R/Ryujinx.Graphics.Gpu/Image/AutoDeleteCache.cs
riperiperi b4d8d893a4
Memory Read/Write Tracking using Region Handles (#1272)
* WIP Range Tracking

- Texture invalidation seems to have large problems
- Buffer/Pool invalidation may have problems
- Mirror memory tracking puts an additional `add` in compiled code, we likely just want to make HLE access slower if this is the final solution.
- Native project is in the messiest possible location.
- [HACK] JIT memory access always uses native "fast" path
- [HACK] Trying some things with texture invalidation and views.

It works :)

Still a few hacks, messy things, slow things

More work in progress stuff (also move to memory project)

Quite a bit faster now.
- Unmapping GPU VA and CPU VA will now correctly update write tracking regions, and invalidate textures for the former.
- The Virtual range list is now non-overlapping like the physical one.
- Fixed some bugs where regions could leak.
- Introduced a weird bug that I still need to track down (consistent invalid buffer in MK8 ribbon road)

Move some stuff.

I think we'll eventually just put the dll and so for this in a nuget package.

Fix rebase.

[WIP] MultiRegionHandle variable size ranges

- Avoid reprotecting regions that change often (needs some tweaking)
- There's still a bug in buffers, somehow.
- Might want different api for minimum granularity

Fix rebase issue

Commit everything needed for software only tracking.

Remove native components.

Remove more native stuff.

Cleanup

Use a separate window for the background context, update opentk. (fixes linux)

Some experimental changes

Should get things working up to scratch - still need to try some things with flush/modification and res scale.

Include address with the region action.

Initial work to make range tracking work

Still a ton of bugs

Fix some issues with the new stuff.

* Fix texture flush instability

There's still some weird behaviour, but it's much improved without this. (textures with cpu modified data were flushing over it)

* Find the destination texture for Buffer->Texture full copy

Greatly improves performance for nvdec videos (with range tracking)

* Further improve texture tracking

* Disable Memory Tracking for view parents

This is a temporary approach to better match behaviour on master (where invalidations would be soaked up by views, rather than trigger twice)

The assumption is that when views are created to a texture, they will cover all of its data anyways. Of course, this can easily be improved in future.

* Introduce some tracking tests.

WIP

* Complete base tests.

* Add more tests for multiregion, fix existing test.

* Cleanup Part 1

* Remove unnecessary code from memory tracking

* Fix some inconsistencies with 3D texture rule.

* Add dispose tests.

* Use a background thread for the background context.

Rather than setting and unsetting a context as current, doing the work on a dedicated thread with signals seems to be a bit faster.

Also nerf the multithreading test a bit.

* Copy to texture with matching alignment

This extends the copy to work for some videos with unusual size, such as tutorial videos in SMO. It will only occur if the destination texture already exists at XCount size.

* Track reads for buffer copies. Synchronize new buffers before copying overlaps.

* Remove old texture flushing mechanisms.

Range tracking all the way, baby.

* Wake the background thread when disposing.

Avoids a deadlock when games are closed.

* Address Feedback 1

* Separate TextureCopy instance for background thread

Also `BackgroundContextWorker.InBackground` for a more sensible idenfifier for if we're in a background thread.

* Add missing XML docs.

* Address Feedback

* Maybe I should start drinking coffee.

* Some more feedback.

* Remove flush warning, Refocus window after making background context
2020-10-16 17:18:35 -03:00

118 lines
No EOL
3.8 KiB
C#

using Ryujinx.Common.Logging;
using System.Collections;
using System.Collections.Generic;
namespace Ryujinx.Graphics.Gpu.Image
{
/// <summary>
/// A texture cache that automatically removes older textures that are not used for some time.
/// The cache works with a rotated list with a fixed size. When new textures are added, the
/// old ones at the bottom of the list are deleted.
/// </summary>
class AutoDeleteCache : IEnumerable<Texture>
{
private const int MaxCapacity = 2048;
private readonly LinkedList<Texture> _textures;
/// <summary>
/// Creates a new instance of the automatic deletion cache.
/// </summary>
public AutoDeleteCache()
{
_textures = new LinkedList<Texture>();
}
/// <summary>
/// Adds a new texture to the cache, even if the texture added is already on the cache.
/// </summary>
/// <remarks>
/// Using this method is only recommended if you know that the texture is not yet on the cache,
/// otherwise it would store the same texture more than once.
/// </remarks>
/// <param name="texture">The texture to be added to the cache</param>
public void Add(Texture texture)
{
texture.IncrementReferenceCount();
texture.CacheNode = _textures.AddLast(texture);
if (_textures.Count > MaxCapacity)
{
Texture oldestTexture = _textures.First.Value;
oldestTexture.SynchronizeMemory();
if (oldestTexture.IsModified && !oldestTexture.ConsumeModified())
{
// The texture must be flushed if it falls out of the auto delete cache.
// Flushes out of the auto delete cache do not trigger write tracking,
// as it is expected that other overlapping textures exist that have more up-to-date contents.
oldestTexture.Flush(false);
}
_textures.RemoveFirst();
oldestTexture.DecrementReferenceCount();
oldestTexture.CacheNode = null;
}
}
/// <summary>
/// Adds a new texture to the cache, or just moves it to the top of the list if the
/// texture is already on the cache.
/// </summary>
/// <remarks>
/// Moving the texture to the top of the list prevents it from being deleted,
/// as the textures on the bottom of the list are deleted when new ones are added.
/// </remarks>
/// <param name="texture">The texture to be added, or moved to the top</param>
public void Lift(Texture texture)
{
if (texture.CacheNode != null)
{
if (texture.CacheNode != _textures.Last)
{
_textures.Remove(texture.CacheNode);
texture.CacheNode = _textures.AddLast(texture);
}
}
else
{
Add(texture);
}
}
public bool Remove(Texture texture, bool flush)
{
if (texture.CacheNode == null)
{
return false;
}
// Remove our reference to this texture.
if (flush && texture.IsModified)
{
texture.Flush(false);
}
_textures.Remove(texture.CacheNode);
texture.CacheNode = null;
return texture.DecrementReferenceCount();
}
public IEnumerator<Texture> GetEnumerator()
{
return _textures.GetEnumerator();
}
IEnumerator IEnumerable.GetEnumerator()
{
return _textures.GetEnumerator();
}
}
}