Archived
1
0
Fork 0
forked from Mirror/Ryujinx
This repository has been archived on 2024-10-11. You can view files and clone it, but cannot push or open issues or pull requests.
jinx/Ryujinx.Tests/Cpu/CpuTest32.cs
LDj3SNuD 5e724cf24e
Add Profiled Persistent Translation Cache. (#769)
* Delete DelegateTypes.cs

* Delete DelegateCache.cs

* Add files via upload

* Update Horizon.cs

* Update Program.cs

* Update MainWindow.cs

* Update Aot.cs

* Update RelocEntry.cs

* Update Translator.cs

* Update MemoryManager.cs

* Update InstEmitMemoryHelper.cs

* Update Delegates.cs

* Nit.

* Nit.

* Nit.

* 10 fewer MSIL bytes for us

* Add comment. Nits.

* Update Translator.cs

* Update Aot.cs

* Nits.

* Opt..

* Opt..

* Opt..

* Opt..

* Allow to change compression level.

* Update MemoryManager.cs

* Update Translator.cs

* Manage corner cases during the save phase. Nits.

* Update Aot.cs

* Translator response tweak for Aot disabled. Nit.

* Nit.

* Nits.

* Create DelegateHelpers.cs

* Update Delegates.cs

* Nit.

* Nit.

* Nits.

* Fix due to #784.

* Fixes due to #757 & #841.

* Fix due to #846.

* Fix due to #847.

* Use MethodInfo for managed method calls.

Use IR methods instead of managed methods about Max/Min (S/U).
Follow-ups & Nits.

* Add missing exception messages.

Reintroduce slow path for Fmov_Vi.
Implement slow path for Fmov_Si.

* Switch to the new folder structure.

Nits.

* Impl. index-based relocation information. Impl. cache file version field.

* Nit.

* Address gdkchan comments.

Mainly:
- fixed cache file corruption issue on exit; - exposed a way to disable AOT on the GUI.

* Address AcK77 comment.

* Address Thealexbarney, jduncanator & emmauss comments.

Header magic, CpuId (FI) & Aot -> Ptc.

* Adaptation to the new application reloading system.

Improvements to the call system of managed methods.
Follow-ups.
Nits.

* Get the same boot times as on master when PTC is disabled.

* Profiled Aot.

* A32 support (#897).

* #975 support (1 of 2).

* #975 support (2 of 2).

* Rebase fix & nits.

* Some fixes and nits (still one bug left).

* One fix & nits.

* Tests fix (by gdk) & nits.

* Support translations not only in high quality and rejit.

Nits.

* Added possibility to skip translations and continue execution, using `ESC` key.

* Update SettingsWindow.cs

* Update GLRenderer.cs

* Update Ptc.cs

* Disabled Profiled PTC by default as requested in the past by gdk.

* Fix rejit bug. Increased number of parallel translations. Add stack unwinding stuffs support (1 of 2).

Nits.

* Add stack unwinding stuffs support (2 of 2). Tuned number of parallel translations.

* Restored the ability to assemble jumps with 8-bit offset when Profiled PTC is disabled or during profiling.

Modifications due to rebase.
Nits.

* Limited profiling of the functions to be translated to the addresses belonging to the range of static objects only.

* Nits.

* Nits.

* Update Delegates.cs

* Nit.

* Update InstEmitSimdArithmetic.cs

* Address riperiperi comments.

* Fixed the issue of unjustifiably longer boot times at the second boot than at the first boot, measured at the same time or reference point and with the same number of translated functions.

* Implemented a simple redundant load/save mechanism.

Halved the value of Decoder.MaxInstsPerFunction more appropriate for the current performance of the Translator.
Replaced by Logger.PrintError to Logger.PrintDebug in TexturePool.cs about the supposed invalid texture format to avoid the spawn of the log.
Nits.

* Nit.

Improved Logger.PrintError in TexturePool.cs to avoid log spawn.
Added missing code for FZ handling (in output) for fp max/min instructions (slow paths).

* Add configuration migration for PTC

Co-authored-by: Thog <me@thog.eu>
2020-06-16 20:28:02 +02:00

536 lines
19 KiB
C#

using ARMeilleure.State;
using NUnit.Framework;
using Ryujinx.Cpu;
using Ryujinx.Memory;
using Ryujinx.Tests.Unicorn;
using System;
using MemoryPermission = Ryujinx.Tests.Unicorn.MemoryPermission;
namespace Ryujinx.Tests.Cpu
{
[TestFixture]
public class CpuTest32
{
private uint _currAddress;
private ulong _size;
private uint _entryPoint;
private MemoryBlock _ram;
private MemoryManager _memory;
private ExecutionContext _context;
private CpuContext _cpuContext;
private static bool _unicornAvailable;
private UnicornAArch32 _unicornEmu;
private bool usingMemory;
static CpuTest32()
{
_unicornAvailable = UnicornAArch32.IsAvailable();
if (!_unicornAvailable)
{
Console.WriteLine("WARNING: Could not find Unicorn.");
}
}
[SetUp]
public void Setup()
{
_currAddress = 0x1000;
_size = 0x1000;
_entryPoint = _currAddress;
_ram = new MemoryBlock(_size * 2);
_memory = new MemoryManager(_ram, 1UL << 16);
_memory.Map(_currAddress, 0, _size * 2);
_context = CpuContext.CreateExecutionContext();
_context.IsAarch32 = true;
_cpuContext = new CpuContext(_memory);
if (_unicornAvailable)
{
_unicornEmu = new UnicornAArch32();
_unicornEmu.MemoryMap(_currAddress, _size, MemoryPermission.READ | MemoryPermission.EXEC);
_unicornEmu.MemoryMap(_currAddress + _size, _size, MemoryPermission.READ | MemoryPermission.WRITE);
_unicornEmu.PC = _entryPoint;
}
}
[TearDown]
public void Teardown()
{
_memory.Dispose();
_context.Dispose();
_ram.Dispose();
_memory = null;
_context = null;
_cpuContext = null;
_unicornEmu = null;
}
protected void Reset()
{
Teardown();
Setup();
}
protected void Opcode(uint opcode)
{
_memory.Write(_currAddress, opcode);
if (_unicornAvailable)
{
_unicornEmu.MemoryWrite32(_currAddress, opcode);
}
_currAddress += 4;
}
protected ExecutionContext GetContext() => _context;
protected void SetContext(uint r0 = 0,
uint r1 = 0,
uint r2 = 0,
uint r3 = 0,
uint sp = 0,
V128 v0 = default,
V128 v1 = default,
V128 v2 = default,
V128 v3 = default,
V128 v4 = default,
V128 v5 = default,
V128 v14 = default,
V128 v15 = default,
bool overflow = false,
bool carry = false,
bool zero = false,
bool negative = false,
int fpscr = 0)
{
_context.SetX(0, r0);
_context.SetX(1, r1);
_context.SetX(2, r2);
_context.SetX(3, r3);
_context.SetX(0xd, sp);
_context.SetV(0, v0);
_context.SetV(1, v1);
_context.SetV(2, v2);
_context.SetV(3, v3);
_context.SetV(4, v4);
_context.SetV(5, v5);
_context.SetV(14, v14);
_context.SetV(15, v15);
_context.SetPstateFlag(PState.VFlag, overflow);
_context.SetPstateFlag(PState.CFlag, carry);
_context.SetPstateFlag(PState.ZFlag, zero);
_context.SetPstateFlag(PState.NFlag, negative);
_context.Fpsr = FPSR.A32Mask & (FPSR)fpscr;
_context.Fpcr = FPCR.A32Mask & (FPCR)fpscr;
if (_unicornAvailable)
{
_unicornEmu.R[0] = r0;
_unicornEmu.R[1] = r1;
_unicornEmu.R[2] = r2;
_unicornEmu.R[3] = r3;
_unicornEmu.SP = sp;
_unicornEmu.Q[0] = V128ToSimdValue(v0);
_unicornEmu.Q[1] = V128ToSimdValue(v1);
_unicornEmu.Q[2] = V128ToSimdValue(v2);
_unicornEmu.Q[3] = V128ToSimdValue(v3);
_unicornEmu.Q[4] = V128ToSimdValue(v4);
_unicornEmu.Q[5] = V128ToSimdValue(v5);
_unicornEmu.Q[14] = V128ToSimdValue(v14);
_unicornEmu.Q[15] = V128ToSimdValue(v15);
_unicornEmu.OverflowFlag = overflow;
_unicornEmu.CarryFlag = carry;
_unicornEmu.ZeroFlag = zero;
_unicornEmu.NegativeFlag = negative;
_unicornEmu.Fpscr = fpscr;
}
}
protected void ExecuteOpcodes(bool runUnicorn = true)
{
_cpuContext.Execute(_context, _entryPoint);
if (_unicornAvailable && runUnicorn)
{
_unicornEmu.RunForCount((ulong)(_currAddress - _entryPoint - 4) / 4);
}
}
protected ExecutionContext SingleOpcode(uint opcode,
uint r0 = 0,
uint r1 = 0,
uint r2 = 0,
uint r3 = 0,
uint sp = 0,
V128 v0 = default,
V128 v1 = default,
V128 v2 = default,
V128 v3 = default,
V128 v4 = default,
V128 v5 = default,
V128 v14 = default,
V128 v15 = default,
bool overflow = false,
bool carry = false,
bool zero = false,
bool negative = false,
int fpscr = 0,
bool copyFpFlags = false,
bool runUnicorn = true)
{
Opcode(opcode);
if (copyFpFlags)
{
Opcode(0xeef1fa10);
}
Opcode(0xe12fff1e); // BX LR
SetContext(r0, r1, r2, r3, sp, v0, v1, v2, v3, v4, v5, v14, v15, overflow, carry, zero, negative, fpscr);
ExecuteOpcodes(runUnicorn);
return GetContext();
}
protected void SetWorkingMemory(byte[] data)
{
_memory.Write(0x2000, data);
if (_unicornAvailable)
{
_unicornEmu.MemoryWrite((ulong)(0x2000), data);
}
usingMemory = true; // When true, CompareAgainstUnicorn checks the working memory for equality too.
}
/// <summary>Rounding Mode control field.</summary>
public enum RMode
{
/// <summary>Round to Nearest mode.</summary>
Rn,
/// <summary>Round towards Plus Infinity mode.</summary>
Rp,
/// <summary>Round towards Minus Infinity mode.</summary>
Rm,
/// <summary>Round towards Zero mode.</summary>
Rz
};
/// <summary>Floating-point Control Register.</summary>
protected enum Fpcr
{
/// <summary>Rounding Mode control field.</summary>
RMode = 22,
/// <summary>Flush-to-zero mode control bit.</summary>
Fz = 24,
/// <summary>Default NaN mode control bit.</summary>
Dn = 25,
/// <summary>Alternative half-precision control bit.</summary>
Ahp = 26
}
/// <summary>Floating-point Status Register.</summary>
[Flags]
protected enum Fpsr
{
None = 0,
/// <summary>Invalid Operation cumulative floating-point exception bit.</summary>
Ioc = 1 << 0,
/// <summary>Divide by Zero cumulative floating-point exception bit.</summary>
Dzc = 1 << 1,
/// <summary>Overflow cumulative floating-point exception bit.</summary>
Ofc = 1 << 2,
/// <summary>Underflow cumulative floating-point exception bit.</summary>
Ufc = 1 << 3,
/// <summary>Inexact cumulative floating-point exception bit.</summary>
Ixc = 1 << 4,
/// <summary>Input Denormal cumulative floating-point exception bit.</summary>
Idc = 1 << 7,
/// <summary>Cumulative saturation bit.</summary>
Qc = 1 << 27,
/// <summary>NZCV flags</summary>
Nzcv = (1 << 28) | (1 << 29) | (1 << 30) | (1 << 31)
}
[Flags]
protected enum FpSkips
{
None = 0,
IfNaNS = 1,
IfNaND = 2,
IfUnderflow = 4,
IfOverflow = 8
}
protected enum FpTolerances
{
None,
UpToOneUlpsS,
UpToOneUlpsD
}
protected void CompareAgainstUnicorn(
Fpsr fpsrMask = Fpsr.None,
FpSkips fpSkips = FpSkips.None,
FpTolerances fpTolerances = FpTolerances.None)
{
if (!_unicornAvailable)
{
return;
}
if (fpSkips != FpSkips.None)
{
ManageFpSkips(fpSkips);
}
Assert.That(_context.GetX(0), Is.EqualTo(_unicornEmu.R[0]));
Assert.That(_context.GetX(1), Is.EqualTo(_unicornEmu.R[1]));
Assert.That(_context.GetX(2), Is.EqualTo(_unicornEmu.R[2]));
Assert.That(_context.GetX(3), Is.EqualTo(_unicornEmu.R[3]));
Assert.That(_context.GetX(4), Is.EqualTo(_unicornEmu.R[4]));
Assert.That(_context.GetX(5), Is.EqualTo(_unicornEmu.R[5]));
Assert.That(_context.GetX(6), Is.EqualTo(_unicornEmu.R[6]));
Assert.That(_context.GetX(7), Is.EqualTo(_unicornEmu.R[7]));
Assert.That(_context.GetX(8), Is.EqualTo(_unicornEmu.R[8]));
Assert.That(_context.GetX(9), Is.EqualTo(_unicornEmu.R[9]));
Assert.That(_context.GetX(10), Is.EqualTo(_unicornEmu.R[10]));
Assert.That(_context.GetX(11), Is.EqualTo(_unicornEmu.R[11]));
Assert.That(_context.GetX(12), Is.EqualTo(_unicornEmu.R[12]));
Assert.That(_context.GetX(13), Is.EqualTo(_unicornEmu.R[13]));
Assert.That(_context.GetX(14), Is.EqualTo(_unicornEmu.R[14]));
if (fpTolerances == FpTolerances.None)
{
Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0]));
}
else
{
ManageFpTolerances(fpTolerances);
}
Assert.That(V128ToSimdValue(_context.GetV(1)), Is.EqualTo(_unicornEmu.Q[1]));
Assert.That(V128ToSimdValue(_context.GetV(2)), Is.EqualTo(_unicornEmu.Q[2]));
Assert.That(V128ToSimdValue(_context.GetV(3)), Is.EqualTo(_unicornEmu.Q[3]));
Assert.That(V128ToSimdValue(_context.GetV(4)), Is.EqualTo(_unicornEmu.Q[4]));
Assert.That(V128ToSimdValue(_context.GetV(5)), Is.EqualTo(_unicornEmu.Q[5]));
Assert.That(V128ToSimdValue(_context.GetV(6)), Is.EqualTo(_unicornEmu.Q[6]));
Assert.That(V128ToSimdValue(_context.GetV(7)), Is.EqualTo(_unicornEmu.Q[7]));
Assert.That(V128ToSimdValue(_context.GetV(8)), Is.EqualTo(_unicornEmu.Q[8]));
Assert.That(V128ToSimdValue(_context.GetV(9)), Is.EqualTo(_unicornEmu.Q[9]));
Assert.That(V128ToSimdValue(_context.GetV(10)), Is.EqualTo(_unicornEmu.Q[10]));
Assert.That(V128ToSimdValue(_context.GetV(11)), Is.EqualTo(_unicornEmu.Q[11]));
Assert.That(V128ToSimdValue(_context.GetV(12)), Is.EqualTo(_unicornEmu.Q[12]));
Assert.That(V128ToSimdValue(_context.GetV(13)), Is.EqualTo(_unicornEmu.Q[13]));
Assert.That(V128ToSimdValue(_context.GetV(14)), Is.EqualTo(_unicornEmu.Q[14]));
Assert.That(V128ToSimdValue(_context.GetV(15)), Is.EqualTo(_unicornEmu.Q[15]));
Assert.That((int)_context.Fpcr | ((int)_context.Fpsr & (int)fpsrMask), Is.EqualTo(_unicornEmu.Fpscr));
Assert.That(_context.GetPstateFlag(PState.QFlag), Is.EqualTo(_unicornEmu.QFlag));
Assert.That(_context.GetPstateFlag(PState.VFlag), Is.EqualTo(_unicornEmu.OverflowFlag));
Assert.That(_context.GetPstateFlag(PState.CFlag), Is.EqualTo(_unicornEmu.CarryFlag));
Assert.That(_context.GetPstateFlag(PState.ZFlag), Is.EqualTo(_unicornEmu.ZeroFlag));
Assert.That(_context.GetPstateFlag(PState.NFlag), Is.EqualTo(_unicornEmu.NegativeFlag));
if (usingMemory)
{
ReadOnlySpan<byte> meilleureMem = _memory.GetSpan(0x2000, (int)_size);
byte[] unicornMem = _unicornEmu.MemoryRead(0x2000, _size);
for (int i = 0; i < (int)_size; i++)
{
Assert.AreEqual(meilleureMem[i], unicornMem[i]);
}
}
}
private void ManageFpSkips(FpSkips fpSkips)
{
if (fpSkips.HasFlag(FpSkips.IfNaNS))
{
if (float.IsNaN(_unicornEmu.Q[0].AsFloat()))
{
Assert.Ignore("NaN test.");
}
}
else if (fpSkips.HasFlag(FpSkips.IfNaND))
{
if (double.IsNaN(_unicornEmu.Q[0].AsDouble()))
{
Assert.Ignore("NaN test.");
}
}
if (fpSkips.HasFlag(FpSkips.IfUnderflow))
{
if ((_unicornEmu.Fpscr & (int)Fpsr.Ufc) != 0)
{
Assert.Ignore("Underflow test.");
}
}
if (fpSkips.HasFlag(FpSkips.IfOverflow))
{
if ((_unicornEmu.Fpscr & (int)Fpsr.Ofc) != 0)
{
Assert.Ignore("Overflow test.");
}
}
}
private void ManageFpTolerances(FpTolerances fpTolerances)
{
bool IsNormalOrSubnormalS(float f) => float.IsNormal(f) || float.IsSubnormal(f);
bool IsNormalOrSubnormalD(double d) => double.IsNormal(d) || double.IsSubnormal(d);
if (!Is.EqualTo(_unicornEmu.Q[0]).ApplyTo(V128ToSimdValue(_context.GetV(0))).IsSuccess)
{
if (fpTolerances == FpTolerances.UpToOneUlpsS)
{
if (IsNormalOrSubnormalS(_unicornEmu.Q[0].AsFloat()) &&
IsNormalOrSubnormalS(_context.GetV(0).As<float>()))
{
Assert.That(_context.GetV(0).Extract<float>(0),
Is.EqualTo(_unicornEmu.Q[0].GetFloat(0)).Within(1).Ulps);
Assert.That(_context.GetV(0).Extract<float>(1),
Is.EqualTo(_unicornEmu.Q[0].GetFloat(1)).Within(1).Ulps);
Assert.That(_context.GetV(0).Extract<float>(2),
Is.EqualTo(_unicornEmu.Q[0].GetFloat(2)).Within(1).Ulps);
Assert.That(_context.GetV(0).Extract<float>(3),
Is.EqualTo(_unicornEmu.Q[0].GetFloat(3)).Within(1).Ulps);
Console.WriteLine(fpTolerances);
}
else
{
Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0]));
}
}
if (fpTolerances == FpTolerances.UpToOneUlpsD)
{
if (IsNormalOrSubnormalD(_unicornEmu.Q[0].AsDouble()) &&
IsNormalOrSubnormalD(_context.GetV(0).As<double>()))
{
Assert.That(_context.GetV(0).Extract<double>(0),
Is.EqualTo(_unicornEmu.Q[0].GetDouble(0)).Within(1).Ulps);
Assert.That(_context.GetV(0).Extract<double>(1),
Is.EqualTo(_unicornEmu.Q[0].GetDouble(1)).Within(1).Ulps);
Console.WriteLine(fpTolerances);
}
else
{
Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0]));
}
}
}
}
private static SimdValue V128ToSimdValue(V128 value)
{
return new SimdValue(value.Extract<ulong>(0), value.Extract<ulong>(1));
}
protected static V128 MakeVectorScalar(float value) => new V128(value);
protected static V128 MakeVectorScalar(double value) => new V128(value);
protected static V128 MakeVectorE0(ulong e0) => new V128(e0, 0);
protected static V128 MakeVectorE1(ulong e1) => new V128(0, e1);
protected static V128 MakeVectorE0E1(ulong e0, ulong e1) => new V128(e0, e1);
protected static ulong GetVectorE0(V128 vector) => vector.Extract<ulong>(0);
protected static ulong GetVectorE1(V128 vector) => vector.Extract<ulong>(1);
protected static ushort GenNormalH()
{
uint rnd;
do rnd = TestContext.CurrentContext.Random.NextUShort();
while ((rnd & 0x7C00u) == 0u ||
(~rnd & 0x7C00u) == 0u);
return (ushort)rnd;
}
protected static ushort GenSubnormalH()
{
uint rnd;
do rnd = TestContext.CurrentContext.Random.NextUShort();
while ((rnd & 0x03FFu) == 0u);
return (ushort)(rnd & 0x83FFu);
}
protected static uint GenNormalS()
{
uint rnd;
do rnd = TestContext.CurrentContext.Random.NextUInt();
while ((rnd & 0x7F800000u) == 0u ||
(~rnd & 0x7F800000u) == 0u);
return rnd;
}
protected static uint GenSubnormalS()
{
uint rnd;
do rnd = TestContext.CurrentContext.Random.NextUInt();
while ((rnd & 0x007FFFFFu) == 0u);
return rnd & 0x807FFFFFu;
}
protected static ulong GenNormalD()
{
ulong rnd;
do rnd = TestContext.CurrentContext.Random.NextULong();
while ((rnd & 0x7FF0000000000000ul) == 0ul ||
(~rnd & 0x7FF0000000000000ul) == 0ul);
return rnd;
}
protected static ulong GenSubnormalD()
{
ulong rnd;
do rnd = TestContext.CurrentContext.Random.NextULong();
while ((rnd & 0x000FFFFFFFFFFFFFul) == 0ul);
return rnd & 0x800FFFFFFFFFFFFFul;
}
}
}