embassy/embassy-rp/src/pio.rs
pennae cbc8871a0b rp: relocate programs implicitly during load
this removed the RelocatedProgram construction step from pio uses.
there's not all that much to be said for the extra step because the
origin can be set on the input program itself, and the remaining
information exposed by RelocatedProgram can be exposed from
LoadedProgram instead (even though it's already available on the pio_asm
programs, albeit perhaps less convenient). we do lose access to the
relocated instruction iterator, but we also cannot think of anything
this iterator would actually be useful for outside of program loading.
2023-07-28 19:33:02 +02:00

1096 lines
35 KiB
Rust

use core::future::Future;
use core::marker::PhantomData;
use core::pin::Pin as FuturePin;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::{Context, Poll};
use atomic_polyfill::{AtomicU32, AtomicU8};
use embassy_hal_internal::{into_ref, Peripheral, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use fixed::types::extra::U8;
use fixed::FixedU32;
use pac::io::vals::Gpio0ctrlFuncsel;
use pac::pio::vals::SmExecctrlStatusSel;
use pio::{Program, SideSet, Wrap};
use crate::dma::{Channel, Transfer, Word};
use crate::gpio::sealed::Pin as SealedPin;
use crate::gpio::{self, AnyPin, Drive, Level, Pull, SlewRate};
use crate::interrupt::typelevel::{Binding, Handler, Interrupt};
use crate::pac::dma::vals::TreqSel;
use crate::relocate::RelocatedProgram;
use crate::{pac, peripherals, pio_instr_util, RegExt};
pub struct Wakers([AtomicWaker; 12]);
impl Wakers {
#[inline(always)]
fn fifo_in(&self) -> &[AtomicWaker] {
&self.0[0..4]
}
#[inline(always)]
fn fifo_out(&self) -> &[AtomicWaker] {
&self.0[4..8]
}
#[inline(always)]
fn irq(&self) -> &[AtomicWaker] {
&self.0[8..12]
}
}
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(u8)]
pub enum FifoJoin {
/// Both TX and RX fifo is enabled
#[default]
Duplex,
/// Rx fifo twice as deep. TX fifo disabled
RxOnly,
/// Tx fifo twice as deep. RX fifo disabled
TxOnly,
}
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(u8)]
pub enum ShiftDirection {
#[default]
Right = 1,
Left = 0,
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(u8)]
pub enum Direction {
In = 0,
Out = 1,
}
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(u8)]
pub enum StatusSource {
#[default]
TxFifoLevel = 0,
RxFifoLevel = 1,
}
const RXNEMPTY_MASK: u32 = 1 << 0;
const TXNFULL_MASK: u32 = 1 << 4;
const SMIRQ_MASK: u32 = 1 << 8;
pub struct InterruptHandler<PIO: Instance> {
_pio: PhantomData<PIO>,
}
impl<PIO: Instance> Handler<PIO::Interrupt> for InterruptHandler<PIO> {
unsafe fn on_interrupt() {
let ints = PIO::PIO.irqs(0).ints().read().0;
for bit in 0..12 {
if ints & (1 << bit) != 0 {
PIO::wakers().0[bit].wake();
}
}
PIO::PIO.irqs(0).inte().write_clear(|m| m.0 = ints);
}
}
/// Future that waits for TX-FIFO to become writable
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct FifoOutFuture<'a, 'd, PIO: Instance, const SM: usize> {
sm_tx: &'a mut StateMachineTx<'d, PIO, SM>,
value: u32,
}
impl<'a, 'd, PIO: Instance, const SM: usize> FifoOutFuture<'a, 'd, PIO, SM> {
pub fn new(sm: &'a mut StateMachineTx<'d, PIO, SM>, value: u32) -> Self {
FifoOutFuture { sm_tx: sm, value }
}
}
impl<'a, 'd, PIO: Instance, const SM: usize> Future for FifoOutFuture<'a, 'd, PIO, SM> {
type Output = ();
fn poll(self: FuturePin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
//debug!("Poll {},{}", PIO::PIO_NO, SM);
let value = self.value;
if self.get_mut().sm_tx.try_push(value) {
Poll::Ready(())
} else {
PIO::wakers().fifo_out()[SM].register(cx.waker());
PIO::PIO.irqs(0).inte().write_set(|m| {
m.0 = TXNFULL_MASK << SM;
});
// debug!("Pending");
Poll::Pending
}
}
}
impl<'a, 'd, PIO: Instance, const SM: usize> Drop for FifoOutFuture<'a, 'd, PIO, SM> {
fn drop(&mut self) {
PIO::PIO.irqs(0).inte().write_clear(|m| {
m.0 = TXNFULL_MASK << SM;
});
}
}
/// Future that waits for RX-FIFO to become readable
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct FifoInFuture<'a, 'd, PIO: Instance, const SM: usize> {
sm_rx: &'a mut StateMachineRx<'d, PIO, SM>,
}
impl<'a, 'd, PIO: Instance, const SM: usize> FifoInFuture<'a, 'd, PIO, SM> {
pub fn new(sm: &'a mut StateMachineRx<'d, PIO, SM>) -> Self {
FifoInFuture { sm_rx: sm }
}
}
impl<'a, 'd, PIO: Instance, const SM: usize> Future for FifoInFuture<'a, 'd, PIO, SM> {
type Output = u32;
fn poll(mut self: FuturePin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
//debug!("Poll {},{}", PIO::PIO_NO, SM);
if let Some(v) = self.sm_rx.try_pull() {
Poll::Ready(v)
} else {
PIO::wakers().fifo_in()[SM].register(cx.waker());
PIO::PIO.irqs(0).inte().write_set(|m| {
m.0 = RXNEMPTY_MASK << SM;
});
//debug!("Pending");
Poll::Pending
}
}
}
impl<'a, 'd, PIO: Instance, const SM: usize> Drop for FifoInFuture<'a, 'd, PIO, SM> {
fn drop(&mut self) {
PIO::PIO.irqs(0).inte().write_clear(|m| {
m.0 = RXNEMPTY_MASK << SM;
});
}
}
/// Future that waits for IRQ
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct IrqFuture<'a, 'd, PIO: Instance> {
pio: PhantomData<&'a mut Irq<'d, PIO, 0>>,
irq_no: u8,
}
impl<'a, 'd, PIO: Instance> Future for IrqFuture<'a, 'd, PIO> {
type Output = ();
fn poll(self: FuturePin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
//debug!("Poll {},{}", PIO::PIO_NO, SM);
// Check if IRQ flag is already set
if PIO::PIO.irq().read().0 & (1 << self.irq_no) != 0 {
PIO::PIO.irq().write(|m| m.0 = 1 << self.irq_no);
return Poll::Ready(());
}
PIO::wakers().irq()[self.irq_no as usize].register(cx.waker());
PIO::PIO.irqs(0).inte().write_set(|m| {
m.0 = SMIRQ_MASK << self.irq_no;
});
Poll::Pending
}
}
impl<'a, 'd, PIO: Instance> Drop for IrqFuture<'a, 'd, PIO> {
fn drop(&mut self) {
PIO::PIO.irqs(0).inte().write_clear(|m| {
m.0 = SMIRQ_MASK << self.irq_no;
});
}
}
pub struct Pin<'l, PIO: Instance> {
pin: PeripheralRef<'l, AnyPin>,
pio: PhantomData<PIO>,
}
impl<'l, PIO: Instance> Pin<'l, PIO> {
/// Set the pin's drive strength.
#[inline]
pub fn set_drive_strength(&mut self, strength: Drive) {
self.pin.pad_ctrl().modify(|w| {
w.set_drive(match strength {
Drive::_2mA => pac::pads::vals::Drive::_2MA,
Drive::_4mA => pac::pads::vals::Drive::_4MA,
Drive::_8mA => pac::pads::vals::Drive::_8MA,
Drive::_12mA => pac::pads::vals::Drive::_12MA,
});
});
}
// Set the pin's slew rate.
#[inline]
pub fn set_slew_rate(&mut self, slew_rate: SlewRate) {
self.pin.pad_ctrl().modify(|w| {
w.set_slewfast(slew_rate == SlewRate::Fast);
});
}
/// Set the pin's pull.
#[inline]
pub fn set_pull(&mut self, pull: Pull) {
self.pin.pad_ctrl().modify(|w| {
w.set_pue(pull == Pull::Up);
w.set_pde(pull == Pull::Down);
});
}
/// Set the pin's schmitt trigger.
#[inline]
pub fn set_schmitt(&mut self, enable: bool) {
self.pin.pad_ctrl().modify(|w| {
w.set_schmitt(enable);
});
}
pub fn set_input_sync_bypass<'a>(&mut self, bypass: bool) {
let mask = 1 << self.pin();
if bypass {
PIO::PIO.input_sync_bypass().write_set(|w| *w = mask);
} else {
PIO::PIO.input_sync_bypass().write_clear(|w| *w = mask);
}
}
pub fn pin(&self) -> u8 {
self.pin._pin()
}
}
pub struct StateMachineRx<'d, PIO: Instance, const SM: usize> {
pio: PhantomData<&'d mut PIO>,
}
impl<'d, PIO: Instance, const SM: usize> StateMachineRx<'d, PIO, SM> {
pub fn empty(&self) -> bool {
PIO::PIO.fstat().read().rxempty() & (1u8 << SM) != 0
}
pub fn full(&self) -> bool {
PIO::PIO.fstat().read().rxfull() & (1u8 << SM) != 0
}
pub fn level(&self) -> u8 {
(PIO::PIO.flevel().read().0 >> (SM * 8 + 4)) as u8 & 0x0f
}
pub fn stalled(&self) -> bool {
let fdebug = PIO::PIO.fdebug();
let ret = fdebug.read().rxstall() & (1 << SM) != 0;
if ret {
fdebug.write(|w| w.set_rxstall(1 << SM));
}
ret
}
pub fn underflowed(&self) -> bool {
let fdebug = PIO::PIO.fdebug();
let ret = fdebug.read().rxunder() & (1 << SM) != 0;
if ret {
fdebug.write(|w| w.set_rxunder(1 << SM));
}
ret
}
pub fn pull(&mut self) -> u32 {
PIO::PIO.rxf(SM).read()
}
pub fn try_pull(&mut self) -> Option<u32> {
if self.empty() {
return None;
}
Some(self.pull())
}
pub fn wait_pull<'a>(&'a mut self) -> FifoInFuture<'a, 'd, PIO, SM> {
FifoInFuture::new(self)
}
pub fn dma_pull<'a, C: Channel, W: Word>(
&'a mut self,
ch: PeripheralRef<'a, C>,
data: &'a mut [W],
) -> Transfer<'a, C> {
let pio_no = PIO::PIO_NO;
let p = ch.regs();
p.write_addr().write_value(data.as_ptr() as u32);
p.read_addr().write_value(PIO::PIO.rxf(SM).as_ptr() as u32);
p.trans_count().write_value(data.len() as u32);
compiler_fence(Ordering::SeqCst);
p.ctrl_trig().write(|w| {
// Set RX DREQ for this statemachine
w.set_treq_sel(TreqSel(pio_no * 8 + SM as u8 + 4));
w.set_data_size(W::size());
w.set_chain_to(ch.number());
w.set_incr_read(false);
w.set_incr_write(true);
w.set_en(true);
});
compiler_fence(Ordering::SeqCst);
Transfer::new(ch)
}
}
pub struct StateMachineTx<'d, PIO: Instance, const SM: usize> {
pio: PhantomData<&'d mut PIO>,
}
impl<'d, PIO: Instance, const SM: usize> StateMachineTx<'d, PIO, SM> {
pub fn empty(&self) -> bool {
PIO::PIO.fstat().read().txempty() & (1u8 << SM) != 0
}
pub fn full(&self) -> bool {
PIO::PIO.fstat().read().txfull() & (1u8 << SM) != 0
}
pub fn level(&self) -> u8 {
(PIO::PIO.flevel().read().0 >> (SM * 8)) as u8 & 0x0f
}
pub fn stalled(&self) -> bool {
let fdebug = PIO::PIO.fdebug();
let ret = fdebug.read().txstall() & (1 << SM) != 0;
if ret {
fdebug.write(|w| w.set_txstall(1 << SM));
}
ret
}
pub fn overflowed(&self) -> bool {
let fdebug = PIO::PIO.fdebug();
let ret = fdebug.read().txover() & (1 << SM) != 0;
if ret {
fdebug.write(|w| w.set_txover(1 << SM));
}
ret
}
pub fn push(&mut self, v: u32) {
PIO::PIO.txf(SM).write_value(v);
}
pub fn try_push(&mut self, v: u32) -> bool {
if self.full() {
return false;
}
self.push(v);
true
}
pub fn wait_push<'a>(&'a mut self, value: u32) -> FifoOutFuture<'a, 'd, PIO, SM> {
FifoOutFuture::new(self, value)
}
pub fn dma_push<'a, C: Channel, W: Word>(&'a mut self, ch: PeripheralRef<'a, C>, data: &'a [W]) -> Transfer<'a, C> {
let pio_no = PIO::PIO_NO;
let p = ch.regs();
p.read_addr().write_value(data.as_ptr() as u32);
p.write_addr().write_value(PIO::PIO.txf(SM).as_ptr() as u32);
p.trans_count().write_value(data.len() as u32);
compiler_fence(Ordering::SeqCst);
p.ctrl_trig().write(|w| {
// Set TX DREQ for this statemachine
w.set_treq_sel(TreqSel(pio_no * 8 + SM as u8));
w.set_data_size(W::size());
w.set_chain_to(ch.number());
w.set_incr_read(true);
w.set_incr_write(false);
w.set_en(true);
});
compiler_fence(Ordering::SeqCst);
Transfer::new(ch)
}
}
pub struct StateMachine<'d, PIO: Instance, const SM: usize> {
rx: StateMachineRx<'d, PIO, SM>,
tx: StateMachineTx<'d, PIO, SM>,
}
impl<'d, PIO: Instance, const SM: usize> Drop for StateMachine<'d, PIO, SM> {
fn drop(&mut self) {
PIO::PIO.ctrl().write_clear(|w| w.set_sm_enable(1 << SM));
on_pio_drop::<PIO>();
}
}
fn assert_consecutive<'d, PIO: Instance>(pins: &[&Pin<'d, PIO>]) {
for (p1, p2) in pins.iter().zip(pins.iter().skip(1)) {
// purposely does not allow wrap-around because we can't claim pins 30 and 31.
assert!(p1.pin() + 1 == p2.pin(), "pins must be consecutive");
}
}
#[derive(Clone, Copy, Default, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub struct ExecConfig {
pub side_en: bool,
pub side_pindir: bool,
pub jmp_pin: u8,
pub wrap_top: u8,
pub wrap_bottom: u8,
}
#[derive(Clone, Copy, Default, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct ShiftConfig {
pub threshold: u8,
pub direction: ShiftDirection,
pub auto_fill: bool,
}
#[derive(Clone, Copy, Default, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct PinConfig {
pub sideset_count: u8,
pub set_count: u8,
pub out_count: u8,
pub in_base: u8,
pub sideset_base: u8,
pub set_base: u8,
pub out_base: u8,
}
#[derive(Clone, Copy, Debug)]
pub struct Config<'d, PIO: Instance> {
// CLKDIV
pub clock_divider: FixedU32<U8>,
// EXECCTRL
pub out_en_sel: u8,
pub inline_out_en: bool,
pub out_sticky: bool,
pub status_sel: StatusSource,
pub status_n: u8,
exec: ExecConfig,
origin: Option<u8>,
// SHIFTCTRL
pub fifo_join: FifoJoin,
pub shift_in: ShiftConfig,
pub shift_out: ShiftConfig,
// PINCTRL
pins: PinConfig,
in_count: u8,
_pio: PhantomData<&'d mut PIO>,
}
impl<'d, PIO: Instance> Default for Config<'d, PIO> {
fn default() -> Self {
Self {
clock_divider: 1u8.into(),
out_en_sel: Default::default(),
inline_out_en: Default::default(),
out_sticky: Default::default(),
status_sel: Default::default(),
status_n: Default::default(),
exec: Default::default(),
origin: Default::default(),
fifo_join: Default::default(),
shift_in: Default::default(),
shift_out: Default::default(),
pins: Default::default(),
in_count: Default::default(),
_pio: Default::default(),
}
}
}
impl<'d, PIO: Instance> Config<'d, PIO> {
pub fn get_exec(&self) -> ExecConfig {
self.exec
}
pub unsafe fn set_exec(&mut self, e: ExecConfig) {
self.exec = e;
}
pub fn get_pins(&self) -> PinConfig {
self.pins
}
pub unsafe fn set_pins(&mut self, p: PinConfig) {
self.pins = p;
}
/// Configures this state machine to use the given program, including jumping to the origin
/// of the program. The state machine is not started.
///
/// `side_set` sets the range of pins affected by side-sets. The range must be consecutive.
/// Side-set pins must configured as outputs using [`StateMachine::set_pin_dirs`] to be
/// effective.
pub fn use_program(&mut self, prog: &LoadedProgram<'d, PIO>, side_set: &[&Pin<'d, PIO>]) {
assert!((prog.side_set.bits() - prog.side_set.optional() as u8) as usize == side_set.len());
assert_consecutive(side_set);
self.exec.side_en = prog.side_set.optional();
self.exec.side_pindir = prog.side_set.pindirs();
self.exec.wrap_bottom = prog.wrap.target;
self.exec.wrap_top = prog.wrap.source;
self.pins.sideset_count = prog.side_set.bits();
self.pins.sideset_base = side_set.first().map_or(0, |p| p.pin());
self.origin = Some(prog.origin);
}
pub fn set_jmp_pin(&mut self, pin: &Pin<'d, PIO>) {
self.exec.jmp_pin = pin.pin();
}
/// Sets the range of pins affected by SET instructions. The range must be consecutive.
/// Set pins must configured as outputs using [`StateMachine::set_pin_dirs`] to be
/// effective.
pub fn set_set_pins(&mut self, pins: &[&Pin<'d, PIO>]) {
assert!(pins.len() <= 5);
assert_consecutive(pins);
self.pins.set_base = pins.first().map_or(0, |p| p.pin());
self.pins.set_count = pins.len() as u8;
}
/// Sets the range of pins affected by OUT instructions. The range must be consecutive.
/// Out pins must configured as outputs using [`StateMachine::set_pin_dirs`] to be
/// effective.
pub fn set_out_pins(&mut self, pins: &[&Pin<'d, PIO>]) {
assert_consecutive(pins);
self.pins.out_base = pins.first().map_or(0, |p| p.pin());
self.pins.out_count = pins.len() as u8;
}
/// Sets the range of pins used by IN instructions. The range must be consecutive.
/// In pins must configured as inputs using [`StateMachine::set_pin_dirs`] to be
/// effective.
pub fn set_in_pins(&mut self, pins: &[&Pin<'d, PIO>]) {
assert_consecutive(pins);
self.pins.in_base = pins.first().map_or(0, |p| p.pin());
self.in_count = pins.len() as u8;
}
}
impl<'d, PIO: Instance + 'd, const SM: usize> StateMachine<'d, PIO, SM> {
pub fn set_config(&mut self, config: &Config<'d, PIO>) {
// sm expects 0 for 65536, truncation makes that happen
assert!(config.clock_divider <= 65536, "clkdiv must be <= 65536");
assert!(config.clock_divider >= 1, "clkdiv must be >= 1");
assert!(config.out_en_sel < 32, "out_en_sel must be < 32");
assert!(config.status_n < 32, "status_n must be < 32");
// sm expects 0 for 32, truncation makes that happen
assert!(config.shift_in.threshold <= 32, "shift_in.threshold must be <= 32");
assert!(config.shift_out.threshold <= 32, "shift_out.threshold must be <= 32");
let sm = Self::this_sm();
sm.clkdiv().write(|w| w.0 = config.clock_divider.to_bits() << 8);
sm.execctrl().write(|w| {
w.set_side_en(config.exec.side_en);
w.set_side_pindir(config.exec.side_pindir);
w.set_jmp_pin(config.exec.jmp_pin);
w.set_out_en_sel(config.out_en_sel);
w.set_inline_out_en(config.inline_out_en);
w.set_out_sticky(config.out_sticky);
w.set_wrap_top(config.exec.wrap_top);
w.set_wrap_bottom(config.exec.wrap_bottom);
w.set_status_sel(match config.status_sel {
StatusSource::TxFifoLevel => SmExecctrlStatusSel::TXLEVEL,
StatusSource::RxFifoLevel => SmExecctrlStatusSel::RXLEVEL,
});
w.set_status_n(config.status_n);
});
sm.shiftctrl().write(|w| {
w.set_fjoin_rx(config.fifo_join == FifoJoin::RxOnly);
w.set_fjoin_tx(config.fifo_join == FifoJoin::TxOnly);
w.set_pull_thresh(config.shift_out.threshold);
w.set_push_thresh(config.shift_in.threshold);
w.set_out_shiftdir(config.shift_out.direction == ShiftDirection::Right);
w.set_in_shiftdir(config.shift_in.direction == ShiftDirection::Right);
w.set_autopull(config.shift_out.auto_fill);
w.set_autopush(config.shift_in.auto_fill);
});
sm.pinctrl().write(|w| {
w.set_sideset_count(config.pins.sideset_count);
w.set_set_count(config.pins.set_count);
w.set_out_count(config.pins.out_count);
w.set_in_base(config.pins.in_base);
w.set_sideset_base(config.pins.sideset_base);
w.set_set_base(config.pins.set_base);
w.set_out_base(config.pins.out_base);
});
if let Some(origin) = config.origin {
unsafe { pio_instr_util::exec_jmp(self, origin) }
}
}
#[inline(always)]
fn this_sm() -> crate::pac::pio::StateMachine {
PIO::PIO.sm(SM)
}
pub fn restart(&mut self) {
let mask = 1u8 << SM;
PIO::PIO.ctrl().write_set(|w| w.set_sm_restart(mask));
}
pub fn set_enable(&mut self, enable: bool) {
let mask = 1u8 << SM;
if enable {
PIO::PIO.ctrl().write_set(|w| w.set_sm_enable(mask));
} else {
PIO::PIO.ctrl().write_clear(|w| w.set_sm_enable(mask));
}
}
pub fn is_enabled(&self) -> bool {
PIO::PIO.ctrl().read().sm_enable() & (1u8 << SM) != 0
}
pub fn clkdiv_restart(&mut self) {
let mask = 1u8 << SM;
PIO::PIO.ctrl().write_set(|w| w.set_clkdiv_restart(mask));
}
fn with_paused(&mut self, f: impl FnOnce(&mut Self)) {
let enabled = self.is_enabled();
self.set_enable(false);
let pincfg = Self::this_sm().pinctrl().read();
let execcfg = Self::this_sm().execctrl().read();
Self::this_sm().execctrl().write_clear(|w| w.set_out_sticky(true));
f(self);
Self::this_sm().pinctrl().write_value(pincfg);
Self::this_sm().execctrl().write_value(execcfg);
self.set_enable(enabled);
}
/// Sets pin directions. This pauses the current state machine to run `SET` commands
/// and temporarily unsets the `OUT_STICKY` bit.
pub fn set_pin_dirs(&mut self, dir: Direction, pins: &[&Pin<'d, PIO>]) {
self.with_paused(|sm| {
for pin in pins {
Self::this_sm().pinctrl().write(|w| {
w.set_set_base(pin.pin());
w.set_set_count(1);
});
// SET PINDIRS, (dir)
unsafe { sm.exec_instr(0b111_00000_100_00000 | dir as u16) };
}
});
}
/// Sets pin output values. This pauses the current state machine to run
/// `SET` commands and temporarily unsets the `OUT_STICKY` bit.
pub fn set_pins(&mut self, level: Level, pins: &[&Pin<'d, PIO>]) {
self.with_paused(|sm| {
for pin in pins {
Self::this_sm().pinctrl().write(|w| {
w.set_set_base(pin.pin());
w.set_set_count(1);
});
// SET PINS, (dir)
unsafe { sm.exec_instr(0b111_00000_000_00000 | level as u16) };
}
});
}
pub fn clear_fifos(&mut self) {
// Toggle FJOIN_RX to flush FIFOs
let shiftctrl = Self::this_sm().shiftctrl();
shiftctrl.modify(|w| {
w.set_fjoin_rx(!w.fjoin_rx());
});
shiftctrl.modify(|w| {
w.set_fjoin_rx(!w.fjoin_rx());
});
}
pub unsafe fn exec_instr(&mut self, instr: u16) {
Self::this_sm().instr().write(|w| w.set_instr(instr));
}
pub fn rx(&mut self) -> &mut StateMachineRx<'d, PIO, SM> {
&mut self.rx
}
pub fn tx(&mut self) -> &mut StateMachineTx<'d, PIO, SM> {
&mut self.tx
}
pub fn rx_tx(&mut self) -> (&mut StateMachineRx<'d, PIO, SM>, &mut StateMachineTx<'d, PIO, SM>) {
(&mut self.rx, &mut self.tx)
}
}
pub struct Common<'d, PIO: Instance> {
instructions_used: u32,
pio: PhantomData<&'d mut PIO>,
}
impl<'d, PIO: Instance> Drop for Common<'d, PIO> {
fn drop(&mut self) {
on_pio_drop::<PIO>();
}
}
pub struct InstanceMemory<'d, PIO: Instance> {
used_mask: u32,
pio: PhantomData<&'d mut PIO>,
}
pub struct LoadedProgram<'d, PIO: Instance> {
pub used_memory: InstanceMemory<'d, PIO>,
pub origin: u8,
pub wrap: Wrap,
pub side_set: SideSet,
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum LoadError {
/// Insufficient consecutive free instruction space to load program.
InsufficientSpace,
/// Loading the program would overwrite an instruction address already
/// used by another program.
AddressInUse(usize),
}
impl<'d, PIO: Instance> Common<'d, PIO> {
/// Load a PIO program. This will automatically relocate the program to
/// an available chunk of free instruction memory if the program origin
/// was not explicitly specified, otherwise it will attempt to load the
/// program only at its origin.
pub fn load_program<const SIZE: usize>(&mut self, prog: &Program<SIZE>) -> LoadedProgram<'d, PIO> {
match self.try_load_program(prog) {
Ok(r) => r,
Err(e) => panic!("Failed to load PIO program: {:?}", e),
}
}
/// Load a PIO program. This will automatically relocate the program to
/// an available chunk of free instruction memory if the program origin
/// was not explicitly specified, otherwise it will attempt to load the
/// program only at its origin.
pub fn try_load_program<const SIZE: usize>(
&mut self,
prog: &Program<SIZE>,
) -> Result<LoadedProgram<'d, PIO>, LoadError> {
match prog.origin {
Some(origin) => self
.try_load_program_at(prog, origin)
.map_err(|a| LoadError::AddressInUse(a)),
None => {
// naively search for free space, allowing wraparound since
// PIO does support that. with only 32 instruction slots it
// doesn't make much sense to do anything more fancy.
let mut origin = 0;
while origin < 32 {
match self.try_load_program_at(prog, origin as _) {
Ok(r) => return Ok(r),
Err(a) => origin = a + 1,
}
}
Err(LoadError::InsufficientSpace)
}
}
}
fn try_load_program_at<const SIZE: usize>(
&mut self,
prog: &Program<SIZE>,
origin: u8,
) -> Result<LoadedProgram<'d, PIO>, usize> {
let prog = RelocatedProgram::new_with_origin(prog, origin);
let used_memory = self.try_write_instr(prog.origin() as _, prog.code())?;
Ok(LoadedProgram {
used_memory,
origin: prog.origin(),
wrap: prog.wrap(),
side_set: prog.side_set(),
})
}
fn try_write_instr<I>(&mut self, start: usize, instrs: I) -> Result<InstanceMemory<'d, PIO>, usize>
where
I: Iterator<Item = u16>,
{
let mut used_mask = 0;
for (i, instr) in instrs.enumerate() {
// wrapping around the end of program memory is valid, let's make use of that.
let addr = (i + start) % 32;
let mask = 1 << addr;
if (self.instructions_used | used_mask) & mask != 0 {
return Err(addr);
}
PIO::PIO.instr_mem(addr).write(|w| {
w.set_instr_mem(instr);
});
used_mask |= mask;
}
self.instructions_used |= used_mask;
Ok(InstanceMemory {
used_mask,
pio: PhantomData,
})
}
/// Free instruction memory. This is always possible but unsafe if any
/// state machine is still using this bit of memory.
pub unsafe fn free_instr(&mut self, instrs: InstanceMemory<PIO>) {
self.instructions_used &= !instrs.used_mask;
}
pub fn set_input_sync_bypass<'a>(&'a mut self, bypass: u32, mask: u32) {
// this can interfere with per-pin bypass functions. splitting the
// modification is going to be fine since nothing that relies on
// it can reasonably run before we finish.
PIO::PIO.input_sync_bypass().write_set(|w| *w = mask & bypass);
PIO::PIO.input_sync_bypass().write_clear(|w| *w = mask & !bypass);
}
pub fn get_input_sync_bypass(&self) -> u32 {
PIO::PIO.input_sync_bypass().read()
}
/// Register a pin for PIO usage. Pins will be released from the PIO block
/// (i.e., have their `FUNCSEL` reset to `NULL`) when the [`Common`] *and*
/// all [`StateMachine`]s for this block have been dropped. **Other members
/// of [`Pio`] do not keep pin registrations alive.**
pub fn make_pio_pin(&mut self, pin: impl Peripheral<P = impl PioPin + 'd> + 'd) -> Pin<'d, PIO> {
into_ref!(pin);
pin.io().ctrl().write(|w| w.set_funcsel(PIO::FUNCSEL as _));
// we can be relaxed about this because we're &mut here and nothing is cached
PIO::state().used_pins.fetch_or(1 << pin.pin_bank(), Ordering::Relaxed);
Pin {
pin: pin.into_ref().map_into(),
pio: PhantomData::default(),
}
}
pub fn apply_sm_batch(&mut self, f: impl FnOnce(&mut PioBatch<'d, PIO>)) {
let mut batch = PioBatch {
clkdiv_restart: 0,
sm_restart: 0,
sm_enable_mask: 0,
sm_enable: 0,
_pio: PhantomData,
};
f(&mut batch);
PIO::PIO.ctrl().modify(|w| {
w.set_clkdiv_restart(batch.clkdiv_restart);
w.set_sm_restart(batch.sm_restart);
w.set_sm_enable((w.sm_enable() & !batch.sm_enable_mask) | batch.sm_enable);
});
}
}
pub struct PioBatch<'a, PIO: Instance> {
clkdiv_restart: u8,
sm_restart: u8,
sm_enable_mask: u8,
sm_enable: u8,
_pio: PhantomData<&'a PIO>,
}
impl<'a, PIO: Instance> PioBatch<'a, PIO> {
pub fn restart_clockdiv<const SM: usize>(&mut self, _sm: &mut StateMachine<'a, PIO, SM>) {
self.clkdiv_restart |= 1 << SM;
}
pub fn restart<const SM: usize>(&mut self, _sm: &mut StateMachine<'a, PIO, SM>) {
self.clkdiv_restart |= 1 << SM;
}
pub fn set_enable<const SM: usize>(&mut self, _sm: &mut StateMachine<'a, PIO, SM>, enable: bool) {
self.sm_enable_mask |= 1 << SM;
self.sm_enable |= (enable as u8) << SM;
}
}
pub struct Irq<'d, PIO: Instance, const N: usize> {
pio: PhantomData<&'d mut PIO>,
}
impl<'d, PIO: Instance, const N: usize> Irq<'d, PIO, N> {
pub fn wait<'a>(&'a mut self) -> IrqFuture<'a, 'd, PIO> {
IrqFuture {
pio: PhantomData,
irq_no: N as u8,
}
}
}
#[derive(Clone)]
pub struct IrqFlags<'d, PIO: Instance> {
pio: PhantomData<&'d mut PIO>,
}
impl<'d, PIO: Instance> IrqFlags<'d, PIO> {
pub fn check(&self, irq_no: u8) -> bool {
assert!(irq_no < 8);
self.check_any(1 << irq_no)
}
pub fn check_any(&self, irqs: u8) -> bool {
PIO::PIO.irq().read().irq() & irqs != 0
}
pub fn check_all(&self, irqs: u8) -> bool {
PIO::PIO.irq().read().irq() & irqs == irqs
}
pub fn clear(&self, irq_no: usize) {
assert!(irq_no < 8);
self.clear_all(1 << irq_no);
}
pub fn clear_all(&self, irqs: u8) {
PIO::PIO.irq().write(|w| w.set_irq(irqs))
}
pub fn set(&self, irq_no: usize) {
assert!(irq_no < 8);
self.set_all(1 << irq_no);
}
pub fn set_all(&self, irqs: u8) {
PIO::PIO.irq_force().write(|w| w.set_irq_force(irqs))
}
}
pub struct Pio<'d, PIO: Instance> {
pub common: Common<'d, PIO>,
pub irq_flags: IrqFlags<'d, PIO>,
pub irq0: Irq<'d, PIO, 0>,
pub irq1: Irq<'d, PIO, 1>,
pub irq2: Irq<'d, PIO, 2>,
pub irq3: Irq<'d, PIO, 3>,
pub sm0: StateMachine<'d, PIO, 0>,
pub sm1: StateMachine<'d, PIO, 1>,
pub sm2: StateMachine<'d, PIO, 2>,
pub sm3: StateMachine<'d, PIO, 3>,
_pio: PhantomData<&'d mut PIO>,
}
impl<'d, PIO: Instance> Pio<'d, PIO> {
pub fn new(_pio: impl Peripheral<P = PIO> + 'd, _irq: impl Binding<PIO::Interrupt, InterruptHandler<PIO>>) -> Self {
PIO::state().users.store(5, Ordering::Release);
PIO::state().used_pins.store(0, Ordering::Release);
PIO::Interrupt::unpend();
unsafe { PIO::Interrupt::enable() };
Self {
common: Common {
instructions_used: 0,
pio: PhantomData,
},
irq_flags: IrqFlags { pio: PhantomData },
irq0: Irq { pio: PhantomData },
irq1: Irq { pio: PhantomData },
irq2: Irq { pio: PhantomData },
irq3: Irq { pio: PhantomData },
sm0: StateMachine {
rx: StateMachineRx { pio: PhantomData },
tx: StateMachineTx { pio: PhantomData },
},
sm1: StateMachine {
rx: StateMachineRx { pio: PhantomData },
tx: StateMachineTx { pio: PhantomData },
},
sm2: StateMachine {
rx: StateMachineRx { pio: PhantomData },
tx: StateMachineTx { pio: PhantomData },
},
sm3: StateMachine {
rx: StateMachineRx { pio: PhantomData },
tx: StateMachineTx { pio: PhantomData },
},
_pio: PhantomData,
}
}
}
// we need to keep a record of which pins are assigned to each PIO. make_pio_pin
// notionally takes ownership of the pin it is given, but the wrapped pin cannot
// be treated as an owned resource since dropping it would have to deconfigure
// the pin, breaking running state machines in the process. pins are also shared
// between all state machines, which makes ownership even messier to track any
// other way.
pub struct State {
users: AtomicU8,
used_pins: AtomicU32,
}
fn on_pio_drop<PIO: Instance>() {
let state = PIO::state();
if state.users.fetch_sub(1, Ordering::AcqRel) == 1 {
let used_pins = state.used_pins.load(Ordering::Relaxed);
let null = Gpio0ctrlFuncsel::NULL as _;
// we only have 30 pins. don't test the other two since gpio() asserts.
for i in 0..30 {
if used_pins & (1 << i) != 0 {
pac::IO_BANK0.gpio(i).ctrl().write(|w| w.set_funcsel(null));
}
}
}
}
mod sealed {
use super::*;
pub trait PioPin {}
pub trait Instance {
const PIO_NO: u8;
const PIO: &'static crate::pac::pio::Pio;
const FUNCSEL: crate::pac::io::vals::Gpio0ctrlFuncsel;
type Interrupt: crate::interrupt::typelevel::Interrupt;
#[inline]
fn wakers() -> &'static Wakers {
const NEW_AW: AtomicWaker = AtomicWaker::new();
static WAKERS: Wakers = Wakers([NEW_AW; 12]);
&WAKERS
}
#[inline]
fn state() -> &'static State {
static STATE: State = State {
users: AtomicU8::new(0),
used_pins: AtomicU32::new(0),
};
&STATE
}
}
}
pub trait Instance: sealed::Instance + Sized + Unpin {}
macro_rules! impl_pio {
($name:ident, $pio:expr, $pac:ident, $funcsel:ident, $irq:ident) => {
impl sealed::Instance for peripherals::$name {
const PIO_NO: u8 = $pio;
const PIO: &'static pac::pio::Pio = &pac::$pac;
const FUNCSEL: pac::io::vals::Gpio0ctrlFuncsel = pac::io::vals::Gpio0ctrlFuncsel::$funcsel;
type Interrupt = crate::interrupt::typelevel::$irq;
}
impl Instance for peripherals::$name {}
};
}
impl_pio!(PIO0, 0, PIO0, PIO0_0, PIO0_IRQ_0);
impl_pio!(PIO1, 1, PIO1, PIO1_0, PIO1_IRQ_0);
pub trait PioPin: sealed::PioPin + gpio::Pin {}
macro_rules! impl_pio_pin {
($( $num:tt )*) => {
$(
paste::paste!{
impl sealed::PioPin for peripherals::[< PIN_ $num >] {}
impl PioPin for peripherals::[< PIN_ $num >] {}
}
)*
};
}
impl_pio_pin! {
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
}