embassy/embassy-stm32/src/eth/v1/mod.rs
2023-07-15 09:32:36 -05:00

330 lines
10 KiB
Rust

// The v1c ethernet driver was ported to embassy from the awesome stm32-eth project (https://github.com/stm32-rs/stm32-eth).
mod rx_desc;
mod tx_desc;
use core::marker::PhantomData;
use core::sync::atomic::{fence, Ordering};
use embassy_hal_common::{into_ref, PeripheralRef};
use stm32_metapac::eth::vals::{Apcs, Cr, Dm, DmaomrSr, Fes, Ftf, Ifg, MbProgress, Mw, Pbl, Rsf, St, Tsf};
pub(crate) use self::rx_desc::{RDes, RDesRing};
pub(crate) use self::tx_desc::{TDes, TDesRing};
use super::*;
use crate::gpio::sealed::{AFType, Pin as __GpioPin};
use crate::gpio::AnyPin;
use crate::interrupt::InterruptExt;
#[cfg(eth_v1a)]
use crate::pac::AFIO;
#[cfg(any(eth_v1b, eth_v1c))]
use crate::pac::SYSCFG;
use crate::pac::{ETH, RCC};
use crate::{interrupt, Peripheral};
/// Interrupt handler.
pub struct InterruptHandler {}
impl interrupt::typelevel::Handler<interrupt::typelevel::ETH> for InterruptHandler {
unsafe fn on_interrupt() {
WAKER.wake();
// TODO: Check and clear more flags
let dma = ETH.ethernet_dma();
dma.dmasr().modify(|w| {
w.set_ts(true);
w.set_rs(true);
w.set_nis(true);
});
// Delay two peripheral's clock
dma.dmasr().read();
dma.dmasr().read();
}
}
pub struct Ethernet<'d, T: Instance, P: PHY> {
_peri: PeripheralRef<'d, T>,
pub(crate) tx: TDesRing<'d>,
pub(crate) rx: RDesRing<'d>,
pins: [PeripheralRef<'d, AnyPin>; 9],
pub(crate) phy: P,
pub(crate) station_management: EthernetStationManagement<T>,
pub(crate) mac_addr: [u8; 6],
}
#[cfg(eth_v1a)]
macro_rules! config_in_pins {
($($pin:ident),*) => {
critical_section::with(|_| {
$(
// TODO properly create a set_as_input function
$pin.set_as_af($pin.af_num(), AFType::Input);
)*
})
}
}
#[cfg(eth_v1a)]
macro_rules! config_af_pins {
($($pin:ident),*) => {
critical_section::with(|_| {
$(
// We are lucky here, this configures to max speed (50MHz)
$pin.set_as_af($pin.af_num(), AFType::OutputPushPull);
)*
})
};
}
#[cfg(any(eth_v1b, eth_v1c))]
macro_rules! config_pins {
($($pin:ident),*) => {
critical_section::with(|_| {
$(
$pin.set_as_af($pin.af_num(), AFType::OutputPushPull);
$pin.set_speed(crate::gpio::Speed::VeryHigh);
)*
})
};
}
impl<'d, T: Instance, P: PHY> Ethernet<'d, T, P> {
/// safety: the returned instance is not leak-safe
pub fn new<const TX: usize, const RX: usize>(
queue: &'d mut PacketQueue<TX, RX>,
peri: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<interrupt::typelevel::ETH, InterruptHandler> + 'd,
ref_clk: impl Peripheral<P = impl RefClkPin<T>> + 'd,
mdio: impl Peripheral<P = impl MDIOPin<T>> + 'd,
mdc: impl Peripheral<P = impl MDCPin<T>> + 'd,
crs: impl Peripheral<P = impl CRSPin<T>> + 'd,
rx_d0: impl Peripheral<P = impl RXD0Pin<T>> + 'd,
rx_d1: impl Peripheral<P = impl RXD1Pin<T>> + 'd,
tx_d0: impl Peripheral<P = impl TXD0Pin<T>> + 'd,
tx_d1: impl Peripheral<P = impl TXD1Pin<T>> + 'd,
tx_en: impl Peripheral<P = impl TXEnPin<T>> + 'd,
phy: P,
mac_addr: [u8; 6],
phy_addr: u8,
) -> Self {
into_ref!(peri, ref_clk, mdio, mdc, crs, rx_d0, rx_d1, tx_d0, tx_d1, tx_en);
// Enable the necessary Clocks
#[cfg(eth_v1a)]
critical_section::with(|_| {
RCC.apb2enr().modify(|w| w.set_afioen(true));
// Select RMII (Reduced Media Independent Interface)
// Must be done prior to enabling peripheral clock
AFIO.mapr().modify(|w| w.set_mii_rmii_sel(true));
RCC.ahbenr().modify(|w| {
w.set_ethen(true);
w.set_ethtxen(true);
w.set_ethrxen(true);
});
});
#[cfg(any(eth_v1b, eth_v1c))]
critical_section::with(|_| {
RCC.apb2enr().modify(|w| w.set_syscfgen(true));
RCC.ahb1enr().modify(|w| {
w.set_ethen(true);
w.set_ethtxen(true);
w.set_ethrxen(true);
});
// RMII (Reduced Media Independent Interface)
SYSCFG.pmc().modify(|w| w.set_mii_rmii_sel(true));
});
#[cfg(eth_v1a)]
{
config_in_pins!(ref_clk, rx_d0, rx_d1);
config_af_pins!(mdio, mdc, tx_d0, tx_d1, tx_en);
}
#[cfg(any(eth_v1b, eth_v1c))]
config_pins!(ref_clk, mdio, mdc, crs, rx_d0, rx_d1, tx_d0, tx_d1, tx_en);
let dma = ETH.ethernet_dma();
let mac = ETH.ethernet_mac();
// Reset and wait
dma.dmabmr().modify(|w| w.set_sr(true));
while dma.dmabmr().read().sr() {}
mac.maccr().modify(|w| {
w.set_ifg(Ifg::IFG96); // inter frame gap 96 bit times
w.set_apcs(Apcs::STRIP); // automatic padding and crc stripping
w.set_fes(Fes::FES100); // fast ethernet speed
w.set_dm(Dm::FULLDUPLEX); // full duplex
// TODO: Carrier sense ? ECRSFD
});
// Note: Writing to LR triggers synchronisation of both LR and HR into the MAC core,
// so the LR write must happen after the HR write.
mac.maca0hr()
.modify(|w| w.set_maca0h(u16::from(mac_addr[4]) | (u16::from(mac_addr[5]) << 8)));
mac.maca0lr().write(|w| {
w.set_maca0l(
u32::from(mac_addr[0])
| (u32::from(mac_addr[1]) << 8)
| (u32::from(mac_addr[2]) << 16)
| (u32::from(mac_addr[3]) << 24),
)
});
// pause time
mac.macfcr().modify(|w| w.set_pt(0x100));
// Transfer and Forward, Receive and Forward
dma.dmaomr().modify(|w| {
w.set_tsf(Tsf::STOREFORWARD);
w.set_rsf(Rsf::STOREFORWARD);
});
dma.dmabmr().modify(|w| {
w.set_pbl(Pbl::PBL32) // programmable burst length - 32 ?
});
// TODO MTU size setting not found for v1 ethernet, check if correct
// NOTE(unsafe) We got the peripheral singleton, which means that `rcc::init` was called
let hclk = unsafe { crate::rcc::get_freqs() }.ahb1;
let hclk_mhz = hclk.0 / 1_000_000;
// Set the MDC clock frequency in the range 1MHz - 2.5MHz
let clock_range = match hclk_mhz {
0..=24 => panic!("Invalid HCLK frequency - should be at least 25 MHz."),
25..=34 => Cr::CR_20_35, // Divide by 16
35..=59 => Cr::CR_35_60, // Divide by 26
60..=99 => Cr::CR_60_100, // Divide by 42
100..=149 => Cr::CR_100_150, // Divide by 62
150..=216 => Cr::CR_150_168, // Divide by 102
_ => {
panic!("HCLK results in MDC clock > 2.5MHz even for the highest CSR clock divider")
}
};
let pins = [
ref_clk.map_into(),
mdio.map_into(),
mdc.map_into(),
crs.map_into(),
rx_d0.map_into(),
rx_d1.map_into(),
tx_d0.map_into(),
tx_d1.map_into(),
tx_en.map_into(),
];
let mut this = Self {
_peri: peri,
pins,
phy: phy,
station_management: EthernetStationManagement {
peri: PhantomData,
clock_range: clock_range,
phy_addr: phy_addr,
},
mac_addr,
tx: TDesRing::new(&mut queue.tx_desc, &mut queue.tx_buf),
rx: RDesRing::new(&mut queue.rx_desc, &mut queue.rx_buf),
};
fence(Ordering::SeqCst);
let mac = ETH.ethernet_mac();
let dma = ETH.ethernet_dma();
mac.maccr().modify(|w| {
w.set_re(true);
w.set_te(true);
});
dma.dmaomr().modify(|w| {
w.set_ftf(Ftf::FLUSH); // flush transmit fifo (queue)
w.set_st(St::STARTED); // start transmitting channel
w.set_sr(DmaomrSr::STARTED); // start receiving channel
});
this.rx.demand_poll();
// Enable interrupts
dma.dmaier().modify(|w| {
w.set_nise(true);
w.set_rie(true);
w.set_tie(true);
});
this.phy.phy_reset(&mut this.station_management);
this.phy.phy_init(&mut this.station_management);
interrupt::ETH.unpend();
unsafe { interrupt::ETH.enable() };
this
}
}
pub struct EthernetStationManagement<T: Instance> {
peri: PhantomData<T>,
clock_range: Cr,
phy_addr: u8,
}
unsafe impl<T: Instance> StationManagement for EthernetStationManagement<T> {
fn smi_read(&mut self, reg: u8) -> u16 {
let mac = ETH.ethernet_mac();
mac.macmiiar().modify(|w| {
w.set_pa(self.phy_addr);
w.set_mr(reg);
w.set_mw(Mw::READ); // read operation
w.set_cr(self.clock_range);
w.set_mb(MbProgress::BUSY); // indicate that operation is in progress
});
while mac.macmiiar().read().mb() == MbProgress::BUSY {}
mac.macmiidr().read().md()
}
fn smi_write(&mut self, reg: u8, val: u16) {
let mac = ETH.ethernet_mac();
mac.macmiidr().write(|w| w.set_md(val));
mac.macmiiar().modify(|w| {
w.set_pa(self.phy_addr);
w.set_mr(reg);
w.set_mw(Mw::WRITE); // write
w.set_cr(self.clock_range);
w.set_mb(MbProgress::BUSY);
});
while mac.macmiiar().read().mb() == MbProgress::BUSY {}
}
}
impl<'d, T: Instance, P: PHY> Drop for Ethernet<'d, T, P> {
fn drop(&mut self) {
let dma = ETH.ethernet_dma();
let mac = ETH.ethernet_mac();
// Disable the TX DMA and wait for any previous transmissions to be completed
dma.dmaomr().modify(|w| w.set_st(St::STOPPED));
// Disable MAC transmitter and receiver
mac.maccr().modify(|w| {
w.set_re(false);
w.set_te(false);
});
dma.dmaomr().modify(|w| w.set_sr(DmaomrSr::STOPPED));
critical_section::with(|_| {
for pin in self.pins.iter_mut() {
pin.set_as_disconnected();
}
})
}
}