Ryujinx/Ryujinx.Graphics.Gpu/Shader/ShaderCache.cs
merry a4e8bea866
Lop3Expression: Optimize expressions (#3184)
* lut3

* bugfixes

* TruthTable

* false/true -> 0/-1

* add or to expressions

* fix inversions

* increment cache version
2022-04-08 11:17:38 +02:00

1106 lines
50 KiB
C#

using Ryujinx.Common;
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Gpu.Engine.Threed;
using Ryujinx.Graphics.Gpu.Memory;
using Ryujinx.Graphics.Gpu.Shader.Cache;
using Ryujinx.Graphics.Gpu.Shader.Cache.Definition;
using Ryujinx.Graphics.Shader;
using Ryujinx.Graphics.Shader.Translation;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Runtime.InteropServices;
using System.Threading;
using System.Threading.Tasks;
namespace Ryujinx.Graphics.Gpu.Shader
{
/// <summary>
/// Memory cache of shader code.
/// </summary>
class ShaderCache : IDisposable
{
private const TranslationFlags DefaultFlags = TranslationFlags.DebugMode;
private readonly GpuContext _context;
private readonly ShaderDumper _dumper;
private readonly Dictionary<ulong, List<ShaderBundle>> _cpPrograms;
private readonly Dictionary<ShaderAddresses, List<ShaderBundle>> _gpPrograms;
private CacheManager _cacheManager;
private Dictionary<Hash128, ShaderBundle> _gpProgramsDiskCache;
private Dictionary<Hash128, ShaderBundle> _cpProgramsDiskCache;
private Queue<(IProgram, Action<byte[]>)> _programsToSaveQueue;
/// <summary>
/// Version of the codegen (to be changed when codegen or guest format change).
/// </summary>
private const ulong ShaderCodeGenVersion = 3184;
// Progress reporting helpers
private volatile int _shaderCount;
private volatile int _totalShaderCount;
public event Action<ShaderCacheState, int, int> ShaderCacheStateChanged;
/// <summary>
/// Creates a new instance of the shader cache.
/// </summary>
/// <param name="context">GPU context that the shader cache belongs to</param>
public ShaderCache(GpuContext context)
{
_context = context;
_dumper = new ShaderDumper();
_cpPrograms = new Dictionary<ulong, List<ShaderBundle>>();
_gpPrograms = new Dictionary<ShaderAddresses, List<ShaderBundle>>();
_gpProgramsDiskCache = new Dictionary<Hash128, ShaderBundle>();
_cpProgramsDiskCache = new Dictionary<Hash128, ShaderBundle>();
_programsToSaveQueue = new Queue<(IProgram, Action<byte[]>)>();
}
/// <summary>
/// Processes the queue of shaders that must save their binaries to the disk cache.
/// </summary>
public void ProcessShaderCacheQueue()
{
// Check to see if the binaries for previously compiled shaders are ready, and save them out.
while (_programsToSaveQueue.Count > 0)
{
(IProgram program, Action<byte[]> dataAction) = _programsToSaveQueue.Peek();
if (program.CheckProgramLink(false) != ProgramLinkStatus.Incomplete)
{
dataAction(program.GetBinary());
_programsToSaveQueue.Dequeue();
}
else
{
break;
}
}
}
/// <summary>
/// Initialize the cache.
/// </summary>
internal void Initialize()
{
if (GraphicsConfig.EnableShaderCache && GraphicsConfig.TitleId != null)
{
_cacheManager = new CacheManager(CacheGraphicsApi.OpenGL, CacheHashType.XxHash128, "glsl", GraphicsConfig.TitleId, ShaderCodeGenVersion);
bool isReadOnly = _cacheManager.IsReadOnly;
HashSet<Hash128> invalidEntries = null;
if (isReadOnly)
{
Logger.Warning?.Print(LogClass.Gpu, "Loading shader cache in read-only mode (cache in use by another program!)");
}
else
{
invalidEntries = new HashSet<Hash128>();
}
ReadOnlySpan<Hash128> guestProgramList = _cacheManager.GetGuestProgramList();
using AutoResetEvent progressReportEvent = new AutoResetEvent(false);
_shaderCount = 0;
_totalShaderCount = guestProgramList.Length;
ShaderCacheStateChanged?.Invoke(ShaderCacheState.Start, _shaderCount, _totalShaderCount);
Thread progressReportThread = null;
if (guestProgramList.Length > 0)
{
progressReportThread = new Thread(ReportProgress)
{
Name = "ShaderCache.ProgressReporter",
Priority = ThreadPriority.Lowest,
IsBackground = true
};
progressReportThread.Start(progressReportEvent);
}
// Make sure these are initialized before doing compilation.
Capabilities caps = _context.Capabilities;
int maxTaskCount = Math.Min(Environment.ProcessorCount, 8);
int programIndex = 0;
List<ShaderCompileTask> activeTasks = new List<ShaderCompileTask>();
using AutoResetEvent taskDoneEvent = new AutoResetEvent(false);
// This thread dispatches tasks to do shader translation, and creates programs that OpenGL will link in the background.
// The program link status is checked in a non-blocking manner so that multiple shaders can be compiled at once.
while (programIndex < guestProgramList.Length || activeTasks.Count > 0)
{
if (activeTasks.Count < maxTaskCount && programIndex < guestProgramList.Length)
{
// Begin a new shader compilation.
Hash128 key = guestProgramList[programIndex];
byte[] hostProgramBinary = _cacheManager.GetHostProgramByHash(ref key);
bool hasHostCache = hostProgramBinary != null;
IProgram hostProgram = null;
// If the program sources aren't in the cache, compile from saved guest program.
byte[] guestProgram = _cacheManager.GetGuestProgramByHash(ref key);
if (guestProgram == null)
{
Logger.Error?.Print(LogClass.Gpu, $"Ignoring orphan shader hash {key} in cache (is the cache incomplete?)");
// Should not happen, but if someone messed with the cache it's better to catch it.
invalidEntries?.Add(key);
_shaderCount = ++programIndex;
continue;
}
ReadOnlySpan<byte> guestProgramReadOnlySpan = guestProgram;
ReadOnlySpan<GuestShaderCacheEntry> cachedShaderEntries = GuestShaderCacheEntry.Parse(ref guestProgramReadOnlySpan, out GuestShaderCacheHeader fileHeader);
if (cachedShaderEntries[0].Header.Stage == ShaderStage.Compute)
{
Debug.Assert(cachedShaderEntries.Length == 1);
GuestShaderCacheEntry entry = cachedShaderEntries[0];
HostShaderCacheEntry[] hostShaderEntries = null;
// Try loading host shader binary.
if (hasHostCache)
{
hostShaderEntries = HostShaderCacheEntry.Parse(hostProgramBinary, out ReadOnlySpan<byte> hostProgramBinarySpan);
hostProgramBinary = hostProgramBinarySpan.ToArray();
hostProgram = _context.Renderer.LoadProgramBinary(hostProgramBinary, false, new ShaderInfo(-1));
}
ShaderCompileTask task = new ShaderCompileTask(taskDoneEvent);
activeTasks.Add(task);
task.OnCompiled(hostProgram, (bool isHostProgramValid, ShaderCompileTask task) =>
{
ShaderProgram program = null;
ShaderProgramInfo shaderProgramInfo = null;
if (isHostProgramValid)
{
// Reconstruct code holder.
program = new ShaderProgram(entry.Header.Stage, "");
shaderProgramInfo = hostShaderEntries[0].ToShaderProgramInfo();
byte[] code = entry.Code.AsSpan(0, entry.Header.Size - entry.Header.Cb1DataSize).ToArray();
ShaderCodeHolder shader = new ShaderCodeHolder(program, shaderProgramInfo, code);
_cpProgramsDiskCache.Add(key, new ShaderBundle(hostProgram, shader));
return true;
}
else
{
// If the host program was rejected by the gpu driver or isn't in cache, try to build from program sources again.
Task compileTask = Task.Run(() =>
{
var binaryCode = new Memory<byte>(entry.Code);
var gpuAccessor = new CachedGpuAccessor(
_context,
binaryCode,
binaryCode.Slice(binaryCode.Length - entry.Header.Cb1DataSize),
entry.Header.GpuAccessorHeader,
entry.TextureDescriptors,
null);
var options = new TranslationOptions(TargetLanguage.Glsl, TargetApi.OpenGL, DefaultFlags | TranslationFlags.Compute);
program = Translator.CreateContext(0, gpuAccessor, options).Translate(out shaderProgramInfo);
});
task.OnTask(compileTask, (bool _, ShaderCompileTask task) =>
{
if (task.IsFaulted)
{
Logger.Warning?.Print(LogClass.Gpu, $"Host shader {key} is corrupted or incompatible, discarding...");
_cacheManager.RemoveProgram(ref key);
return true; // Exit early, the decoding step failed.
}
byte[] code = entry.Code.AsSpan(0, entry.Header.Size - entry.Header.Cb1DataSize).ToArray();
ShaderCodeHolder shader = new ShaderCodeHolder(program, shaderProgramInfo, code);
Logger.Info?.Print(LogClass.Gpu, $"Host shader {key} got invalidated, rebuilding from guest...");
// Compile shader and create program as the shader program binary got invalidated.
shader.HostShader = _context.Renderer.CompileShader(ShaderStage.Compute, program.Code);
hostProgram = _context.Renderer.CreateProgram(new IShader[] { shader.HostShader }, new ShaderInfo(-1));
task.OnCompiled(hostProgram, (bool isNewProgramValid, ShaderCompileTask task) =>
{
// As the host program was invalidated, save the new entry in the cache.
hostProgramBinary = HostShaderCacheEntry.Create(hostProgram.GetBinary(), new ShaderCodeHolder[] { shader });
if (!isReadOnly)
{
if (hasHostCache)
{
_cacheManager.ReplaceHostProgram(ref key, hostProgramBinary);
}
else
{
Logger.Warning?.Print(LogClass.Gpu, $"Add missing host shader {key} in cache (is the cache incomplete?)");
_cacheManager.AddHostProgram(ref key, hostProgramBinary);
}
}
_cpProgramsDiskCache.Add(key, new ShaderBundle(hostProgram, shader));
return true;
});
return false; // Not finished: still need to compile the host program.
});
return false; // Not finished: translating the program.
}
});
}
else
{
Debug.Assert(cachedShaderEntries.Length == Constants.ShaderStages);
ShaderCodeHolder[] shaders = new ShaderCodeHolder[cachedShaderEntries.Length];
List<ShaderProgram> shaderPrograms = new List<ShaderProgram>();
TransformFeedbackDescriptor[] tfd = CacheHelper.ReadTransformFeedbackInformation(ref guestProgramReadOnlySpan, fileHeader);
TranslationCounts counts = new TranslationCounts();
HostShaderCacheEntry[] hostShaderEntries = null;
// Try loading host shader binary.
if (hasHostCache)
{
hostShaderEntries = HostShaderCacheEntry.Parse(hostProgramBinary, out ReadOnlySpan<byte> hostProgramBinarySpan);
hostProgramBinary = hostProgramBinarySpan.ToArray();
bool hasFragmentShader = false;
int fragmentOutputMap = -1;
int fragmentIndex = (int)ShaderStage.Fragment - 1;
if (hostShaderEntries[fragmentIndex] != null && hostShaderEntries[fragmentIndex].Header.InUse)
{
hasFragmentShader = true;
fragmentOutputMap = hostShaderEntries[fragmentIndex].Header.FragmentOutputMap;
}
hostProgram = _context.Renderer.LoadProgramBinary(hostProgramBinary, hasFragmentShader, new ShaderInfo(fragmentOutputMap));
}
ShaderCompileTask task = new ShaderCompileTask(taskDoneEvent);
activeTasks.Add(task);
GuestShaderCacheEntry[] entries = cachedShaderEntries.ToArray();
task.OnCompiled(hostProgram, (bool isHostProgramValid, ShaderCompileTask task) =>
{
Task compileTask = Task.Run(() =>
{
TranslatorContext[] shaderContexts = null;
if (!isHostProgramValid)
{
shaderContexts = new TranslatorContext[1 + entries.Length];
for (int i = 0; i < entries.Length; i++)
{
GuestShaderCacheEntry entry = entries[i];
if (entry == null)
{
continue;
}
var binaryCode = new Memory<byte>(entry.Code);
var gpuAccessor = new CachedGpuAccessor(
_context,
binaryCode,
binaryCode.Slice(binaryCode.Length - entry.Header.Cb1DataSize),
entry.Header.GpuAccessorHeader,
entry.TextureDescriptors,
tfd);
var options = new TranslationOptions(TargetLanguage.Glsl, TargetApi.OpenGL, DefaultFlags);
shaderContexts[i + 1] = Translator.CreateContext(0, gpuAccessor, options, counts);
if (entry.Header.SizeA != 0)
{
var options2 = new TranslationOptions(TargetLanguage.Glsl, TargetApi.OpenGL, DefaultFlags | TranslationFlags.VertexA);
shaderContexts[0] = Translator.CreateContext((ulong)entry.Header.Size, gpuAccessor, options2, counts);
}
}
}
// Reconstruct code holder.
for (int i = 0; i < entries.Length; i++)
{
GuestShaderCacheEntry entry = entries[i];
if (entry == null)
{
continue;
}
ShaderProgram program;
ShaderProgramInfo shaderProgramInfo;
if (isHostProgramValid)
{
program = new ShaderProgram(entry.Header.Stage, "");
shaderProgramInfo = hostShaderEntries[i].ToShaderProgramInfo();
}
else
{
int stageIndex = i + 1;
TranslatorContext currentStage = shaderContexts[stageIndex];
TranslatorContext nextStage = GetNextStageContext(shaderContexts, stageIndex);
TranslatorContext vertexA = stageIndex == 1 ? shaderContexts[0] : null;
program = currentStage.Translate(out shaderProgramInfo, nextStage, vertexA);
}
// NOTE: Vertex B comes first in the shader cache.
byte[] code = entry.Code.AsSpan(0, entry.Header.Size - entry.Header.Cb1DataSize).ToArray();
byte[] code2 = entry.Header.SizeA != 0 ? entry.Code.AsSpan(entry.Header.Size, entry.Header.SizeA).ToArray() : null;
shaders[i] = new ShaderCodeHolder(program, shaderProgramInfo, code, code2);
shaderPrograms.Add(program);
}
});
task.OnTask(compileTask, (bool _, ShaderCompileTask task) =>
{
if (task.IsFaulted)
{
Logger.Warning?.Print(LogClass.Gpu, $"Host shader {key} is corrupted or incompatible, discarding...");
_cacheManager.RemoveProgram(ref key);
return true; // Exit early, the decoding step failed.
}
// If the host program was rejected by the gpu driver or isn't in cache, try to build from program sources again.
if (!isHostProgramValid)
{
Logger.Info?.Print(LogClass.Gpu, $"Host shader {key} got invalidated, rebuilding from guest...");
List<IShader> hostShaders = new List<IShader>();
// Compile shaders and create program as the shader program binary got invalidated.
for (int stage = 0; stage < Constants.ShaderStages; stage++)
{
ShaderProgram program = shaders[stage]?.Program;
if (program == null)
{
continue;
}
IShader hostShader = _context.Renderer.CompileShader(program.Stage, program.Code);
shaders[stage].HostShader = hostShader;
hostShaders.Add(hostShader);
}
int fragmentIndex = (int)ShaderStage.Fragment - 1;
int fragmentOutputMap = -1;
if (shaders[fragmentIndex] != null)
{
fragmentOutputMap = shaders[fragmentIndex].Info.FragmentOutputMap;
}
hostProgram = _context.Renderer.CreateProgram(hostShaders.ToArray(), new ShaderInfo(fragmentOutputMap));
task.OnCompiled(hostProgram, (bool isNewProgramValid, ShaderCompileTask task) =>
{
// As the host program was invalidated, save the new entry in the cache.
hostProgramBinary = HostShaderCacheEntry.Create(hostProgram.GetBinary(), shaders);
if (!isReadOnly)
{
if (hasHostCache)
{
_cacheManager.ReplaceHostProgram(ref key, hostProgramBinary);
}
else
{
Logger.Warning?.Print(LogClass.Gpu, $"Add missing host shader {key} in cache (is the cache incomplete?)");
_cacheManager.AddHostProgram(ref key, hostProgramBinary);
}
}
_gpProgramsDiskCache.Add(key, new ShaderBundle(hostProgram, shaders));
return true;
});
return false; // Not finished: still need to compile the host program.
}
else
{
_gpProgramsDiskCache.Add(key, new ShaderBundle(hostProgram, shaders));
return true;
}
});
return false; // Not finished: translating the program.
});
}
_shaderCount = ++programIndex;
}
// Process the queue.
for (int i = 0; i < activeTasks.Count; i++)
{
ShaderCompileTask task = activeTasks[i];
if (task.IsDone())
{
activeTasks.RemoveAt(i--);
}
}
if (activeTasks.Count == maxTaskCount)
{
// Wait for a task to be done, or for 1ms.
// Host shader compilation cannot signal when it is done,
// so the 1ms timeout is required to poll status.
taskDoneEvent.WaitOne(1);
}
}
if (!isReadOnly)
{
// Remove entries that are broken in the cache
_cacheManager.RemoveManifestEntries(invalidEntries);
_cacheManager.FlushToArchive();
_cacheManager.Synchronize();
}
progressReportEvent.Set();
progressReportThread?.Join();
ShaderCacheStateChanged?.Invoke(ShaderCacheState.Loaded, _shaderCount, _totalShaderCount);
Logger.Info?.Print(LogClass.Gpu, $"Shader cache loaded {_shaderCount} entries.");
}
}
/// <summary>
/// Raises ShaderCacheStateChanged events periodically.
/// </summary>
private void ReportProgress(object state)
{
const int refreshRate = 50; // ms
AutoResetEvent endEvent = (AutoResetEvent)state;
int count = 0;
do
{
int newCount = _shaderCount;
if (count != newCount)
{
ShaderCacheStateChanged?.Invoke(ShaderCacheState.Loading, newCount, _totalShaderCount);
count = newCount;
}
}
while (!endEvent.WaitOne(refreshRate));
}
/// <summary>
/// Gets a compute shader from the cache.
/// </summary>
/// <remarks>
/// This automatically translates, compiles and adds the code to the cache if not present.
/// </remarks>
/// <param name="channel">GPU channel</param>
/// <param name="gas">GPU accessor state</param>
/// <param name="gpuVa">GPU virtual address of the binary shader code</param>
/// <param name="localSizeX">Local group size X of the computer shader</param>
/// <param name="localSizeY">Local group size Y of the computer shader</param>
/// <param name="localSizeZ">Local group size Z of the computer shader</param>
/// <param name="localMemorySize">Local memory size of the compute shader</param>
/// <param name="sharedMemorySize">Shared memory size of the compute shader</param>
/// <returns>Compiled compute shader code</returns>
public ShaderBundle GetComputeShader(
GpuChannel channel,
GpuAccessorState gas,
ulong gpuVa,
int localSizeX,
int localSizeY,
int localSizeZ,
int localMemorySize,
int sharedMemorySize)
{
bool isCached = _cpPrograms.TryGetValue(gpuVa, out List<ShaderBundle> list);
if (isCached)
{
foreach (ShaderBundle cachedCpShader in list)
{
if (IsShaderEqual(channel.MemoryManager, cachedCpShader, gpuVa))
{
return cachedCpShader;
}
}
}
TranslatorContext[] shaderContexts = new TranslatorContext[1];
shaderContexts[0] = DecodeComputeShader(
channel,
gas,
gpuVa,
localSizeX,
localSizeY,
localSizeZ,
localMemorySize,
sharedMemorySize);
bool isShaderCacheEnabled = _cacheManager != null;
bool isShaderCacheReadOnly = false;
Hash128 programCodeHash = default;
GuestShaderCacheEntry[] shaderCacheEntries = null;
// Current shader cache doesn't support bindless textures
if (shaderContexts[0].UsedFeatures.HasFlag(FeatureFlags.Bindless))
{
isShaderCacheEnabled = false;
}
if (isShaderCacheEnabled)
{
isShaderCacheReadOnly = _cacheManager.IsReadOnly;
// Compute hash and prepare data for shader disk cache comparison.
shaderCacheEntries = CacheHelper.CreateShaderCacheEntries(channel, shaderContexts);
programCodeHash = CacheHelper.ComputeGuestHashFromCache(shaderCacheEntries);
}
ShaderBundle cpShader;
// Search for the program hash in loaded shaders.
if (!isShaderCacheEnabled || !_cpProgramsDiskCache.TryGetValue(programCodeHash, out cpShader))
{
if (isShaderCacheEnabled)
{
Logger.Debug?.Print(LogClass.Gpu, $"Shader {programCodeHash} not in cache, compiling!");
}
// The shader isn't currently cached, translate it and compile it.
ShaderCodeHolder shader = TranslateShader(_dumper, channel.MemoryManager, shaderContexts[0], null, null);
shader.HostShader = _context.Renderer.CompileShader(ShaderStage.Compute, shader.Program.Code);
IProgram hostProgram = _context.Renderer.CreateProgram(new IShader[] { shader.HostShader }, new ShaderInfo(-1));
cpShader = new ShaderBundle(hostProgram, shader);
if (isShaderCacheEnabled)
{
_cpProgramsDiskCache.Add(programCodeHash, cpShader);
if (!isShaderCacheReadOnly)
{
byte[] guestProgramDump = CacheHelper.CreateGuestProgramDump(shaderCacheEntries);
_programsToSaveQueue.Enqueue((hostProgram, (byte[] hostProgramBinary) =>
{
_cacheManager.SaveProgram(ref programCodeHash, guestProgramDump, HostShaderCacheEntry.Create(hostProgramBinary, new ShaderCodeHolder[] { shader }));
}));
}
}
}
if (!isCached)
{
list = new List<ShaderBundle>();
_cpPrograms.Add(gpuVa, list);
}
list.Add(cpShader);
return cpShader;
}
/// <summary>
/// Gets a graphics shader program from the shader cache.
/// This includes all the specified shader stages.
/// </summary>
/// <remarks>
/// This automatically translates, compiles and adds the code to the cache if not present.
/// </remarks>
/// <param name="state">GPU state</param>
/// <param name="channel">GPU channel</param>
/// <param name="gas">GPU accessor state</param>
/// <param name="addresses">Addresses of the shaders for each stage</param>
/// <returns>Compiled graphics shader code</returns>
public ShaderBundle GetGraphicsShader(ref ThreedClassState state, GpuChannel channel, GpuAccessorState gas, ShaderAddresses addresses)
{
bool isCached = _gpPrograms.TryGetValue(addresses, out List<ShaderBundle> list);
if (isCached)
{
foreach (ShaderBundle cachedGpShaders in list)
{
if (IsShaderEqual(channel.MemoryManager, cachedGpShaders, addresses))
{
return cachedGpShaders;
}
}
}
TranslatorContext[] shaderContexts = new TranslatorContext[Constants.ShaderStages + 1];
TransformFeedbackDescriptor[] tfd = GetTransformFeedbackDescriptors(ref state);
gas.TransformFeedbackDescriptors = tfd;
TranslationCounts counts = new TranslationCounts();
if (addresses.VertexA != 0)
{
shaderContexts[0] = DecodeGraphicsShader(channel, gas, counts, DefaultFlags | TranslationFlags.VertexA, ShaderStage.Vertex, addresses.VertexA);
}
shaderContexts[1] = DecodeGraphicsShader(channel, gas, counts, DefaultFlags, ShaderStage.Vertex, addresses.Vertex);
shaderContexts[2] = DecodeGraphicsShader(channel, gas, counts, DefaultFlags, ShaderStage.TessellationControl, addresses.TessControl);
shaderContexts[3] = DecodeGraphicsShader(channel, gas, counts, DefaultFlags, ShaderStage.TessellationEvaluation, addresses.TessEvaluation);
shaderContexts[4] = DecodeGraphicsShader(channel, gas, counts, DefaultFlags, ShaderStage.Geometry, addresses.Geometry);
shaderContexts[5] = DecodeGraphicsShader(channel, gas, counts, DefaultFlags, ShaderStage.Fragment, addresses.Fragment);
bool isShaderCacheEnabled = _cacheManager != null;
bool isShaderCacheReadOnly = false;
Hash128 programCodeHash = default;
GuestShaderCacheEntry[] shaderCacheEntries = null;
// Current shader cache doesn't support bindless textures
for (int i = 0; i < shaderContexts.Length; i++)
{
if (shaderContexts[i] != null && shaderContexts[i].UsedFeatures.HasFlag(FeatureFlags.Bindless))
{
isShaderCacheEnabled = false;
break;
}
}
if (isShaderCacheEnabled)
{
isShaderCacheReadOnly = _cacheManager.IsReadOnly;
// Compute hash and prepare data for shader disk cache comparison.
shaderCacheEntries = CacheHelper.CreateShaderCacheEntries(channel, shaderContexts);
programCodeHash = CacheHelper.ComputeGuestHashFromCache(shaderCacheEntries, tfd);
}
ShaderBundle gpShaders;
// Search for the program hash in loaded shaders.
if (!isShaderCacheEnabled || !_gpProgramsDiskCache.TryGetValue(programCodeHash, out gpShaders))
{
if (isShaderCacheEnabled)
{
Logger.Debug?.Print(LogClass.Gpu, $"Shader {programCodeHash} not in cache, compiling!");
}
// The shader isn't currently cached, translate it and compile it.
ShaderCodeHolder[] shaders = new ShaderCodeHolder[Constants.ShaderStages];
for (int stageIndex = 0; stageIndex < Constants.ShaderStages; stageIndex++)
{
shaders[stageIndex] = TranslateShader(_dumper, channel.MemoryManager, shaderContexts, stageIndex + 1);
}
List<IShader> hostShaders = new List<IShader>();
for (int stage = 0; stage < Constants.ShaderStages; stage++)
{
ShaderProgram program = shaders[stage]?.Program;
if (program == null)
{
continue;
}
IShader hostShader = _context.Renderer.CompileShader(program.Stage, program.Code);
shaders[stage].HostShader = hostShader;
hostShaders.Add(hostShader);
}
int fragmentIndex = (int)ShaderStage.Fragment - 1;
int fragmentOutputMap = -1;
if (shaders[fragmentIndex] != null)
{
fragmentOutputMap = shaders[fragmentIndex].Info.FragmentOutputMap;
}
IProgram hostProgram = _context.Renderer.CreateProgram(hostShaders.ToArray(), new ShaderInfo(fragmentOutputMap));
gpShaders = new ShaderBundle(hostProgram, shaders);
if (isShaderCacheEnabled)
{
_gpProgramsDiskCache.Add(programCodeHash, gpShaders);
if (!isShaderCacheReadOnly)
{
byte[] guestProgramDump = CacheHelper.CreateGuestProgramDump(shaderCacheEntries, tfd);
_programsToSaveQueue.Enqueue((hostProgram, (byte[] hostProgramBinary) =>
{
_cacheManager.SaveProgram(ref programCodeHash, guestProgramDump, HostShaderCacheEntry.Create(hostProgramBinary, shaders));
}));
}
}
}
if (!isCached)
{
list = new List<ShaderBundle>();
_gpPrograms.Add(addresses, list);
}
list.Add(gpShaders);
return gpShaders;
}
/// <summary>
/// Gets transform feedback state from the current GPU state.
/// </summary>
/// <param name="state">Current GPU state</param>
/// <returns>Four transform feedback descriptors for the enabled TFBs, or null if TFB is disabled</returns>
private static TransformFeedbackDescriptor[] GetTransformFeedbackDescriptors(ref ThreedClassState state)
{
bool tfEnable = state.TfEnable;
if (!tfEnable)
{
return null;
}
TransformFeedbackDescriptor[] descs = new TransformFeedbackDescriptor[Constants.TotalTransformFeedbackBuffers];
for (int i = 0; i < Constants.TotalTransformFeedbackBuffers; i++)
{
var tf = state.TfState[i];
int length = (int)Math.Min((uint)tf.VaryingsCount, 0x80);
var varyingLocations = MemoryMarshal.Cast<uint, byte>(state.TfVaryingLocations[i].ToSpan()).Slice(0, length);
descs[i] = new TransformFeedbackDescriptor(tf.BufferIndex, tf.Stride, varyingLocations.ToArray());
}
return descs;
}
/// <summary>
/// Checks if compute shader code in memory is equal to the cached shader.
/// </summary>
/// <param name="memoryManager">Memory manager used to access the GPU memory where the shader is located</param>
/// <param name="cpShader">Cached compute shader</param>
/// <param name="gpuVa">GPU virtual address of the shader code in memory</param>
/// <returns>True if the code is different, false otherwise</returns>
private static bool IsShaderEqual(MemoryManager memoryManager, ShaderBundle cpShader, ulong gpuVa)
{
return IsShaderEqual(memoryManager, cpShader.Shaders[0], gpuVa);
}
/// <summary>
/// Checks if graphics shader code from all stages in memory are equal to the cached shaders.
/// </summary>
/// <param name="memoryManager">Memory manager used to access the GPU memory where the shader is located</param>
/// <param name="gpShaders">Cached graphics shaders</param>
/// <param name="addresses">GPU virtual addresses of all enabled shader stages</param>
/// <returns>True if the code is different, false otherwise</returns>
private static bool IsShaderEqual(MemoryManager memoryManager, ShaderBundle gpShaders, ShaderAddresses addresses)
{
for (int stage = 0; stage < gpShaders.Shaders.Length; stage++)
{
ShaderCodeHolder shader = gpShaders.Shaders[stage];
ulong gpuVa = 0;
switch (stage)
{
case 0: gpuVa = addresses.Vertex; break;
case 1: gpuVa = addresses.TessControl; break;
case 2: gpuVa = addresses.TessEvaluation; break;
case 3: gpuVa = addresses.Geometry; break;
case 4: gpuVa = addresses.Fragment; break;
}
if (!IsShaderEqual(memoryManager, shader, gpuVa, addresses.VertexA))
{
return false;
}
}
return true;
}
/// <summary>
/// Checks if the code of the specified cached shader is different from the code in memory.
/// </summary>
/// <param name="memoryManager">Memory manager used to access the GPU memory where the shader is located</param>
/// <param name="shader">Cached shader to compare with</param>
/// <param name="gpuVa">GPU virtual address of the binary shader code</param>
/// <param name="gpuVaA">Optional GPU virtual address of the "Vertex A" binary shader code</param>
/// <returns>True if the code is different, false otherwise</returns>
private static bool IsShaderEqual(MemoryManager memoryManager, ShaderCodeHolder shader, ulong gpuVa, ulong gpuVaA = 0)
{
if (shader == null)
{
return true;
}
ReadOnlySpan<byte> memoryCode = memoryManager.GetSpan(gpuVa, shader.Code.Length);
bool equals = memoryCode.SequenceEqual(shader.Code);
if (equals && shader.Code2 != null)
{
memoryCode = memoryManager.GetSpan(gpuVaA, shader.Code2.Length);
equals = memoryCode.SequenceEqual(shader.Code2);
}
return equals;
}
/// <summary>
/// Decode the binary Maxwell shader code to a translator context.
/// </summary>
/// <param name="channel">GPU channel</param>
/// <param name="gas">GPU accessor state</param>
/// <param name="gpuVa">GPU virtual address of the binary shader code</param>
/// <param name="localSizeX">Local group size X of the computer shader</param>
/// <param name="localSizeY">Local group size Y of the computer shader</param>
/// <param name="localSizeZ">Local group size Z of the computer shader</param>
/// <param name="localMemorySize">Local memory size of the compute shader</param>
/// <param name="sharedMemorySize">Shared memory size of the compute shader</param>
/// <returns>The generated translator context</returns>
private TranslatorContext DecodeComputeShader(
GpuChannel channel,
GpuAccessorState gas,
ulong gpuVa,
int localSizeX,
int localSizeY,
int localSizeZ,
int localMemorySize,
int sharedMemorySize)
{
if (gpuVa == 0)
{
return null;
}
GpuAccessor gpuAccessor = new GpuAccessor(_context, channel, gas, localSizeX, localSizeY, localSizeZ, localMemorySize, sharedMemorySize);
var options = new TranslationOptions(TargetLanguage.Glsl, TargetApi.OpenGL, DefaultFlags | TranslationFlags.Compute);
return Translator.CreateContext(gpuVa, gpuAccessor, options);
}
/// <summary>
/// Decode the binary Maxwell shader code to a translator context.
/// </summary>
/// <remarks>
/// This will combine the "Vertex A" and "Vertex B" shader stages, if specified, into one shader.
/// </remarks>
/// <param name="channel">GPU channel</param>
/// <param name="gas">GPU accessor state</param>
/// <param name="counts">Cumulative shader resource counts</param>
/// <param name="flags">Flags that controls shader translation</param>
/// <param name="stage">Shader stage</param>
/// <param name="gpuVa">GPU virtual address of the shader code</param>
/// <returns>The generated translator context</returns>
private TranslatorContext DecodeGraphicsShader(
GpuChannel channel,
GpuAccessorState gas,
TranslationCounts counts,
TranslationFlags flags,
ShaderStage stage,
ulong gpuVa)
{
if (gpuVa == 0)
{
return null;
}
GpuAccessor gpuAccessor = new GpuAccessor(_context, channel, gas, (int)stage - 1);
var options = new TranslationOptions(TargetLanguage.Glsl, TargetApi.OpenGL, flags);
return Translator.CreateContext(gpuVa, gpuAccessor, options, counts);
}
/// <summary>
/// Translates a previously generated translator context to something that the host API accepts.
/// </summary>
/// <param name="dumper">Optional shader code dumper</param>
/// <param name="memoryManager">Memory manager used to access the GPU memory where the shader is located</param>
/// <param name="stages">Translator context of all available shader stages</param>
/// <param name="stageIndex">Index on the stages array to translate</param>
/// <returns>Compiled graphics shader code</returns>
private static ShaderCodeHolder TranslateShader(
ShaderDumper dumper,
MemoryManager memoryManager,
TranslatorContext[] stages,
int stageIndex)
{
TranslatorContext currentStage = stages[stageIndex];
TranslatorContext nextStage = GetNextStageContext(stages, stageIndex);
TranslatorContext vertexA = stageIndex == 1 ? stages[0] : null;
return TranslateShader(dumper, memoryManager, currentStage, nextStage, vertexA);
}
/// <summary>
/// Gets the next shader stage context, from an array of contexts and index of the current stage.
/// </summary>
/// <param name="stages">Translator context of all available shader stages</param>
/// <param name="stageIndex">Index on the stages array to translate</param>
/// <returns>The translator context of the next stage, or null if inexistent</returns>
private static TranslatorContext GetNextStageContext(TranslatorContext[] stages, int stageIndex)
{
for (int nextStageIndex = stageIndex + 1; nextStageIndex < stages.Length; nextStageIndex++)
{
if (stages[nextStageIndex] != null)
{
return stages[nextStageIndex];
}
}
return null;
}
/// <summary>
/// Translates a previously generated translator context to something that the host API accepts.
/// </summary>
/// <param name="dumper">Optional shader code dumper</param>
/// <param name="memoryManager">Memory manager used to access the GPU memory where the shader is located</param>
/// <param name="currentStage">Translator context of the stage to be translated</param>
/// <param name="nextStage">Translator context of the next active stage, if existent</param>
/// <param name="vertexA">Optional translator context of the shader that should be combined</param>
/// <returns>Compiled graphics shader code</returns>
private static ShaderCodeHolder TranslateShader(
ShaderDumper dumper,
MemoryManager memoryManager,
TranslatorContext currentStage,
TranslatorContext nextStage,
TranslatorContext vertexA)
{
if (currentStage == null)
{
return null;
}
if (vertexA != null)
{
byte[] codeA = memoryManager.GetSpan(vertexA.Address, vertexA.Size).ToArray();
byte[] codeB = memoryManager.GetSpan(currentStage.Address, currentStage.Size).ToArray();
ShaderDumpPaths pathsA = default;
ShaderDumpPaths pathsB = default;
if (dumper != null)
{
pathsA = dumper.Dump(codeA, compute: false);
pathsB = dumper.Dump(codeB, compute: false);
}
ShaderProgram program = currentStage.Translate(out ShaderProgramInfo shaderProgramInfo, nextStage, vertexA);
pathsB.Prepend(program);
pathsA.Prepend(program);
return new ShaderCodeHolder(program, shaderProgramInfo, codeB, codeA);
}
else
{
byte[] code = memoryManager.GetSpan(currentStage.Address, currentStage.Size).ToArray();
ShaderDumpPaths paths = dumper?.Dump(code, currentStage.Stage == ShaderStage.Compute) ?? default;
ShaderProgram program = currentStage.Translate(out ShaderProgramInfo shaderProgramInfo, nextStage);
paths.Prepend(program);
return new ShaderCodeHolder(program, shaderProgramInfo, code);
}
}
/// <summary>
/// Disposes the shader cache, deleting all the cached shaders.
/// It's an error to use the shader cache after disposal.
/// </summary>
public void Dispose()
{
foreach (List<ShaderBundle> list in _cpPrograms.Values)
{
foreach (ShaderBundle bundle in list)
{
bundle.Dispose();
}
}
foreach (List<ShaderBundle> list in _gpPrograms.Values)
{
foreach (ShaderBundle bundle in list)
{
bundle.Dispose();
}
}
_cacheManager?.Dispose();
}
}
}