R/Ryujinx.Graphics.Gpu/Image/TexturePool.cs

603 lines
No EOL
24 KiB
C#

using Ryujinx.Common.Logging;
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Gpu.Memory;
using Ryujinx.Graphics.Texture;
using Ryujinx.Memory.Range;
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Threading;
namespace Ryujinx.Graphics.Gpu.Image
{
/// <summary>
/// Texture pool.
/// </summary>
class TexturePool : Pool<Texture, TextureDescriptor>, IPool<TexturePool>
{
/// <summary>
/// A request to dereference a texture from a pool.
/// </summary>
private struct DereferenceRequest
{
/// <summary>
/// Whether the dereference is due to a mapping change or not.
/// </summary>
public readonly bool IsRemapped;
/// <summary>
/// The texture being dereferenced.
/// </summary>
public readonly Texture Texture;
/// <summary>
/// The ID of the pool entry this reference belonged to.
/// </summary>
public readonly int ID;
/// <summary>
/// Create a dereference request for a texture with a specific pool ID, and remapped flag.
/// </summary>
/// <param name="isRemapped">Whether the dereference is due to a mapping change or not</param>
/// <param name="texture">The texture being dereferenced</param>
/// <param name="id">The ID of the pool entry, used to restore remapped textures</param>
private DereferenceRequest(bool isRemapped, Texture texture, int id)
{
IsRemapped = isRemapped;
Texture = texture;
ID = id;
}
/// <summary>
/// Create a dereference request for a texture removal.
/// </summary>
/// <param name="texture">The texture being removed</param>
/// <returns>A texture removal dereference request</returns>
public static DereferenceRequest Remove(Texture texture)
{
return new DereferenceRequest(false, texture, 0);
}
/// <summary>
/// Create a dereference request for a texture remapping with a specific pool ID.
/// </summary>
/// <param name="texture">The texture being remapped</param>
/// <param name="id">The ID of the pool entry, used to restore remapped textures</param>
/// <returns>A remap dereference request</returns>
public static DereferenceRequest Remap(Texture texture, int id)
{
return new DereferenceRequest(true, texture, id);
}
}
private readonly GpuChannel _channel;
private readonly ConcurrentQueue<DereferenceRequest> _dereferenceQueue = new ConcurrentQueue<DereferenceRequest>();
private TextureDescriptor _defaultDescriptor;
/// <summary>
/// Linked list node used on the texture pool cache.
/// </summary>
public LinkedListNode<TexturePool> CacheNode { get; set; }
/// <summary>
/// Timestamp used by the texture pool cache, updated on every use of this texture pool.
/// </summary>
public ulong CacheTimestamp { get; set; }
/// <summary>
/// Creates a new instance of the texture pool.
/// </summary>
/// <param name="context">GPU context that the texture pool belongs to</param>
/// <param name="channel">GPU channel that the texture pool belongs to</param>
/// <param name="address">Address of the texture pool in guest memory</param>
/// <param name="maximumId">Maximum texture ID of the texture pool (equal to maximum textures minus one)</param>
public TexturePool(GpuContext context, GpuChannel channel, ulong address, int maximumId) : base(context, channel.MemoryManager.Physical, address, maximumId)
{
_channel = channel;
}
/// <summary>
/// Gets the texture descripor and texture with the given ID with no bounds check or synchronization.
/// </summary>
/// <param name="id">ID of the texture. This is effectively a zero-based index</param>
/// <param name="texture">The texture with the given ID</param>
/// <returns>The texture descriptor with the given ID</returns>
private ref readonly TextureDescriptor GetInternal(int id, out Texture texture)
{
texture = Items[id];
ref readonly TextureDescriptor descriptor = ref GetDescriptorRef(id);
if (texture == null)
{
texture = PhysicalMemory.TextureCache.FindShortCache(descriptor);
if (texture == null)
{
TextureInfo info = GetInfo(descriptor, out int layerSize);
// The dereference queue can put our texture back on the cache.
if ((texture = ProcessDereferenceQueue(id)) != null)
{
return ref descriptor;
}
texture = PhysicalMemory.TextureCache.FindOrCreateTexture(_channel.MemoryManager, TextureSearchFlags.ForSampler, info, layerSize);
// If this happens, then the texture address is invalid, we can't add it to the cache.
if (texture == null)
{
return ref descriptor;
}
}
else
{
texture.SynchronizeMemory();
}
Items[id] = texture;
texture.IncrementReferenceCount(this, id, descriptor.UnpackAddress());
DescriptorCache[id] = descriptor;
}
else
{
// On the path above (texture not yet in the pool), memory is automatically synchronized on texture creation.
texture.SynchronizeMemory();
}
return ref descriptor;
}
/// <summary>
/// Gets the texture with the given ID.
/// </summary>
/// <param name="id">ID of the texture. This is effectively a zero-based index</param>
/// <returns>The texture with the given ID</returns>
public override Texture Get(int id)
{
if ((uint)id >= Items.Length)
{
return null;
}
if (SequenceNumber != Context.SequenceNumber)
{
SequenceNumber = Context.SequenceNumber;
SynchronizeMemory();
}
GetInternal(id, out Texture texture);
return texture;
}
/// <summary>
/// Gets the texture descriptor and texture with the given ID.
/// </summary>
/// <remarks>
/// This method assumes that the pool has been manually synchronized before doing binding.
/// </remarks>
/// <param name="id">ID of the texture. This is effectively a zero-based index</param>
/// <param name="texture">The texture with the given ID</param>
/// <returns>The texture descriptor with the given ID</returns>
public ref readonly TextureDescriptor GetForBinding(int id, out Texture texture)
{
if ((uint)id >= Items.Length)
{
texture = null;
return ref _defaultDescriptor;
}
// When getting for binding, assume the pool has already been synchronized.
return ref GetInternal(id, out texture);
}
/// <summary>
/// Checks if the pool was modified, and returns the last sequence number where a modification was detected.
/// </summary>
/// <returns>A number that increments each time a modification is detected</returns>
public int CheckModified()
{
if (SequenceNumber != Context.SequenceNumber)
{
SequenceNumber = Context.SequenceNumber;
SynchronizeMemory();
}
return ModifiedSequenceNumber;
}
/// <summary>
/// Forcibly remove a texture from this pool's items.
/// If deferred, the dereference will be queued to occur on the render thread.
/// </summary>
/// <param name="texture">The texture being removed</param>
/// <param name="id">The ID of the texture in this pool</param>
/// <param name="deferred">If true, queue the dereference to happen on the render thread, otherwise dereference immediately</param>
public void ForceRemove(Texture texture, int id, bool deferred)
{
var previous = Interlocked.Exchange(ref Items[id], null);
if (deferred)
{
if (previous != null)
{
_dereferenceQueue.Enqueue(DereferenceRequest.Remove(texture));
}
}
else
{
texture.DecrementReferenceCount();
}
}
/// <summary>
/// Queues a request to update a texture's mapping.
/// Mapping is updated later to avoid deleting the texture if it is still sparsely mapped.
/// </summary>
/// <param name="texture">Texture with potential mapping change</param>
/// <param name="id">ID in cache of texture with potential mapping change</param>
public void QueueUpdateMapping(Texture texture, int id)
{
if (Interlocked.Exchange(ref Items[id], null) == texture)
{
_dereferenceQueue.Enqueue(DereferenceRequest.Remap(texture, id));
}
}
/// <summary>
/// Process the dereference queue, decrementing the reference count for each texture in it.
/// This is used to ensure that texture disposal happens on the render thread.
/// </summary>
/// <param name="id">The ID of the entry that triggered this method</param>
/// <returns>Texture that matches the entry ID if it has been readded to the cache.</returns>
private Texture ProcessDereferenceQueue(int id = -1)
{
while (_dereferenceQueue.TryDequeue(out DereferenceRequest request))
{
Texture texture = request.Texture;
// Unmapped storage textures can swap their ranges. The texture must be storage with no views or dependencies.
// TODO: Would need to update ranges on views, or guarantee that ones where the range changes can be instantly deleted.
if (request.IsRemapped && texture.Group.Storage == texture && !texture.HasViews && !texture.Group.HasCopyDependencies)
{
// Has the mapping for this texture changed?
ref readonly TextureDescriptor descriptor = ref GetDescriptorRef(request.ID);
ulong address = descriptor.UnpackAddress();
MultiRange range = _channel.MemoryManager.GetPhysicalRegions(address, texture.Size);
// If the texture is not mapped at all, delete its reference.
if (range.Count == 1 && range.GetSubRange(0).Address == MemoryManager.PteUnmapped)
{
texture.DecrementReferenceCount();
continue;
}
Items[request.ID] = texture;
// Create a new pool reference, as the last one was removed on unmap.
texture.IncrementReferenceCount(this, request.ID, address);
texture.DecrementReferenceCount();
// Refetch the range. Changes since the last check could have been lost
// as the cache entry was not restored (required to queue mapping change).
range = _channel.MemoryManager.GetPhysicalRegions(address, texture.Size);
if (!range.Equals(texture.Range))
{
// Part of the texture was mapped or unmapped. Replace the range and regenerate tracking handles.
if (!_channel.MemoryManager.Physical.TextureCache.UpdateMapping(texture, range))
{
// Texture could not be remapped due to a collision, just delete it.
if (Interlocked.Exchange(ref Items[request.ID], null) != null)
{
// If this is null, a request was already queued to decrement reference.
texture.DecrementReferenceCount(this, request.ID);
}
continue;
}
}
if (request.ID == id)
{
return texture;
}
}
else
{
texture.DecrementReferenceCount();
}
}
return null;
}
/// <summary>
/// Implementation of the texture pool range invalidation.
/// </summary>
/// <param name="address">Start address of the range of the texture pool</param>
/// <param name="size">Size of the range being invalidated</param>
protected override void InvalidateRangeImpl(ulong address, ulong size)
{
ProcessDereferenceQueue();
ulong endAddress = address + size;
for (; address < endAddress; address += DescriptorSize)
{
int id = (int)((address - Address) / DescriptorSize);
Texture texture = Items[id];
if (texture != null)
{
ref TextureDescriptor cachedDescriptor = ref DescriptorCache[id];
ref readonly TextureDescriptor descriptor = ref GetDescriptorRefAddress(address);
// If the descriptors are the same, the texture is the same,
// we don't need to remove as it was not modified. Just continue.
if (descriptor.Equals(ref cachedDescriptor))
{
continue;
}
if (texture.HasOneReference())
{
_channel.MemoryManager.Physical.TextureCache.AddShortCache(texture, ref cachedDescriptor);
}
if (Interlocked.Exchange(ref Items[id], null) != null)
{
texture.DecrementReferenceCount(this, id);
}
}
}
}
/// <summary>
/// Gets texture information from a texture descriptor.
/// </summary>
/// <param name="descriptor">The texture descriptor</param>
/// <param name="layerSize">Layer size for textures using a sub-range of mipmap levels, otherwise 0</param>
/// <returns>The texture information</returns>
private TextureInfo GetInfo(in TextureDescriptor descriptor, out int layerSize)
{
int depthOrLayers = descriptor.UnpackDepth();
int levels = descriptor.UnpackLevels();
TextureMsaaMode msaaMode = descriptor.UnpackTextureMsaaMode();
int samplesInX = msaaMode.SamplesInX();
int samplesInY = msaaMode.SamplesInY();
int stride = descriptor.UnpackStride();
TextureDescriptorType descriptorType = descriptor.UnpackTextureDescriptorType();
bool isLinear = descriptorType == TextureDescriptorType.Linear;
Target target = descriptor.UnpackTextureTarget().Convert((samplesInX | samplesInY) != 1);
int width = target == Target.TextureBuffer ? descriptor.UnpackBufferTextureWidth() : descriptor.UnpackWidth();
int height = descriptor.UnpackHeight();
if (target == Target.Texture2DMultisample || target == Target.Texture2DMultisampleArray)
{
// This is divided back before the backend texture is created.
width *= samplesInX;
height *= samplesInY;
}
// We use 2D targets for 1D textures as that makes texture cache
// management easier. We don't know the target for render target
// and copies, so those would normally use 2D targets, which are
// not compatible with 1D targets. By doing that we also allow those
// to match when looking for compatible textures on the cache.
if (target == Target.Texture1D)
{
target = Target.Texture2D;
height = 1;
}
else if (target == Target.Texture1DArray)
{
target = Target.Texture2DArray;
height = 1;
}
uint format = descriptor.UnpackFormat();
bool srgb = descriptor.UnpackSrgb();
ulong gpuVa = descriptor.UnpackAddress();
if (!FormatTable.TryGetTextureFormat(format, srgb, out FormatInfo formatInfo))
{
if (gpuVa != 0 && (int)format > 0)
{
Logger.Error?.Print(LogClass.Gpu, $"Invalid texture format 0x{format:X} (sRGB: {srgb}).");
}
formatInfo = FormatInfo.Default;
}
int gobBlocksInY = descriptor.UnpackGobBlocksInY();
int gobBlocksInZ = descriptor.UnpackGobBlocksInZ();
int gobBlocksInTileX = descriptor.UnpackGobBlocksInTileX();
layerSize = 0;
int minLod = descriptor.UnpackBaseLevel();
int maxLod = descriptor.UnpackMaxLevelInclusive();
// Linear textures don't support mipmaps, so we don't handle this case here.
if ((minLod != 0 || maxLod + 1 != levels) && target != Target.TextureBuffer && !isLinear)
{
int depth = TextureInfo.GetDepth(target, depthOrLayers);
int layers = TextureInfo.GetLayers(target, depthOrLayers);
SizeInfo sizeInfo = SizeCalculator.GetBlockLinearTextureSize(
width,
height,
depth,
levels,
layers,
formatInfo.BlockWidth,
formatInfo.BlockHeight,
formatInfo.BytesPerPixel,
gobBlocksInY,
gobBlocksInZ,
gobBlocksInTileX);
layerSize = sizeInfo.LayerSize;
if (minLod != 0 && minLod < levels)
{
// If the base level is not zero, we additionally add the mip level offset
// to the address, this allows the texture manager to find the base level from the
// address if there is a overlapping texture on the cache that can contain the new texture.
gpuVa += (ulong)sizeInfo.GetMipOffset(minLod);
width = Math.Max(1, width >> minLod);
height = Math.Max(1, height >> minLod);
if (target == Target.Texture3D)
{
depthOrLayers = Math.Max(1, depthOrLayers >> minLod);
}
(gobBlocksInY, gobBlocksInZ) = SizeCalculator.GetMipGobBlockSizes(height, depth, formatInfo.BlockHeight, gobBlocksInY, gobBlocksInZ);
}
levels = (maxLod - minLod) + 1;
}
SwizzleComponent swizzleR = descriptor.UnpackSwizzleR().Convert();
SwizzleComponent swizzleG = descriptor.UnpackSwizzleG().Convert();
SwizzleComponent swizzleB = descriptor.UnpackSwizzleB().Convert();
SwizzleComponent swizzleA = descriptor.UnpackSwizzleA().Convert();
DepthStencilMode depthStencilMode = GetDepthStencilMode(
formatInfo.Format,
swizzleR,
swizzleG,
swizzleB,
swizzleA);
if (formatInfo.Format.IsDepthOrStencil())
{
swizzleR = SwizzleComponent.Red;
swizzleG = SwizzleComponent.Red;
swizzleB = SwizzleComponent.Red;
if (depthStencilMode == DepthStencilMode.Depth)
{
swizzleA = SwizzleComponent.One;
}
else
{
swizzleA = SwizzleComponent.Red;
}
}
return new TextureInfo(
gpuVa,
width,
height,
depthOrLayers,
levels,
samplesInX,
samplesInY,
stride,
isLinear,
gobBlocksInY,
gobBlocksInZ,
gobBlocksInTileX,
target,
formatInfo,
depthStencilMode,
swizzleR,
swizzleG,
swizzleB,
swizzleA);
}
/// <summary>
/// Gets the texture depth-stencil mode, based on the swizzle components of each color channel.
/// The depth-stencil mode is determined based on how the driver sets those parameters.
/// </summary>
/// <param name="format">The format of the texture</param>
/// <param name="components">The texture swizzle components</param>
/// <returns>The depth-stencil mode</returns>
private static DepthStencilMode GetDepthStencilMode(Format format, params SwizzleComponent[] components)
{
// R = Depth, G = Stencil.
// On 24-bits depth formats, this is inverted (Stencil is R etc).
// NVN setup:
// For depth, A is set to 1.0f, the other components are set to Depth.
// For stencil, all components are set to Stencil.
SwizzleComponent component = components[0];
for (int index = 1; index < 4 && !IsRG(component); index++)
{
component = components[index];
}
if (!IsRG(component))
{
return DepthStencilMode.Depth;
}
if (format == Format.D24UnormS8Uint)
{
return component == SwizzleComponent.Red
? DepthStencilMode.Stencil
: DepthStencilMode.Depth;
}
else
{
return component == SwizzleComponent.Red
? DepthStencilMode.Depth
: DepthStencilMode.Stencil;
}
}
/// <summary>
/// Checks if the swizzle component is equal to the red or green channels.
/// </summary>
/// <param name="component">The swizzle component to check</param>
/// <returns>True if the swizzle component is equal to the red or green, false otherwise</returns>
private static bool IsRG(SwizzleComponent component)
{
return component == SwizzleComponent.Red ||
component == SwizzleComponent.Green;
}
/// <summary>
/// Decrements the reference count of the texture.
/// This indicates that the texture pool is not using it anymore.
/// </summary>
/// <param name="item">The texture to be deleted</param>
protected override void Delete(Texture item)
{
item?.DecrementReferenceCount(this);
}
public override void Dispose()
{
ProcessDereferenceQueue();
base.Dispose();
}
}
}