1
0
Fork 0
forked from NaxdyOrg/NaxGCC-FW
NaxGCC-FW/src/gcc_hid.rs

502 lines
16 KiB
Rust

/**
* Communication with the console / PC over USB HID.
* Includes the HID report descriptor, and the GcReport struct.
*/
use core::default::Default;
use defmt::{debug, info, trace, warn, Format};
use embassy_futures::join::join;
use embassy_rp::{
peripherals::{PIN_25, PIN_29, PWM_CH4, PWM_CH6, USB},
pwm::Pwm,
usb::Driver,
};
use embassy_sync::{blocking_mutex::raw::CriticalSectionRawMutex, mutex::Mutex, signal::Signal};
use embassy_time::{Duration, Instant, Ticker, Timer};
use embassy_usb::{
class::hid::{HidReaderWriter, ReportId, RequestHandler, State},
control::OutResponse,
Builder, Handler,
};
use libm::powf;
use packed_struct::{derive::PackedStruct, PackedStruct};
use crate::{config::InputConsistencyMode, input::CHANNEL_GCC_STATE};
static SIGNAL_RUMBLE: Signal<CriticalSectionRawMutex, bool> = Signal::new();
/// We could turn the config change signal into a PubSubChannel instead, but that
/// would just transmit unnecessary amounts of data.
pub static SIGNAL_CHANGE_RUMBLE_STRENGTH: Signal<CriticalSectionRawMutex, u8> = Signal::new();
/// Only dispatched ONCE after powerup, to determine how to advertise itself via USB.
pub static MUTEX_INPUT_CONSISTENCY_MODE: Mutex<
CriticalSectionRawMutex,
Option<InputConsistencyMode>,
> = Mutex::new(None);
#[rustfmt::skip]
pub const GCC_REPORT_DESCRIPTOR: &[u8] = &[
0x05, 0x01, // Usage Page (Generic Desktop Ctrls)
0x09, 0x05, // Usage (Game Pad)
0xA1, 0x01, // Collection (Application)
0xA1, 0x03, // Collection (Report)
0x85, 0x11, // Report ID (17)
0x19, 0x00, // Usage Minimum (Undefined)
0x2A, 0xFF, 0x00, // Usage Maximum (0xFF)
0x15, 0x00, // Logical Minimum (0)
0x26, 0xFF, 0x00, // Logical Maximum (255)
0x75, 0x08, // Report Size (8)
0x95, 0x05, // Report Count (5)
0x91, 0x00, // Output (Data,Array,Abs,No Wrap,Linear,Preferred State,No Null Position,Non-volatile)
0xC0, // End Collection
0xA1, 0x03, // Collection (Report)
0x85, 0x21, // Report ID (33)
0x05, 0x00, // Usage Page (Undefined)
0x15, 0x00, // Logical Minimum (0)
0x25, 0xFF, // Logical Maximum (-1)
0x75, 0x08, // Report Size (8)
0x95, 0x01, // Report Count (1)
0x81, 0x02, // Input (Data,Var,Abs,No Wrap,Linear,Preferred State,No Null Position)
0x05, 0x09, // Usage Page (Button)
0x19, 0x01, // Usage Minimum (0x01)
0x29, 0x08, // Usage Maximum (0x08)
0x15, 0x00, // Logical Minimum (0)
0x25, 0x01, // Logical Maximum (1)
0x75, 0x08, // Report Size (8)
0x95, 0x02, // Report Count (2)
0x81, 0x02, // Input (Data,Var,Abs,No Wrap,Linear,Preferred State,No Null Position)
0x05, 0x01, // Usage Page (Generic Desktop Ctrls)
0x09, 0x30, // Usage (X)
0x09, 0x31, // Usage (Y)
0x09, 0x32, // Usage (Z)
0x09, 0x33, // Usage (Rx)
0x09, 0x34, // Usage (Ry)
0x09, 0x35, // Usage (Rz)
0x15, 0x81, // Logical Minimum (-127)
0x25, 0x7F, // Logical Maximum (127)
0x75, 0x08, // Report Size (8)
0x95, 0x06, // Report Count (6)
0x81, 0x02, // Input (Data,Var,Abs,No Wrap,Linear,Preferred State,No Null Position)
0xC0, // End Collection
0xA1, 0x03, // Collection (Report)
0x85, 0x13, // Report ID (19)
0x19, 0x00, // Usage Minimum (Undefined)
0x2A, 0xFF, 0x00, // Usage Maximum (0xFF)
0x15, 0x00, // Logical Minimum (0)
0x26, 0xFF, 0x00, // Logical Maximum (255)
0x75, 0x08, // Report Size (8)
0x95, 0x01, // Report Count (1)
0x91, 0x00, // Output (Data,Array,Abs,No Wrap,Linear,Preferred State,No Null Position,Non-volatile)
0xC0, // End Collection
0xC0, // End Collection
];
#[derive(Clone, Copy, Debug, PartialEq, Eq, Default, PackedStruct, Format)]
#[packed_struct(bit_numbering = "lsb0", size_bytes = "1")]
pub struct Buttons1 {
#[packed_field(bits = "0")]
pub button_a: bool,
#[packed_field(bits = "1")]
pub button_b: bool,
#[packed_field(bits = "2")]
pub button_x: bool,
#[packed_field(bits = "3")]
pub button_y: bool,
#[packed_field(bits = "4")]
pub dpad_left: bool,
#[packed_field(bits = "5")]
pub dpad_right: bool,
#[packed_field(bits = "6")]
pub dpad_down: bool,
#[packed_field(bits = "7")]
pub dpad_up: bool,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Default, PackedStruct, Format)]
#[packed_struct(bit_numbering = "lsb0", size_bytes = "1")]
pub struct Buttons2 {
#[packed_field(bits = "0")]
pub button_start: bool,
#[packed_field(bits = "1")]
pub button_z: bool,
#[packed_field(bits = "2")]
pub button_r: bool,
#[packed_field(bits = "3")]
pub button_l: bool,
#[packed_field(bits = "4..=7")]
pub blank1: u8,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, PackedStruct, Format)]
#[packed_struct(bit_numbering = "msb0", size_bytes = "8")]
pub struct GcReport {
#[packed_field(bits = "0..=7")]
pub buttons_1: Buttons1,
#[packed_field(bits = "8..=15")]
pub buttons_2: Buttons2,
#[packed_field(bits = "16..=23")]
pub stick_x: u8,
#[packed_field(bits = "24..=31")]
pub stick_y: u8,
#[packed_field(bits = "32..=39")]
pub cstick_x: u8,
#[packed_field(bits = "40..=47")]
pub cstick_y: u8,
#[packed_field(bits = "48..=55")]
pub trigger_l: u8,
#[packed_field(bits = "56..=63")]
pub trigger_r: u8,
}
impl Default for GcReport {
fn default() -> Self {
Self {
buttons_1: Buttons1::default(),
buttons_2: Buttons2::default(),
stick_x: 127,
stick_y: 127,
cstick_x: 127,
cstick_y: 127,
trigger_l: 0,
trigger_r: 0,
}
}
}
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[repr(C, align(8))]
pub struct RawConsoleReport {
pub packet: [u8; 64],
}
impl Default for RawConsoleReport {
fn default() -> Self {
Self { packet: [0u8; 64] }
}
}
struct GccRequestHandler {}
impl RequestHandler for GccRequestHandler {
fn get_report(&self, id: ReportId, _buf: &mut [u8]) -> Option<usize> {
info!("Get report for {:?}", id);
None
}
fn set_report(&self, id: ReportId, data: &[u8]) -> OutResponse {
info!("Set report for {:?}: {=[u8]}", id, data);
OutResponse::Accepted
}
fn set_idle_ms(&self, id: Option<ReportId>, dur: u32) {
info!("Set idle rate for {:?} to {:?}", id, dur);
}
fn get_idle_ms(&self, id: Option<ReportId>) -> Option<u32> {
info!("Get idle rate for {:?}", id);
None
}
}
fn get_gcinput_hid_report(input_state: &GcReport) -> [u8; 37] {
static mut GC_FIRST: bool = false;
let mut buffer = [0u8; 37];
buffer[0] = 0x21;
buffer[1] |= 0x14;
let data = input_state.pack().expect("Failed to pack GC input data");
if unsafe { !GC_FIRST } {
buffer[1] |= 0x04;
buffer[10] |= 0x04;
buffer[19] |= 0x04;
buffer[28] |= 0x04;
unsafe { GC_FIRST = true };
} else {
// controller in "port 1"
buffer[2..=9].copy_from_slice(&data[0..=7]);
}
buffer
}
struct MyDeviceHandler {
configured: bool,
}
impl MyDeviceHandler {
fn new() -> Self {
MyDeviceHandler { configured: false }
}
}
impl Handler for MyDeviceHandler {
fn enabled(&mut self, enabled: bool) {
self.configured = true;
if enabled {
info!("Device enabled");
} else {
info!("Device disabled");
}
}
fn reset(&mut self) {
self.configured = false;
info!("Bus reset, the Vbus current limit is 100mA");
}
fn addressed(&mut self, addr: u8) {
self.configured = false;
info!("USB address set to: {}", addr);
}
fn configured(&mut self, configured: bool) {
self.configured = configured;
if configured {
info!(
"Device configured, it may now draw up to the configured current limit from Vbus."
)
} else {
info!("Device is no longer configured, the Vbus current limit is 100mA.");
}
}
}
#[embassy_executor::task]
pub async fn usb_transfer_task(raw_serial: [u8; 8], driver: Driver<'static, USB>) {
let input_consistency_mode = {
while MUTEX_INPUT_CONSISTENCY_MODE.lock().await.is_none() {
Timer::after(Duration::from_millis(100)).await;
}
MUTEX_INPUT_CONSISTENCY_MODE.lock().await.unwrap()
};
let mut serial_buffer = [0u8; 64];
let serial = format_no_std::show(
&mut serial_buffer,
format_args!(
"{:02X}{:02X}{:02X}{:02X}{:02X}{:02X}{:02X}{:02X}",
raw_serial[0],
raw_serial[1],
raw_serial[2],
raw_serial[3],
raw_serial[4],
raw_serial[5],
raw_serial[6],
raw_serial[7]
),
)
.unwrap();
info!("Detected flash with unique serial number {}", serial);
trace!("Start of config");
let mut usb_config = embassy_usb::Config::new(0x057e, 0x0337);
usb_config.manufacturer = Some("Naxdy");
usb_config.product = Some(match input_consistency_mode {
InputConsistencyMode::Original => "NaxGCC (OG Mode)",
InputConsistencyMode::ConsistencyHack => "NaxGCC (Consistency Mode)",
InputConsistencyMode::SuperHack => "NaxGCC (SuperHack Mode)",
});
usb_config.serial_number = Some(serial);
usb_config.max_power = 200;
usb_config.max_packet_size_0 = 64;
usb_config.device_class = 0;
usb_config.device_protocol = 0;
usb_config.self_powered = false;
usb_config.device_sub_class = 0;
usb_config.supports_remote_wakeup = true;
let mut device_descriptor = [0; 256];
let mut config_descriptor = [0; 256];
let mut bos_descriptor = [0; 256];
let mut msos_descriptor = [0; 256];
let mut control_buf = [0; 64];
let request_handler = GccRequestHandler {};
let mut device_handler = MyDeviceHandler::new();
let mut state = State::new();
let mut builder = Builder::new(
driver,
usb_config,
&mut device_descriptor,
&mut config_descriptor,
&mut bos_descriptor,
&mut msos_descriptor,
&mut control_buf,
);
builder.handler(&mut device_handler);
let hid_config = embassy_usb::class::hid::Config {
report_descriptor: GCC_REPORT_DESCRIPTOR,
request_handler: Some(&request_handler),
poll_ms: 8,
max_packet_size_in: 37,
max_packet_size_out: 5,
};
let hid = HidReaderWriter::<_, 5, 37>::new(&mut builder, &mut state, hid_config);
let mut usb = builder.build();
let usb_fut = async {
loop {
usb.run_until_suspend().await;
debug!("Suspended");
usb.wait_resume().await;
debug!("RESUMED!");
}
};
let (mut reader, mut writer) = hid.split();
let in_fut = async {
let mut gcc_subscriber = CHANNEL_GCC_STATE.subscriber().unwrap();
let mut last_report_time = Instant::now();
let mut last_loop_time = Instant::now();
let mut ticker = Ticker::every(Duration::from_micros(8333));
loop {
// This is what we like to call a "hack".
// It forces reports to be sent at least every 8.33ms instead of every 8ms.
// 8.33ms is a multiple of the game's frame interval (16.66ms), so if we
// send a report every 8.33ms, it should (in theory) ensure (close to)
// 100% input accuracy.
//
// From the console's perspective, we are basically a laggy adapter, taking
// a minimum of 333 extra us to send a report every time it's polled, but it
// works to our advantage.
match input_consistency_mode {
InputConsistencyMode::SuperHack => {
// In SuperHack mode, we send reports only if the state changes, but
// in order to not mess up very fast inputs (like sticks travelling, for example),
// we still need a delay that is higher than the polling rate, but ideally also
// a multiple/divisor of the game's frame rate.
// This doesn't quite hit the 8.33ms every time though, so inputs during lots of
// stick movement might still be a bit off.
Timer::at(last_loop_time + Duration::from_micros(8333)).await;
last_loop_time = Instant::now();
}
InputConsistencyMode::ConsistencyHack => {
// Ticker better maintains a consistent interval than Timer, so
// we prefer it for consistency mode, where we send reports regularly.
ticker.next().await;
}
InputConsistencyMode::Original => {}
}
match writer
.write(&{
let state = gcc_subscriber.next_message_pure().await;
let report = get_gcinput_hid_report(&state);
trace!("Report Written: {:08b}", report);
report
})
.await
{
Ok(()) => {
let currtime = Instant::now();
let polltime = currtime.duration_since(last_report_time);
let micros = polltime.as_micros();
debug!("Report written in {}us", micros);
// If we're sending reports too fast in regular consistency mode, reset the ticker.
// This might happen right after plug-in, or after suspend.
if input_consistency_mode == InputConsistencyMode::ConsistencyHack
&& micros < 8150
{
ticker.reset()
}
last_report_time = currtime;
}
Err(e) => warn!("Failed to send report: {:?}", e),
}
}
};
let out_fut = async {
loop {
trace!("Readery loop");
let mut buf = [0u8; 5];
match reader.read(&mut buf).await {
Ok(_e) => {
debug!("READ SOMETHIN: {:08b}", buf);
SIGNAL_RUMBLE.signal((buf[1] & 0x01) != 0);
}
Err(e) => {
warn!("Failed to read: {:?}", e);
}
}
}
};
let usb_fut_wrapped = async {
usb_fut.await;
debug!("USB FUT DED");
};
join(usb_fut_wrapped, join(in_fut, out_fut)).await;
}
fn calc_rumble_power(strength: u8) -> u16 {
if strength > 0 {
powf(2.0, 7.0 + ((strength as f32 - 3.0) / 8.0)) as u16
} else {
0
}
}
#[embassy_executor::task]
pub async fn rumble_task(
pin_rumble: PIN_25,
pin_brake: PIN_29,
pwm_ch_rumble: PWM_CH4,
pwm_ch_brake: PWM_CH6,
) {
let mut rumble_config: embassy_rp::pwm::Config = Default::default();
rumble_config.top = 255;
rumble_config.enable = true;
rumble_config.compare_b = 0;
let mut brake_config = rumble_config.clone();
brake_config.compare_b = 255;
let mut pwm_rumble = Pwm::new_output_b(pwm_ch_rumble, pin_rumble, rumble_config.clone());
let mut pwm_brake = Pwm::new_output_b(pwm_ch_brake, pin_brake, brake_config.clone());
let mut rumble_power = {
let strength = SIGNAL_CHANGE_RUMBLE_STRENGTH.wait().await;
calc_rumble_power(strength)
};
loop {
let new_rumble_status = SIGNAL_RUMBLE.wait().await;
debug!("Received rumble signal: {}", new_rumble_status);
if let Some(new_strength) = SIGNAL_CHANGE_RUMBLE_STRENGTH.try_take() {
rumble_power = calc_rumble_power(new_strength);
}
if new_rumble_status {
rumble_config.compare_b = rumble_power;
brake_config.compare_b = 0;
pwm_rumble.set_config(&rumble_config);
pwm_brake.set_config(&brake_config);
} else {
rumble_config.compare_b = 0;
brake_config.compare_b = 255;
pwm_rumble.set_config(&rumble_config);
pwm_brake.set_config(&brake_config);
}
}
}