
(("sai", "FS_B"), quote!(crate::sai::FsPin<B>)),
(("sai", "SD_A"), quote!(crate::sai::SdPin<A>)),
(("sai", "SD_B"), quote!(crate::sai::SdPin<B>)),
(("sai", "MCLK_A"), quote!(crate::sai::MclkPin<A>)),
(("sai", "MCLK_B"), quote!(crate::sai::MclkPin<B>)),
(("sai", "WS"), quote!(crate::sai::WsPin)),
(("spi", "SCK"), quote!(crate::spi::SckPin)),
(("spi", "MOSI"), quote!(crate::spi::MosiPin)),
(("spi", "MISO"), quote!(crate::spi::MisoPin)),
(("spi", "NSS"), quote!(crate::spi::CsPin)),
(("spi", "I2S_MCK"), quote!(crate::spi::MckPin)),
(("spi", "I2S_CK"), quote!(crate::spi::CkPin)),
(("spi", "I2S_WS"), quote!(crate::spi::WsPin)),
(("i2c", "SDA"), quote!(crate::i2c::SdaPin)),
(("i2c", "SCL"), quote!(crate::i2c::SclPin)),
(("rcc", "MCO_1"), quote!(crate::rcc::McoPin)),
(("rcc", "MCO_2"), quote!(crate::rcc::McoPin)),
(("rcc", "MCO"), quote!(crate::rcc::McoPin)),
(("dcmi", "D0"), quote!(crate::dcmi::D0Pin)),
(("dcmi", "D1"), quote!(crate::dcmi::D1Pin)),
(("dcmi", "D2"), quote!(crate::dcmi::D2Pin)),
(("dcmi", "D3"), quote!(crate::dcmi::D3Pin)),
(("dcmi", "D4"), quote!(crate::dcmi::D4Pin)),
(("dcmi", "D5"), quote!(crate::dcmi::D5Pin)),
(("dcmi", "D6"), quote!(crate::dcmi::D6Pin)),
(("dcmi", "D7"), quote!(crate::dcmi::D7Pin)),
(("dcmi", "D8"), quote!(crate::dcmi::D8Pin)),
(("dcmi", "D9"), quote!(crate::dcmi::D9Pin)),
(("dcmi", "D10"), quote!(crate::dcmi::D10Pin)),
(("dcmi", "D11"), quote!(crate::dcmi::D11Pin)),
(("dcmi", "D12"), quote!(crate::dcmi::D12Pin)),
(("dcmi", "D13"), quote!(crate::dcmi::D13Pin)),
(("dcmi", "HSYNC"), quote!(crate::dcmi::HSyncPin)),
(("dcmi", "VSYNC"), quote!(crate::dcmi::VSyncPin)),
(("dcmi", "PIXCLK"), quote!(crate::dcmi::PixClkPin)),
(("dsihost", "TE"), quote!(crate::dsihost::TePin)),
(("ltdc", "CLK"), quote!(crate::ltdc::ClkPin)),
(("ltdc", "HSYNC"), quote!(crate::ltdc::HsyncPin)),
(("ltdc", "VSYNC"), quote!(crate::ltdc::VsyncPin)),
(("ltdc", "DE"), quote!(crate::ltdc::DePin)),
(("ltdc", "R0"), quote!(crate::ltdc::R0Pin)),
(("ltdc", "R1"), quote!(crate::ltdc::R1Pin)),
(("ltdc", "R2"), quote!(crate::ltdc::R2Pin)),
(("ltdc", "R3"), quote!(crate::ltdc::R3Pin)),
(("ltdc", "R4"), quote!(crate::ltdc::R4Pin)),
(("ltdc", "R5"), quote!(crate::ltdc::R5Pin)),
(("ltdc", "R6"), quote!(crate::ltdc::R6Pin)),
(("ltdc", "R7"), quote!(crate::ltdc::R7Pin)),
(("ltdc", "G0"), quote!(crate::ltdc::G0Pin)),
(("ltdc", "G1"), quote!(crate::ltdc::G1Pin)),
(("ltdc", "G2"), quote!(crate::ltdc::G2Pin)),
(("ltdc", "G3"), quote!(crate::ltdc::G3Pin)),
(("ltdc", "G4"), quote!(crate::ltdc::G4Pin)),
(("ltdc", "G5"), quote!(crate::ltdc::G5Pin)),
(("ltdc", "G6"), quote!(crate::ltdc::G6Pin)),
(("ltdc", "G7"), quote!(crate::ltdc::G7Pin)),
(("ltdc", "B0"), quote!(crate::ltdc::B0Pin)),
(("ltdc", "B1"), quote!(crate::ltdc::B1Pin)),
(("ltdc", "B2"), quote!(crate::ltdc::B2Pin)),
(("ltdc", "B3"), quote!(crate::ltdc::B3Pin)),
(("ltdc", "B4"), quote!(crate::ltdc::B4Pin)),
(("ltdc", "B5"), quote!(crate::ltdc::B5Pin)),
(("ltdc", "B6"), quote!(crate::ltdc::B6Pin)),
(("ltdc", "B7"), quote!(crate::ltdc::B7Pin)),
(("usb", "DP"), quote!(crate::usb::DpPin)),
(("usb", "DM"), quote!(crate::usb::DmPin)),
(("otg", "DP"), quote!(crate::usb::DpPin)),
(("otg", "DM"), quote!(crate::usb::DmPin)),
(("otg", "ULPI_CK"), quote!(crate::usb::UlpiClkPin)),
(("otg", "ULPI_DIR"), quote!(crate::usb::UlpiDirPin)),
(("otg", "ULPI_NXT"), quote!(crate::usb::UlpiNxtPin)),
(("otg", "ULPI_STP"), quote!(crate::usb::UlpiStpPin)),
(("otg", "ULPI_D0"), quote!(crate::usb::UlpiD0Pin)),
(("otg", "ULPI_D1"), quote!(crate::usb::UlpiD1Pin)),
(("otg", "ULPI_D2"), quote!(crate::usb::UlpiD2Pin)),
(("otg", "ULPI_D3"), quote!(crate::usb::UlpiD3Pin)),
(("otg", "ULPI_D4"), quote!(crate::usb::UlpiD4Pin)),
(("otg", "ULPI_D5"), quote!(crate::usb::UlpiD5Pin)),
(("otg", "ULPI_D6"), quote!(crate::usb::UlpiD6Pin)),
(("otg", "ULPI_D7"), quote!(crate::usb::UlpiD7Pin)),
(("can", "TX"), quote!(crate::can::TxPin)),
(("can", "RX"), quote!(crate::can::RxPin)),
(("eth", "REF_CLK"), quote!(crate::eth::RefClkPin)),
(("eth", "RX_CLK"), quote!(crate::eth::RXClkPin)),
(("eth", "TX_CLK"), quote!(crate::eth::TXClkPin)),
(("eth", "MDIO"), quote!(crate::eth::MDIOPin)),
(("eth", "MDC"), quote!(crate::eth::MDCPin)),
(("eth", "CRS_DV"), quote!(crate::eth::CRSPin)),
(("eth", "RX_DV"), quote!(crate::eth::RXDVPin)),
(("eth", "RXD0"), quote!(crate::eth::RXD0Pin)),
(("eth", "RXD1"), quote!(crate::eth::RXD1Pin)),
(("eth", "RXD2"), quote!(crate::eth::RXD2Pin)),
(("eth", "RXD3"), quote!(crate::eth::RXD3Pin)),
(("eth", "TXD0"), quote!(crate::eth::TXD0Pin)),
(("eth", "TXD1"), quote!(crate::eth::TXD1Pin)),
(("eth", "TXD2"), quote!(crate::eth::TXD2Pin)),
(("eth", "TXD3"), quote!(crate::eth::TXD3Pin)),
(("eth", "TX_EN"), quote!(crate::eth::TXEnPin)),
(("fmc", "A0"), quote!(crate::fmc::A0Pin)),
(("fmc", "A1"), quote!(crate::fmc::A1Pin)),
(("fmc", "A2"), quote!(crate::fmc::A2Pin)),
(("fmc", "A3"), quote!(crate::fmc::A3Pin)),
(("fmc", "A4"), quote!(crate::fmc::A4Pin)),
(("fmc", "A5"), quote!(crate::fmc::A5Pin)),
(("fmc", "A6"), quote!(crate::fmc::A6Pin)),
(("fmc", "A7"), quote!(crate::fmc::A7Pin)),
(("fmc", "A8"), quote!(crate::fmc::A8Pin)),
(("fmc", "A9"), quote!(crate::fmc::A9Pin)),
(("fmc", "A10"), quote!(crate::fmc::A10Pin)),
(("fmc", "A11"), quote!(crate::fmc::A11Pin)),
(("fmc", "A12"), quote!(crate::fmc::A12Pin)),
(("fmc", "A13"), quote!(crate::fmc::A13Pin)),
(("fmc", "A14"), quote!(crate::fmc::A14Pin)),
(("fmc", "A15"), quote!(crate::fmc::A15Pin)),
(("fmc", "A16"), quote!(crate::fmc::A16Pin)),
(("fmc", "A17"), quote!(crate::fmc::A17Pin)),
(("fmc", "A18"), quote!(crate::fmc::A18Pin)),
(("fmc", "A19"), quote!(crate::fmc::A19Pin)),
(("fmc", "A20"), quote!(crate::fmc::A20Pin)),
(("fmc", "A21"), quote!(crate::fmc::A21Pin)),
(("fmc", "A22"), quote!(crate::fmc::A22Pin)),
(("fmc", "A23"), quote!(crate::fmc::A23Pin)),
(("fmc", "A24"), quote!(crate::fmc::A24Pin)),
(("fmc", "A25"), quote!(crate::fmc::A25Pin)),
(("fmc", "D0"), quote!(crate::fmc::D0Pin)),
(("fmc", "D1"), quote!(crate::fmc::D1Pin)),
(("fmc", "D2"), quote!(crate::fmc::D2Pin)),
(("fmc", "D3"), quote!(crate::fmc::D3Pin)),
(("fmc", "D4"), quote!(crate::fmc::D4Pin)),
(("fmc", "D5"), quote!(crate::fmc::D5Pin)),
(("fmc", "D6"), quote!(crate::fmc::D6Pin)),
(("fmc", "D7"), quote!(crate::fmc::D7Pin)),
(("fmc", "D8"), quote!(crate::fmc::D8Pin)),
(("fmc", "D9"), quote!(crate::fmc::D9Pin)),
(("fmc", "D10"), quote!(crate::fmc::D10Pin)),
(("fmc", "D11"), quote!(crate::fmc::D11Pin)),
(("fmc", "D12"), quote!(crate::fmc::D12Pin)),
(("fmc", "D13"), quote!(crate::fmc::D13Pin)),
(("fmc", "D14"), quote!(crate::fmc::D14Pin)),
(("fmc", "D15"), quote!(crate::fmc::D15Pin)),
(("fmc", "D16"), quote!(crate::fmc::D16Pin)),
(("fmc", "D17"), quote!(crate::fmc::D17Pin)),
(("fmc", "D18"), quote!(crate::fmc::D18Pin)),
(("fmc", "D19"), quote!(crate::fmc::D19Pin)),
(("fmc", "D20"), quote!(crate::fmc::D20Pin)),
(("fmc", "D21"), quote!(crate::fmc::D21Pin)),
(("fmc", "D22"), quote!(crate::fmc::D22Pin)),
(("fmc", "D23"), quote!(crate::fmc::D23Pin)),
(("fmc", "D24"), quote!(crate::fmc::D24Pin)),
(("fmc", "D25"), quote!(crate::fmc::D25Pin)),
(("fmc", "D26"), quote!(crate::fmc::D26Pin)),
(("fmc", "D27"), quote!(crate::fmc::D27Pin)),
(("fmc", "D28"), quote!(crate::fmc::D28Pin)),
(("fmc", "D29"), quote!(crate::fmc::D29Pin)),
(("fmc", "D30"), quote!(crate::fmc::D30Pin)),
(("fmc", "D31"), quote!(crate::fmc::D31Pin)),
(("fmc", "DA0"), quote!(crate::fmc::DA0Pin)),
(("fmc", "DA1"), quote!(crate::fmc::DA1Pin)),
(("fmc", "DA2"), quote!(crate::fmc::DA2Pin)),
(("fmc", "DA3"), quote!(crate::fmc::DA3Pin)),
(("fmc", "DA4"), quote!(crate::fmc::DA4Pin)),
(("fmc", "DA5"), quote!(crate::fmc::DA5Pin)),
(("fmc", "DA6"), quote!(crate::fmc::DA6Pin)),
(("fmc", "DA7"), quote!(crate::fmc::DA7Pin)),
(("fmc", "DA8"), quote!(crate::fmc::DA8Pin)),
(("fmc", "DA9"), quote!(crate::fmc::DA9Pin)),
(("fmc", "DA10"), quote!(crate::fmc::DA10Pin)),
(("fmc", "DA11"), quote!(crate::fmc::DA11Pin)),
(("fmc", "DA12"), quote!(crate::fmc::DA12Pin)),
(("fmc", "DA13"), quote!(crate::fmc::DA13Pin)),
(("fmc", "DA14"), quote!(crate::fmc::DA14Pin)),
(("fmc", "DA15"), quote!(crate::fmc::DA15Pin)),
(("fmc", "SDNWE"), quote!(crate::fmc::SDNWEPin)),
(("fmc", "SDNCAS"), quote!(crate::fmc::SDNCASPin)),
(("fmc", "SDNRAS"), quote!(crate::fmc::SDNRASPin)),
(("fmc", "SDNE0"), quote!(crate::fmc::SDNE0Pin)),
(("fmc", "SDNE1"), quote!(crate::fmc::SDNE1Pin)),
(("fmc", "SDCKE0"), quote!(crate::fmc::SDCKE0Pin)),
(("fmc", "SDCKE1"), quote!(crate::fmc::SDCKE1Pin)),
(("fmc", "SDCLK"), quote!(crate::fmc::SDCLKPin)),
(("fmc", "NBL0"), quote!(crate::fmc::NBL0Pin)),
(("fmc", "NBL1"), quote!(crate::fmc::NBL1Pin)),
(("fmc", "NBL2"), quote!(crate::fmc::NBL2Pin)),
(("fmc", "NBL3"), quote!(crate::fmc::NBL3Pin)),
(("fmc", "INT"), quote!(crate::fmc::INTPin)),
(("fmc", "NL"), quote!(crate::fmc::NLPin)),
(("fmc", "NWAIT"), quote!(crate::fmc::NWaitPin)),
(("fmc", "NE1"), quote!(crate::fmc::NE1Pin)),
(("fmc", "NE2"), quote!(crate::fmc::NE2Pin)),
(("fmc", "NE3"), quote!(crate::fmc::NE3Pin)),
(("fmc", "NE4"), quote!(crate::fmc::NE4Pin)),
(("fmc", "NCE"), quote!(crate::fmc::NCEPin)),
(("fmc", "NOE"), quote!(crate::fmc::NOEPin)),
(("fmc", "NWE"), quote!(crate::fmc::NWEPin)),
(("fmc", "CLK"), quote!(crate::fmc::ClkPin)),
(("fmc", "BA0"), quote!(crate::fmc::BA0Pin)),
(("fmc", "BA1"), quote!(crate::fmc::BA1Pin)),
(("timer", "CH1"), quote!(crate::timer::Channel1Pin)),
(("timer", "CH1N"), quote!(crate::timer::Channel1ComplementaryPin)),
(("timer", "CH2"), quote!(crate::timer::Channel2Pin)),
(("timer", "CH2N"), quote!(crate::timer::Channel2ComplementaryPin)),
(("timer", "CH3"), quote!(crate::timer::Channel3Pin)),
(("timer", "CH3N"), quote!(crate::timer::Channel3ComplementaryPin)),
(("timer", "CH4"), quote!(crate::timer::Channel4Pin)),
(("timer", "CH4N"), quote!(crate::timer::Channel4ComplementaryPin)),
(("timer", "ETR"), quote!(crate::timer::ExternalTriggerPin)),
(("timer", "BKIN"), quote!(crate::timer::BreakInputPin)),
(("timer", "BKIN_COMP1"), quote!(crate::timer::BreakInputComparator1Pin)),
(("timer", "BKIN_COMP2"), quote!(crate::timer::BreakInputComparator2Pin)),
(("timer", "BKIN2"), quote!(crate::timer::BreakInput2Pin)),
(("timer", "BKIN2_COMP1"), quote!(crate::timer::BreakInput2Comparator1Pin)),
(("timer", "BKIN2_COMP2"), quote!(crate::timer::BreakInput2Comparator2Pin)),
(("hrtim", "CHA1"), quote!(crate::hrtim::ChannelAPin)),
(("hrtim", "CHA2"), quote!(crate::hrtim::ChannelAComplementaryPin)),
(("hrtim", "CHB1"), quote!(crate::hrtim::ChannelBPin)),
(("hrtim", "CHB2"), quote!(crate::hrtim::ChannelBComplementaryPin)),
(("hrtim", "CHC1"), quote!(crate::hrtim::ChannelCPin)),
(("hrtim", "CHC2"), quote!(crate::hrtim::ChannelCComplementaryPin)),
(("hrtim", "CHD1"), quote!(crate::hrtim::ChannelDPin)),
(("hrtim", "CHD2"), quote!(crate::hrtim::ChannelDComplementaryPin)),
(("hrtim", "CHE1"), quote!(crate::hrtim::ChannelEPin)),
(("hrtim", "CHE2"), quote!(crate::hrtim::ChannelEComplementaryPin)),
(("hrtim", "CHF1"), quote!(crate::hrtim::ChannelFPin)),
(("hrtim", "CHF2"), quote!(crate::hrtim::ChannelFComplementaryPin)),
(("sdmmc", "CK"), quote!(crate::sdmmc::CkPin)),
(("sdmmc", "CMD"), quote!(crate::sdmmc::CmdPin)),
(("sdmmc", "D0"), quote!(crate::sdmmc::D0Pin)),
(("sdmmc", "D1"), quote!(crate::sdmmc::D1Pin)),
(("sdmmc", "D2"), quote!(crate::sdmmc::D2Pin)),
(("sdmmc", "D3"), quote!(crate::sdmmc::D3Pin)),
(("sdmmc", "D4"), quote!(crate::sdmmc::D4Pin)),
(("sdmmc", "D5"), quote!(crate::sdmmc::D5Pin)),
(("sdmmc", "D6"), quote!(crate::sdmmc::D6Pin)),
(("sdmmc", "D6"), quote!(crate::sdmmc::D7Pin)),
(("sdmmc", "D8"), quote!(crate::sdmmc::D8Pin)),
(("quadspi", "BK1_IO0"), quote!(crate::qspi::BK1D0Pin)),
(("quadspi", "BK1_IO1"), quote!(crate::qspi::BK1D1Pin)),
(("quadspi", "BK1_IO2"), quote!(crate::qspi::BK1D2Pin)),
(("quadspi", "BK1_IO3"), quote!(crate::qspi::BK1D3Pin)),
(("quadspi", "BK1_NCS"), quote!(crate::qspi::BK1NSSPin)),
(("quadspi", "BK2_IO0"), quote!(crate::qspi::BK2D0Pin)),
(("quadspi", "BK2_IO1"), quote!(crate::qspi::BK2D1Pin)),
(("quadspi", "BK2_IO2"), quote!(crate::qspi::BK2D2Pin)),
(("quadspi", "BK2_IO3"), quote!(crate::qspi::BK2D3Pin)),
(("quadspi", "BK2_NCS"), quote!(crate::qspi::BK2NSSPin)),
(("quadspi", "CLK"), quote!(crate::qspi::SckPin)),
(("octospi", "IO0"), quote!(crate::ospi::D0Pin)),
(("octospi", "IO1"), quote!(crate::ospi::D1Pin)),
(("octospi", "IO2"), quote!(crate::ospi::D2Pin)),
(("octospi", "IO3"), quote!(crate::ospi::D3Pin)),
(("octospi", "IO4"), quote!(crate::ospi::D4Pin)),
(("octospi", "IO5"), quote!(crate::ospi::D5Pin)),
(("octospi", "IO6"), quote!(crate::ospi::D6Pin)),
(("octospi", "IO7"), quote!(crate::ospi::D7Pin)),
(("octospi", "DQS"), quote!(crate::ospi::DQSPin)),
(("octospi", "NCS"), quote!(crate::ospi::NSSPin)),
(("octospi", "CLK"), quote!(crate::ospi::SckPin)),
(("octospi", "NCLK"), quote!(crate::ospi::NckPin)),
(("tsc", "G1_IO1"), quote!(crate::tsc::G1IO1Pin)),
(("tsc", "G1_IO2"), quote!(crate::tsc::G1IO2Pin)),
(("tsc", "G1_IO3"), quote!(crate::tsc::G1IO3Pin)),
(("tsc", "G1_IO4"), quote!(crate::tsc::G1IO4Pin)),
(("tsc", "G2_IO1"), quote!(crate::tsc::G2IO1Pin)),
(("tsc", "G2_IO2"), quote!(crate::tsc::G2IO2Pin)),
(("tsc", "G2_IO3"), quote!(crate::tsc::G2IO3Pin)),
(("tsc", "G2_IO4"), quote!(crate::tsc::G2IO4Pin)),
(("tsc", "G3_IO1"), quote!(crate::tsc::G3IO1Pin)),
(("tsc", "G3_IO2"), quote!(crate::tsc::G3IO2Pin)),
(("tsc", "G3_IO3"), quote!(crate::tsc::G3IO3Pin)),
(("tsc", "G3_IO4"), quote!(crate::tsc::G3IO4Pin)),
(("tsc", "G4_IO1"), quote!(crate::tsc::G4IO1Pin)),
(("tsc", "G4_IO2"), quote!(crate::tsc::G4IO2Pin)),
(("tsc", "G4_IO3"), quote!(crate::tsc::G4IO3Pin)),
(("tsc", "G4_IO4"), quote!(crate::tsc::G4IO4Pin)),
(("tsc", "G5_IO1"), quote!(crate::tsc::G5IO1Pin)),
(("tsc", "G5_IO2"), quote!(crate::tsc::G5IO2Pin)),
(("tsc", "G5_IO3"), quote!(crate::tsc::G5IO3Pin)),
(("tsc", "G5_IO4"), quote!(crate::tsc::G5IO4Pin)),
(("tsc", "G6_IO1"), quote!(crate::tsc::G6IO1Pin)),
(("tsc", "G6_IO2"), quote!(crate::tsc::G6IO2Pin)),
(("tsc", "G6_IO3"), quote!(crate::tsc::G6IO3Pin)),
(("tsc", "G6_IO4"), quote!(crate::tsc::G6IO4Pin)),
(("tsc", "G7_IO1"), quote!(crate::tsc::G7IO1Pin)),
(("tsc", "G7_IO2"), quote!(crate::tsc::G7IO2Pin)),
(("tsc", "G7_IO3"), quote!(crate::tsc::G7IO3Pin)),
(("tsc", "G7_IO4"), quote!(crate::tsc::G7IO4Pin)),
(("tsc", "G8_IO1"), quote!(crate::tsc::G8IO1Pin)),
(("tsc", "G8_IO2"), quote!(crate::tsc::G8IO2Pin)),
(("tsc", "G8_IO3"), quote!(crate::tsc::G8IO3Pin)),
(("tsc", "G8_IO4"), quote!(crate::tsc::G8IO4Pin)),
].into();
for p in METADATA.peripherals {
if let Some(regs) = &p.registers {
for pin in p.pins {
let key = (regs.kind, pin.signal);
if let Some(tr) = signals.get(&key) {
let mut peri = format_ident!("{}", p.name);
let pin_name = {
// If we encounter a _C pin but the split_feature for this pin is not enabled, skip it
if pin.pin.ends_with("_C") && !split_features.iter().any(|x| x.pin_name_with_c == pin.pin) {
continue;
}
format_ident!("{}", pin.pin)
};
let af = pin.af.unwrap_or(0);
// MCO is special
if pin.signal.starts_with("MCO") {
peri = format_ident!("{}", pin.signal.replace('_', ""));
}
g.extend(quote! {
pin_trait_impl!(#tr, #peri, #pin_name, #af);
})
}
// ADC is special
if regs.kind == "adc" {
if p.rcc.is_none() {
continue;
}
let peri = format_ident!("{}", p.name);
let pin_name = {
// If we encounter a _C pin but the split_feature for this pin is not enabled, skip it
if pin.pin.ends_with("_C") && !split_features.iter().any(|x| x.pin_name_with_c == pin.pin) {
continue;
}
format_ident!("{}", pin.pin)
};
// H7 has differential voltage measurements
let ch: Option<u8> = if pin.signal.starts_with("INP") {
Some(pin.signal.strip_prefix("INP").unwrap().parse().unwrap())
} else if pin.signal.starts_with("INN") {
// TODO handle in the future when embassy supports differential measurements
None
} else if pin.signal.starts_with("IN") && pin.signal.ends_with('b') {
// we number STM32L1 ADC bank 1 as 0..=31, bank 2 as 32..=63
let signal = pin.signal.strip_prefix("IN").unwrap().strip_suffix('b').unwrap();
Some(32u8 + signal.parse::<u8>().unwrap())
} else if pin.signal.starts_with("IN") {
Some(pin.signal.strip_prefix("IN").unwrap().parse().unwrap())
} else {
None
};
if let Some(ch) = ch {
g.extend(quote! {
impl_adc_pin!( #peri, #pin_name, #ch);
})
}
}
if regs.kind == "opamp" {
if pin.signal.starts_with("VP") {
// Impl NonInvertingPin for the VP* signals (VP0, VP1, VP2, etc)
let peri = format_ident!("{}", p.name);
let pin_name = format_ident!("{}", pin.pin);
let ch: u8 = pin.signal.strip_prefix("VP").unwrap().parse().unwrap();
g.extend(quote! {
impl_opamp_vp_pin!( #peri, #pin_name, #ch);
})
} else if pin.signal == "VOUT" {
// Impl OutputPin for the VOUT pin
let peri = format_ident!("{}", p.name);
let pin_name = format_ident!("{}", pin.pin);
g.extend(quote! {
impl_opamp_vout_pin!( #peri, #pin_name );
})
}
}
// DAC is special
if regs.kind == "dac" {
let peri = format_ident!("{}", p.name);
let pin_name = format_ident!("{}", pin.pin);
let ch: u8 = pin.signal.strip_prefix("OUT").unwrap().parse().unwrap();
g.extend(quote! {
impl_dac_pin!( #peri, #pin_name, #ch);
})
}
}
}
}
// ========
// Generate dma_trait_impl!
let signals: HashMap<_, _> = [
// (kind, signal) => trait
(("ucpd", "RX"), quote!(crate::ucpd::RxDma)),
(("ucpd", "TX"), quote!(crate::ucpd::TxDma)),
(("usart", "RX"), quote!(crate::usart::RxDma)),
(("usart", "TX"), quote!(crate::usart::TxDma)),
(("lpuart", "RX"), quote!(crate::usart::RxDma)),
(("lpuart", "TX"), quote!(crate::usart::TxDma)),
(("sai", "A"), quote!(crate::sai::Dma<A>)),
(("sai", "B"), quote!(crate::sai::Dma<B>)),
(("spi", "RX"), quote!(crate::spi::RxDma)),
(("spi", "TX"), quote!(crate::spi::TxDma)),
(("i2c", "RX"), quote!(crate::i2c::RxDma)),
(("i2c", "TX"), quote!(crate::i2c::TxDma)),
(("dcmi", "DCMI"), quote!(crate::dcmi::FrameDma)),
(("dcmi", "PSSI"), quote!(crate::dcmi::FrameDma)),
// SDMMCv1 uses the same channel for both directions, so just implement for RX
(("sdmmc", "RX"), quote!(crate::sdmmc::SdmmcDma)),
(("quadspi", "QUADSPI"), quote!(crate::qspi::QuadDma)),
(("octospi", "OCTOSPI1"), quote!(crate::ospi::OctoDma)),
(("dac", "CH1"), quote!(crate::dac::DacDma1)),
(("dac", "CH2"), quote!(crate::dac::DacDma2)),
(("timer", "UP"), quote!(crate::timer::UpDma)),
(("hash", "IN"), quote!(crate::hash::Dma)),
(("cryp", "IN"), quote!(crate::cryp::DmaIn)),
(("cryp", "OUT"), quote!(crate::cryp::DmaOut)),
(("timer", "CH1"), quote!(crate::timer::Ch1Dma)),
(("timer", "CH2"), quote!(crate::timer::Ch2Dma)),
(("timer", "CH3"), quote!(crate::timer::Ch3Dma)),
(("timer", "CH4"), quote!(crate::timer::Ch4Dma)),
(("cordic", "WRITE"), quote!(crate::cordic::WriteDma)), // FIXME: stm32u5a crash on Cordic driver
(("cordic", "READ"), quote!(crate::cordic::ReadDma)), // FIXME: stm32u5a crash on Cordic driver
]
.into();
for p in METADATA.peripherals {
if let Some(regs) = &p.registers {
// FIXME: stm32u5a crash on Cordic driver
if chip_name.starts_with("stm32u5a") && regs.kind == "cordic" {
continue;
}
let mut dupe = HashSet::new();
for ch in p.dma_channels {
if let Some(tr) = signals.get(&(regs.kind, ch.signal)) {
let peri = format_ident!("{}", p.name);
let channels = if let Some(channel) = &ch.channel {
// Chip with DMA/BDMA, without DMAMUX
vec![*channel]
} else if let Some(dmamux) = &ch.dmamux {
// Chip with DMAMUX
METADATA
.dma_channels
.iter()
.filter(|ch| ch.dmamux == Some(*dmamux))
.map(|ch| ch.name)
.collect()
} else if let Some(dma) = &ch.dma {
// Chip with GPDMA
METADATA
.dma_channels
.iter()
.filter(|ch| ch.dma == *dma)
.map(|ch| ch.name)
.collect()
} else {
unreachable!();
};
for channel in channels {
// Some chips have multiple request numbers for the same (peri, signal, channel) combos.
// Ignore the dupes, picking the first one. Otherwise this causes conflicting trait impls
let key = (ch.signal, channel.to_string());
if !dupe.insert(key) {
continue;
}
let request = if let Some(request) = ch.request {
let request = request as u8;
quote!(#request)
} else {
quote!(())
};
let channel = format_ident!("{}", channel);
g.extend(quote! {
dma_trait_impl!(#tr, #peri, #channel, #request);
});
}
}
}
}
}
// ========
// Generate Div/Mul impls for RCC prescalers/dividers/multipliers.
for e in rcc_registers.ir.enums {
fn is_rcc_name(e: &str) -> bool {
match e {
"Pllp" | "Pllq" | "Pllr" | "Pllm" | "Plln" => true,
"Timpre" | "Pllrclkpre" => false,
e if e.ends_with("pre") || e.ends_with("pres") || e.ends_with("div") || e.ends_with("mul") => true,
_ => false,
}
}
#[derive(Copy, Clone, Debug)]
struct Frac {
num: u32,
denom: u32,
}
impl Frac {
fn simplify(self) -> Self {
let d = gcd(self.num, self.denom);
Self {
num: self.num / d,
denom: self.denom / d,
}
}
}
fn gcd(a: u32, b: u32) -> u32 {
if b == 0 {
return a;
}
gcd(b, a % b)
}
fn parse_num(n: &str) -> Result<Frac, ()> {
for prefix in ["DIV", "MUL"] {
if let Some(n) = n.strip_prefix(prefix) {
let exponent = n.find('_').map(|e| n.len() - 1 - e).unwrap_or(0) as u32;
let mantissa = n.replace('_', "").parse().map_err(|_| ())?;
let f = Frac {
num: mantissa,
denom: 10u32.pow(exponent),
};
return Ok(f.simplify());
}
}
Err(())
}
if is_rcc_name(e.name) {
let enum_name = format_ident!("{}", e.name);
let mut muls = Vec::new();
let mut divs = Vec::new();
for v in e.variants {
let Ok(val) = parse_num(v.name) else {
panic!("could not parse mul/div. enum={} variant={}", e.name, v.name)
};
let variant_name = format_ident!("{}", v.name);
let variant = quote!(crate::pac::rcc::vals::#enum_name::#variant_name);
let num = val.num;
let denom = val.denom;
muls.push(quote!(#variant => self * #num / #denom,));
divs.push(quote!(#variant => self * #denom / #num,));
}
g.extend(quote! {
impl core::ops::Div<crate::pac::rcc::vals::#enum_name> for crate::time::Hertz {
type Output = crate::time::Hertz;
fn div(self, rhs: crate::pac::rcc::vals::#enum_name) -> Self::Output {
match rhs {
#(#divs)*
#[allow(unreachable_patterns)]
_ => unreachable!(),
}
}
}
impl core::ops::Mul<crate::pac::rcc::vals::#enum_name> for crate::time::Hertz {
type Output = crate::time::Hertz;
fn mul(self, rhs: crate::pac::rcc::vals::#enum_name) -> Self::Output {
match rhs {
#(#muls)*
#[allow(unreachable_patterns)]
_ => unreachable!(),
}
}
}
});
}
}
// ========
// Write peripheral_interrupts module.
let mut mt = TokenStream::new();
for p in METADATA.peripherals {
let mut pt = TokenStream::new();
for irq in p.interrupts {
let iname = format_ident!("{}", irq.interrupt);
let sname = format_ident!("{}", irq.signal);
pt.extend(quote!(pub type #sname = crate::interrupt::typelevel::#iname;));
}
let pname = format_ident!("{}", p.name);
mt.extend(quote!(pub mod #pname { #pt }));
}
g.extend(quote!(#[allow(non_camel_case_types)] pub mod peripheral_interrupts { #mt }));
// ========
// Write foreach_foo! macrotables
let mut flash_regions_table: Vec<Vec<String>> = Vec::new();
let mut interrupts_table: Vec<Vec<String>> = Vec::new();
let mut peripherals_table: Vec<Vec<String>> = Vec::new();
let mut pins_table: Vec<Vec<String>> = Vec::new();
let mut adc_table: Vec<Vec<String>> = Vec::new();
for m in METADATA
.memory
.iter()
.filter(|m| m.kind == MemoryRegionKind::Flash && m.settings.is_some())
{
let settings = m.settings.as_ref().unwrap();
let row = vec![
get_flash_region_type_name(m.name),
settings.write_size.to_string(),
settings.erase_size.to_string(),
];
flash_regions_table.push(row);
}
let gpio_base = METADATA.peripherals.iter().find(|p| p.name == "GPIOA").unwrap().address as u32;
let gpio_stride = 0x400;
for p in METADATA.peripherals {
if let Some(regs) = &p.registers {
if regs.kind == "gpio" {
let port_letter = p.name.chars().nth(4).unwrap();
assert_eq!(0, (p.address as u32 - gpio_base) % gpio_stride);
let port_num = (p.address as u32 - gpio_base) / gpio_stride;
for pin_num in 0u32..16 {
let pin_name = format!("P{}{}", port_letter, pin_num);
pins_table.push(vec![
pin_name.clone(),
p.name.to_string(),
port_num.to_string(),
pin_num.to_string(),
format!("EXTI{}", pin_num),
]);
// If we have the split pins, we need to do a little extra work:
// Add the "_C" variant to the table. The solution is not optimal, though.
// Adding them only when the corresponding GPIOx also appears.
// This should avoid unintended side-effects as much as possible.
#[cfg(feature = "_split-pins-enabled")]
for split_feature in &split_features {
if split_feature.pin_name_without_c == pin_name {
pins_table.push(vec![
split_feature.pin_name_with_c.to_string(),
p.name.to_string(),
port_num.to_string(),
pin_num.to_string(),
format!("EXTI{}", pin_num),
]);
}
}
}
}
if regs.kind == "adc" {
let adc_num = p.name.strip_prefix("ADC").unwrap();
let mut adc_common = None;
for p2 in METADATA.peripherals {
if let Some(common_nums) = p2.name.strip_prefix("ADC").and_then(|s| s.strip_suffix("_COMMON")) {
if common_nums.contains(adc_num) {
adc_common = Some(p2);
}
}
}
let adc_common = adc_common.map(|p| p.name).unwrap_or("none");
let row = vec![p.name.to_string(), adc_common.to_string(), "adc".to_string()];
adc_table.push(row);
}
for irq in p.interrupts {
let row = vec![
p.name.to_string(),
regs.kind.to_string(),
regs.block.to_string(),
irq.signal.to_string(),
irq.interrupt.to_ascii_uppercase(),
];
interrupts_table.push(row)
}
let row = vec![regs.kind.to_string(), p.name.to_string()];
peripherals_table.push(row);
}
}
let mut dmas = TokenStream::new();
let has_dmamux = METADATA
.peripherals
.iter()
.flat_map(|p| &p.registers)
.any(|p| p.kind == "dmamux");
for (ch_idx, ch) in METADATA.dma_channels.iter().enumerate() {
// Some H7 chips have BDMA1 hardcoded for DFSDM, ie no DMAMUX. It's unsupported, skip it.
if has_dmamux && ch.dmamux.is_none() {
continue;
}
let name = format_ident!("{}", ch.name);
let idx = ch_idx as u8;
g.extend(quote!(dma_channel_impl!(#name, #idx);));
let dma = format_ident!("{}", ch.dma);
let ch_num = ch.channel as usize;
let dma_peri = METADATA.peripherals.iter().find(|p| p.name == ch.dma).unwrap();
let bi = dma_peri.registers.as_ref().unwrap();
let dma_info = match bi.kind {
"dma" => quote!(crate::dma::DmaInfo::Dma(crate::pac::#dma)),
"bdma" => quote!(crate::dma::DmaInfo::Bdma(crate::pac::#dma)),
"gpdma" => quote!(crate::pac::#dma),
"lpdma" => quote!(unsafe { crate::pac::gpdma::Gpdma::from_ptr(crate::pac::#dma.as_ptr())}),
_ => panic!("bad dma channel kind {}", bi.kind),
};
let dmamux = match &ch.dmamux {
Some(dmamux) => {
let dmamux = format_ident!("{}", dmamux);
let num = ch.dmamux_channel.unwrap() as usize;
quote! {
dmamux: crate::dma::DmamuxInfo {
mux: crate::pac::#dmamux,
num: #num,
},
}
}
None => quote!(),
};
dmas.extend(quote! {
crate::dma::ChannelInfo {
dma: #dma_info,
num: #ch_num,
#dmamux
},
});
}
// ========
// Generate DMA IRQs.
let mut dma_irqs: BTreeMap<&str, Vec<String>> = BTreeMap::new();
for p in METADATA.peripherals {
if let Some(r) = &p.registers {
if r.kind == "dma" || r.kind == "bdma" || r.kind == "gpdma" {
for irq in p.interrupts {
let ch_name = format!("{}_{}", p.name, irq.signal);
let ch = METADATA.dma_channels.iter().find(|c| c.name == ch_name).unwrap();
// Some H7 chips have BDMA1 hardcoded for DFSDM, ie no DMAMUX. It's unsupported, skip it.
if has_dmamux && ch.dmamux.is_none() {
continue;
}
dma_irqs.entry(irq.interrupt).or_default().push(ch_name);
}
}
}
}
let dma_irqs: TokenStream = dma_irqs
.iter()
.map(|(irq, channels)| {
let irq = format_ident!("{}", irq);
let channels = channels.iter().map(|c| format_ident!("{}", c));
quote! {
#[cfg(feature = "rt")]
#[crate::interrupt]
unsafe fn #irq () {
#(
<crate::peripherals::#channels as crate::dma::ChannelInterrupt>::on_irq();
)*
}
}
})
.collect();
g.extend(dma_irqs);
g.extend(quote! {
pub(crate) const DMA_CHANNELS: &[crate::dma::ChannelInfo] = &[#dmas];
});
for irq in METADATA.interrupts {
let name = irq.name.to_ascii_uppercase();
interrupts_table.push(vec![name.clone()]);
if name.contains("EXTI") {
interrupts_table.push(vec!["EXTI".to_string(), name.clone()]);
}
}
let mut m = clocks_macro.to_string();
// DO NOT ADD more macros like these.
// These turned to be a bad idea!
// Instead, make build.rs generate the final code.
make_table(&mut m, "foreach_flash_region", &flash_regions_table);
make_table(&mut m, "foreach_interrupt", &interrupts_table);
make_table(&mut m, "foreach_peripheral", &peripherals_table);
make_table(&mut m, "foreach_pin", &pins_table);
make_table(&mut m, "foreach_adc", &adc_table);
let out_dir = &PathBuf::from(env::var_os("OUT_DIR").unwrap());
let out_file = out_dir.join("_macros.rs").to_string_lossy().to_string();
fs::write(&out_file, m).unwrap();
rustfmt(&out_file);
// ========
// Write generated.rs
let out_file = out_dir.join("_generated.rs").to_string_lossy().to_string();
fs::write(&out_file, g.to_string()).unwrap();
rustfmt(&out_file);
// ========
// Configs for multicore and for targeting groups of chips
fn get_chip_cfgs(chip_name: &str) -> Vec<String> {
let mut cfgs = Vec::new();
// Multicore
let mut s = chip_name.split('_');
let mut chip_name: String = s.next().unwrap().to_string();
let core_name = if let Some(c) = s.next() {
if !c.starts_with("CM") {
chip_name.push('_');
chip_name.push_str(c);
None
} else {
Some(c)
}
} else {
None
};
if let Some(core) = core_name {
cfgs.push(format!("{}_{}", &chip_name[..chip_name.len() - 2], core));
}
// Configs for targeting groups of chips
if &chip_name[..8] == "stm32wba" {
cfgs.push(chip_name[..8].to_owned()); // stm32wba
cfgs.push(chip_name[..10].to_owned()); // stm32wba52
cfgs.push(format!("package_{}", &chip_name[10..11]));
cfgs.push(format!("flashsize_{}", &chip_name[11..12]));
} else {
if &chip_name[..8] == "stm32h7r" || &chip_name[..8] == "stm32h7s" {
cfgs.push("stm32h7rs".to_owned());
} else {
cfgs.push(chip_name[..7].to_owned()); // stm32f4
}
cfgs.push(chip_name[..9].to_owned()); // stm32f429
cfgs.push(format!("{}x", &chip_name[..8])); // stm32f42x
cfgs.push(format!("{}x{}", &chip_name[..7], &chip_name[8..9])); // stm32f4x9
cfgs.push(format!("package_{}", &chip_name[9..10]));
cfgs.push(format!("flashsize_{}", &chip_name[10..11]));
}
// Mark the L4+ chips as they have many differences to regular L4.
if &chip_name[..7] == "stm32l4" {
if "pqrs".contains(&chip_name[7..8]) {
cfgs.push("stm32l4_plus".to_owned());
} else {
cfgs.push("stm32l4_nonplus".to_owned());
}
}
cfgs
}
cfgs.enable_all(&get_chip_cfgs(&chip_name));
for &chip_name in ALL_CHIPS.iter() {
cfgs.declare_all(&get_chip_cfgs(&chip_name.to_ascii_lowercase()));
}
println!("cargo:rerun-if-changed=build.rs");
}
enum GetOneError {
None,
Multiple,
}
trait IteratorExt: Iterator {
fn get_one(self) -> Result<Self::Item, GetOneError>;
}
impl<T: Iterator> IteratorExt for T {
fn get_one(mut self) -> Result<Self::Item, GetOneError> {
match self.next() {
None => Err(GetOneError::None),
Some(res) => match self.next() {
Some(_) => Err(GetOneError::Multiple),
None => Ok(res),
},
}
}
}
fn make_table(out: &mut String, name: &str, data: &Vec<Vec<String>>) {
write!(
out,
"#[allow(unused)]
macro_rules! {} {{
($($pat:tt => $code:tt;)*) => {{
macro_rules! __{}_inner {{
$(($pat) => $code;)*
($_:tt) => {{}}
}}
",
name, name
)
.unwrap();
for row in data {
writeln!(out, " __{}_inner!(({}));", name, row.join(",")).unwrap();
}
write!(
out,
" }};
}}"
)
.unwrap();
}
fn get_flash_region_name(name: &str) -> String {
let name = name.replace("BANK_", "BANK").replace("REGION_", "REGION");
if name.contains("REGION") {
name
} else {
name + "_REGION"
}
}
fn get_flash_region_type_name(name: &str) -> String {
get_flash_region_name(name)
.replace("BANK", "Bank")
.replace("REGION", "Region")
.replace('_', "")
}
/// rustfmt a given path.
/// Failures are logged to stderr and ignored.
fn rustfmt(path: impl AsRef<Path>) {
let path = path.as_ref();
match Command::new("rustfmt").args([path]).output() {
Err(e) => {
eprintln!("failed to exec rustfmt {:?}: {:?}", path, e);
}
Ok(out) => {
if !out.status.success() {
eprintln!("rustfmt {:?} failed:", path);
eprintln!("=== STDOUT:");
std::io::stderr().write_all(&out.stdout).unwrap();
eprintln!("=== STDERR:");
std::io::stderr().write_all(&out.stderr).unwrap();
}
}
}
}