embassy/cyw43/src/runner.rs
Dario Nieuwenhuis 9c4df46c46 rustfmt.
2023-07-04 21:34:55 +02:00

585 lines
22 KiB
Rust

use embassy_futures::select::{select3, Either3};
use embassy_net_driver_channel as ch;
use embassy_sync::pubsub::PubSubBehavior;
use embassy_time::{block_for, Duration, Timer};
use embedded_hal_1::digital::OutputPin;
use crate::bus::Bus;
pub use crate::bus::SpiBusCyw43;
use crate::consts::*;
use crate::events::{Event, Events, Status};
use crate::fmt::Bytes;
use crate::ioctl::{IoctlState, IoctlType, PendingIoctl};
use crate::nvram::NVRAM;
use crate::structs::*;
use crate::{events, slice8_mut, Core, CHIP, MTU};
#[cfg(feature = "firmware-logs")]
struct LogState {
addr: u32,
last_idx: usize,
buf: [u8; 256],
buf_count: usize,
}
#[cfg(feature = "firmware-logs")]
impl Default for LogState {
fn default() -> Self {
Self {
addr: Default::default(),
last_idx: Default::default(),
buf: [0; 256],
buf_count: Default::default(),
}
}
}
pub struct Runner<'a, PWR, SPI> {
ch: ch::Runner<'a, MTU>,
bus: Bus<PWR, SPI>,
ioctl_state: &'a IoctlState,
ioctl_id: u16,
sdpcm_seq: u8,
sdpcm_seq_max: u8,
events: &'a Events,
#[cfg(feature = "firmware-logs")]
log: LogState,
}
impl<'a, PWR, SPI> Runner<'a, PWR, SPI>
where
PWR: OutputPin,
SPI: SpiBusCyw43,
{
pub(crate) fn new(
ch: ch::Runner<'a, MTU>,
bus: Bus<PWR, SPI>,
ioctl_state: &'a IoctlState,
events: &'a Events,
) -> Self {
Self {
ch,
bus,
ioctl_state,
ioctl_id: 0,
sdpcm_seq: 0,
sdpcm_seq_max: 1,
events,
#[cfg(feature = "firmware-logs")]
log: LogState::default(),
}
}
pub(crate) async fn init(&mut self, firmware: &[u8]) {
self.bus.init().await;
// Init ALP (Active Low Power) clock
self.bus
.write8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR, BACKPLANE_ALP_AVAIL_REQ)
.await;
debug!("waiting for clock...");
while self.bus.read8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR).await & BACKPLANE_ALP_AVAIL == 0 {}
debug!("clock ok");
let chip_id = self.bus.bp_read16(0x1800_0000).await;
debug!("chip ID: {}", chip_id);
// Upload firmware.
self.core_disable(Core::WLAN).await;
self.core_reset(Core::SOCSRAM).await;
self.bus.bp_write32(CHIP.socsram_base_address + 0x10, 3).await;
self.bus.bp_write32(CHIP.socsram_base_address + 0x44, 0).await;
let ram_addr = CHIP.atcm_ram_base_address;
debug!("loading fw");
self.bus.bp_write(ram_addr, firmware).await;
debug!("loading nvram");
// Round up to 4 bytes.
let nvram_len = (NVRAM.len() + 3) / 4 * 4;
self.bus
.bp_write(ram_addr + CHIP.chip_ram_size - 4 - nvram_len as u32, NVRAM)
.await;
let nvram_len_words = nvram_len as u32 / 4;
let nvram_len_magic = (!nvram_len_words << 16) | nvram_len_words;
self.bus
.bp_write32(ram_addr + CHIP.chip_ram_size - 4, nvram_len_magic)
.await;
// Start core!
debug!("starting up core...");
self.core_reset(Core::WLAN).await;
assert!(self.core_is_up(Core::WLAN).await);
while self.bus.read8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR).await & 0x80 == 0 {}
// "Set up the interrupt mask and enable interrupts"
// self.bus.bp_write32(CHIP.sdiod_core_base_address + 0x24, 0xF0).await;
self.bus
.write16(FUNC_BUS, REG_BUS_INTERRUPT_ENABLE, IRQ_F2_PACKET_AVAILABLE)
.await;
// "Lower F2 Watermark to avoid DMA Hang in F2 when SD Clock is stopped."
// Sounds scary...
self.bus
.write8(FUNC_BACKPLANE, REG_BACKPLANE_FUNCTION2_WATERMARK, 32)
.await;
// wait for wifi startup
debug!("waiting for wifi init...");
while self.bus.read32(FUNC_BUS, REG_BUS_STATUS).await & STATUS_F2_RX_READY == 0 {}
// Some random configs related to sleep.
// These aren't needed if we don't want to sleep the bus.
// TODO do we need to sleep the bus to read the irq line, due to
// being on the same pin as MOSI/MISO?
/*
let mut val = self.bus.read8(FUNC_BACKPLANE, REG_BACKPLANE_WAKEUP_CTRL).await;
val |= 0x02; // WAKE_TILL_HT_AVAIL
self.bus.write8(FUNC_BACKPLANE, REG_BACKPLANE_WAKEUP_CTRL, val).await;
self.bus.write8(FUNC_BUS, 0xF0, 0x08).await; // SDIOD_CCCR_BRCM_CARDCAP.CMD_NODEC = 1
self.bus.write8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR, 0x02).await; // SBSDIO_FORCE_HT
let mut val = self.bus.read8(FUNC_BACKPLANE, REG_BACKPLANE_SLEEP_CSR).await;
val |= 0x01; // SBSDIO_SLPCSR_KEEP_SDIO_ON
self.bus.write8(FUNC_BACKPLANE, REG_BACKPLANE_SLEEP_CSR, val).await;
*/
// clear pulls
self.bus.write8(FUNC_BACKPLANE, REG_BACKPLANE_PULL_UP, 0).await;
let _ = self.bus.read8(FUNC_BACKPLANE, REG_BACKPLANE_PULL_UP).await;
// start HT clock
//self.bus.write8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR, 0x10).await;
//debug!("waiting for HT clock...");
//while self.bus.read8(FUNC_BACKPLANE, REG_BACKPLANE_CHIP_CLOCK_CSR).await & 0x80 == 0 {}
//debug!("clock ok");
#[cfg(feature = "firmware-logs")]
self.log_init().await;
debug!("wifi init done");
}
#[cfg(feature = "firmware-logs")]
async fn log_init(&mut self) {
// Initialize shared memory for logging.
let addr = CHIP.atcm_ram_base_address + CHIP.chip_ram_size - 4 - CHIP.socram_srmem_size;
let shared_addr = self.bus.bp_read32(addr).await;
debug!("shared_addr {:08x}", shared_addr);
let mut shared = [0; SharedMemData::SIZE];
self.bus.bp_read(shared_addr, &mut shared).await;
let shared = SharedMemData::from_bytes(&shared);
self.log.addr = shared.console_addr + 8;
}
#[cfg(feature = "firmware-logs")]
async fn log_read(&mut self) {
// Read log struct
let mut log = [0; SharedMemLog::SIZE];
self.bus.bp_read(self.log.addr, &mut log).await;
let log = SharedMemLog::from_bytes(&log);
let idx = log.idx as usize;
// If pointer hasn't moved, no need to do anything.
if idx == self.log.last_idx {
return;
}
// Read entire buf for now. We could read only what we need, but then we
// run into annoying alignment issues in `bp_read`.
let mut buf = [0; 0x400];
self.bus.bp_read(log.buf, &mut buf).await;
while self.log.last_idx != idx as usize {
let b = buf[self.log.last_idx];
if b == b'\r' || b == b'\n' {
if self.log.buf_count != 0 {
let s = unsafe { core::str::from_utf8_unchecked(&self.log.buf[..self.log.buf_count]) };
debug!("LOGS: {}", s);
self.log.buf_count = 0;
}
} else if self.log.buf_count < self.log.buf.len() {
self.log.buf[self.log.buf_count] = b;
self.log.buf_count += 1;
}
self.log.last_idx += 1;
if self.log.last_idx == 0x400 {
self.log.last_idx = 0;
}
}
}
pub async fn run(mut self) -> ! {
let mut buf = [0; 512];
loop {
#[cfg(feature = "firmware-logs")]
self.log_read().await;
if self.has_credit() {
let ioctl = self.ioctl_state.wait_pending();
let tx = self.ch.tx_buf();
let ev = self.bus.wait_for_event();
match select3(ioctl, tx, ev).await {
Either3::First(PendingIoctl {
buf: iobuf,
kind,
cmd,
iface,
}) => {
self.send_ioctl(kind, cmd, iface, unsafe { &*iobuf }).await;
self.check_status(&mut buf).await;
}
Either3::Second(packet) => {
trace!("tx pkt {:02x}", Bytes(&packet[..packet.len().min(48)]));
let mut buf = [0; 512];
let buf8 = slice8_mut(&mut buf);
// There MUST be 2 bytes of padding between the SDPCM and BDC headers.
// And ONLY for data packets!
// No idea why, but the firmware will append two zero bytes to the tx'd packets
// otherwise. If the packet is exactly 1514 bytes (the max MTU), this makes it
// be oversized and get dropped.
// WHD adds it here https://github.com/Infineon/wifi-host-driver/blob/c04fcbb6b0d049304f376cf483fd7b1b570c8cd5/WiFi_Host_Driver/src/include/whd_sdpcm.h#L90
// and adds it to the header size her https://github.com/Infineon/wifi-host-driver/blob/c04fcbb6b0d049304f376cf483fd7b1b570c8cd5/WiFi_Host_Driver/src/whd_sdpcm.c#L597
// ¯\_(ツ)_/¯
const PADDING_SIZE: usize = 2;
let total_len = SdpcmHeader::SIZE + PADDING_SIZE + BdcHeader::SIZE + packet.len();
let seq = self.sdpcm_seq;
self.sdpcm_seq = self.sdpcm_seq.wrapping_add(1);
let sdpcm_header = SdpcmHeader {
len: total_len as u16, // TODO does this len need to be rounded up to u32?
len_inv: !total_len as u16,
sequence: seq,
channel_and_flags: CHANNEL_TYPE_DATA,
next_length: 0,
header_length: (SdpcmHeader::SIZE + PADDING_SIZE) as _,
wireless_flow_control: 0,
bus_data_credit: 0,
reserved: [0, 0],
};
let bdc_header = BdcHeader {
flags: BDC_VERSION << BDC_VERSION_SHIFT,
priority: 0,
flags2: 0,
data_offset: 0,
};
trace!("tx {:?}", sdpcm_header);
trace!(" {:?}", bdc_header);
buf8[0..SdpcmHeader::SIZE].copy_from_slice(&sdpcm_header.to_bytes());
buf8[SdpcmHeader::SIZE + PADDING_SIZE..][..BdcHeader::SIZE]
.copy_from_slice(&bdc_header.to_bytes());
buf8[SdpcmHeader::SIZE + PADDING_SIZE + BdcHeader::SIZE..][..packet.len()]
.copy_from_slice(packet);
let total_len = (total_len + 3) & !3; // round up to 4byte
trace!(" {:02x}", Bytes(&buf8[..total_len.min(48)]));
self.bus.wlan_write(&buf[..(total_len / 4)]).await;
self.ch.tx_done();
self.check_status(&mut buf).await;
}
Either3::Third(()) => {
self.handle_irq(&mut buf).await;
}
}
} else {
warn!("TX stalled");
self.bus.wait_for_event().await;
self.handle_irq(&mut buf).await;
}
}
}
/// Wait for IRQ on F2 packet available
async fn handle_irq(&mut self, buf: &mut [u32; 512]) {
// Receive stuff
let irq = self.bus.read16(FUNC_BUS, REG_BUS_INTERRUPT).await;
trace!("irq{}", FormatInterrupt(irq));
if irq & IRQ_F2_PACKET_AVAILABLE != 0 {
self.check_status(buf).await;
}
if irq & IRQ_DATA_UNAVAILABLE != 0 {
// TODO what should we do here?
warn!("IRQ DATA_UNAVAILABLE, clearing...");
self.bus.write16(FUNC_BUS, REG_BUS_INTERRUPT, 1).await;
}
}
/// Handle F2 events while status register is set
async fn check_status(&mut self, buf: &mut [u32; 512]) {
loop {
let status = self.bus.status();
trace!("check status{}", FormatStatus(status));
if status & STATUS_F2_PKT_AVAILABLE != 0 {
let len = (status & STATUS_F2_PKT_LEN_MASK) >> STATUS_F2_PKT_LEN_SHIFT;
self.bus.wlan_read(buf, len).await;
trace!("rx {:02x}", Bytes(&slice8_mut(buf)[..(len as usize).min(48)]));
self.rx(&mut slice8_mut(buf)[..len as usize]);
} else {
break;
}
}
}
fn rx(&mut self, packet: &mut [u8]) {
let Some((sdpcm_header, payload)) = SdpcmHeader::parse(packet) else {
return;
};
self.update_credit(&sdpcm_header);
let channel = sdpcm_header.channel_and_flags & 0x0f;
match channel {
CHANNEL_TYPE_CONTROL => {
let Some((cdc_header, response)) = CdcHeader::parse(payload) else {
return;
};
trace!(" {:?}", cdc_header);
if cdc_header.id == self.ioctl_id {
if cdc_header.status != 0 {
// TODO: propagate error instead
panic!("IOCTL error {}", cdc_header.status as i32);
}
self.ioctl_state.ioctl_done(response);
}
}
CHANNEL_TYPE_EVENT => {
let Some((_, bdc_packet)) = BdcHeader::parse(payload) else {
warn!("BDC event, incomplete header");
return;
};
let Some((event_packet, evt_data)) = EventPacket::parse(bdc_packet) else {
warn!("BDC event, incomplete data");
return;
};
const ETH_P_LINK_CTL: u16 = 0x886c; // HPNA, wlan link local tunnel, according to linux if_ether.h
if event_packet.eth.ether_type != ETH_P_LINK_CTL {
warn!(
"unexpected ethernet type 0x{:04x}, expected Broadcom ether type 0x{:04x}",
event_packet.eth.ether_type, ETH_P_LINK_CTL
);
return;
}
const BROADCOM_OUI: &[u8] = &[0x00, 0x10, 0x18];
if event_packet.hdr.oui != BROADCOM_OUI {
warn!(
"unexpected ethernet OUI {:02x}, expected Broadcom OUI {:02x}",
Bytes(&event_packet.hdr.oui),
Bytes(BROADCOM_OUI)
);
return;
}
const BCMILCP_SUBTYPE_VENDOR_LONG: u16 = 32769;
if event_packet.hdr.subtype != BCMILCP_SUBTYPE_VENDOR_LONG {
warn!("unexpected subtype {}", event_packet.hdr.subtype);
return;
}
const BCMILCP_BCM_SUBTYPE_EVENT: u16 = 1;
if event_packet.hdr.user_subtype != BCMILCP_BCM_SUBTYPE_EVENT {
warn!("unexpected user_subtype {}", event_packet.hdr.subtype);
return;
}
let evt_type = events::Event::from(event_packet.msg.event_type as u8);
debug!(
"=== EVENT {:?}: {:?} {:02x}",
evt_type,
event_packet.msg,
Bytes(evt_data)
);
if self.events.mask.is_enabled(evt_type) {
let status = event_packet.msg.status;
let event_payload = match evt_type {
Event::ESCAN_RESULT if status == EStatus::PARTIAL => {
let Some((_, bss_info)) = ScanResults::parse(evt_data) else {
return;
};
let Some(bss_info) = BssInfo::parse(bss_info) else {
return;
};
events::Payload::BssInfo(*bss_info)
}
Event::ESCAN_RESULT => events::Payload::None,
_ => events::Payload::None,
};
// this intentionally uses the non-blocking publish immediate
// publish() is a deadlock risk in the current design as awaiting here prevents ioctls
// The `Runner` always yields when accessing the device, so consumers always have a chance to receive the event
// (if they are actively awaiting the queue)
self.events.queue.publish_immediate(events::Message::new(
Status {
event_type: evt_type,
status,
},
event_payload,
));
}
}
CHANNEL_TYPE_DATA => {
let Some((_, packet)) = BdcHeader::parse(payload) else {
return;
};
trace!("rx pkt {:02x}", Bytes(&packet[..packet.len().min(48)]));
match self.ch.try_rx_buf() {
Some(buf) => {
buf[..packet.len()].copy_from_slice(packet);
self.ch.rx_done(packet.len())
}
None => warn!("failed to push rxd packet to the channel."),
}
}
_ => {}
}
}
fn update_credit(&mut self, sdpcm_header: &SdpcmHeader) {
if sdpcm_header.channel_and_flags & 0xf < 3 {
let mut sdpcm_seq_max = sdpcm_header.bus_data_credit;
if sdpcm_seq_max.wrapping_sub(self.sdpcm_seq) > 0x40 {
sdpcm_seq_max = self.sdpcm_seq + 2;
}
self.sdpcm_seq_max = sdpcm_seq_max;
}
}
fn has_credit(&self) -> bool {
self.sdpcm_seq != self.sdpcm_seq_max && self.sdpcm_seq_max.wrapping_sub(self.sdpcm_seq) & 0x80 == 0
}
async fn send_ioctl(&mut self, kind: IoctlType, cmd: u32, iface: u32, data: &[u8]) {
let mut buf = [0; 512];
let buf8 = slice8_mut(&mut buf);
let total_len = SdpcmHeader::SIZE + CdcHeader::SIZE + data.len();
let sdpcm_seq = self.sdpcm_seq;
self.sdpcm_seq = self.sdpcm_seq.wrapping_add(1);
self.ioctl_id = self.ioctl_id.wrapping_add(1);
let sdpcm_header = SdpcmHeader {
len: total_len as u16, // TODO does this len need to be rounded up to u32?
len_inv: !total_len as u16,
sequence: sdpcm_seq,
channel_and_flags: CHANNEL_TYPE_CONTROL,
next_length: 0,
header_length: SdpcmHeader::SIZE as _,
wireless_flow_control: 0,
bus_data_credit: 0,
reserved: [0, 0],
};
let cdc_header = CdcHeader {
cmd: cmd,
len: data.len() as _,
flags: kind as u16 | (iface as u16) << 12,
id: self.ioctl_id,
status: 0,
};
trace!("tx {:?}", sdpcm_header);
trace!(" {:?}", cdc_header);
buf8[0..SdpcmHeader::SIZE].copy_from_slice(&sdpcm_header.to_bytes());
buf8[SdpcmHeader::SIZE..][..CdcHeader::SIZE].copy_from_slice(&cdc_header.to_bytes());
buf8[SdpcmHeader::SIZE + CdcHeader::SIZE..][..data.len()].copy_from_slice(data);
let total_len = (total_len + 3) & !3; // round up to 4byte
trace!(" {:02x}", Bytes(&buf8[..total_len.min(48)]));
self.bus.wlan_write(&buf[..total_len / 4]).await;
}
async fn core_disable(&mut self, core: Core) {
let base = core.base_addr();
// Dummy read?
let _ = self.bus.bp_read8(base + AI_RESETCTRL_OFFSET).await;
// Check it isn't already reset
let r = self.bus.bp_read8(base + AI_RESETCTRL_OFFSET).await;
if r & AI_RESETCTRL_BIT_RESET != 0 {
return;
}
self.bus.bp_write8(base + AI_IOCTRL_OFFSET, 0).await;
let _ = self.bus.bp_read8(base + AI_IOCTRL_OFFSET).await;
block_for(Duration::from_millis(1));
self.bus
.bp_write8(base + AI_RESETCTRL_OFFSET, AI_RESETCTRL_BIT_RESET)
.await;
let _ = self.bus.bp_read8(base + AI_RESETCTRL_OFFSET).await;
}
async fn core_reset(&mut self, core: Core) {
self.core_disable(core).await;
let base = core.base_addr();
self.bus
.bp_write8(base + AI_IOCTRL_OFFSET, AI_IOCTRL_BIT_FGC | AI_IOCTRL_BIT_CLOCK_EN)
.await;
let _ = self.bus.bp_read8(base + AI_IOCTRL_OFFSET).await;
self.bus.bp_write8(base + AI_RESETCTRL_OFFSET, 0).await;
Timer::after(Duration::from_millis(1)).await;
self.bus
.bp_write8(base + AI_IOCTRL_OFFSET, AI_IOCTRL_BIT_CLOCK_EN)
.await;
let _ = self.bus.bp_read8(base + AI_IOCTRL_OFFSET).await;
Timer::after(Duration::from_millis(1)).await;
}
async fn core_is_up(&mut self, core: Core) -> bool {
let base = core.base_addr();
let io = self.bus.bp_read8(base + AI_IOCTRL_OFFSET).await;
if io & (AI_IOCTRL_BIT_FGC | AI_IOCTRL_BIT_CLOCK_EN) != AI_IOCTRL_BIT_CLOCK_EN {
debug!("core_is_up: returning false due to bad ioctrl {:02x}", io);
return false;
}
let r = self.bus.bp_read8(base + AI_RESETCTRL_OFFSET).await;
if r & (AI_RESETCTRL_BIT_RESET) != 0 {
debug!("core_is_up: returning false due to bad resetctrl {:02x}", r);
return false;
}
true
}
}