Archived
1
0
Fork 0
forked from Mirror/Ryujinx
This repository has been archived on 2024-10-11. You can view files and clone it, but cannot push or open issues or pull requests.
jinx/Ryujinx.Graphics.Gpu/Shader/ShaderCache.cs
2020-01-09 02:13:00 +01:00

530 lines
No EOL
21 KiB
C#

using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Gpu.Image;
using Ryujinx.Graphics.Gpu.State;
using Ryujinx.Graphics.Shader;
using Ryujinx.Graphics.Shader.Translation;
using System;
using System.Collections.Generic;
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.Gpu.Shader
{
using TextureDescriptor = Image.TextureDescriptor;
/// <summary>
/// Memory cache of shader code.
/// </summary>
class ShaderCache : IDisposable
{
private const int MaxProgramSize = 0x100000;
private const TranslationFlags DefaultFlags = TranslationFlags.DebugMode;
private GpuContext _context;
private ShaderDumper _dumper;
private Dictionary<ulong, List<ComputeShader>> _cpPrograms;
private Dictionary<ShaderAddresses, List<GraphicsShader>> _gpPrograms;
/// <summary>
/// Creates a new instance of the shader cache.
/// </summary>
/// <param name="context">GPU context that the shader cache belongs to</param>
public ShaderCache(GpuContext context)
{
_context = context;
_dumper = new ShaderDumper();
_cpPrograms = new Dictionary<ulong, List<ComputeShader>>();
_gpPrograms = new Dictionary<ShaderAddresses, List<GraphicsShader>>();
}
/// <summary>
/// Gets a compute shader from the cache.
/// This automatically translates, compiles and adds the code to the cache if not present.
/// </summary>
/// <param name="gpuVa">GPU virtual address of the binary shader code</param>
/// <param name="sharedMemorySize">Shared memory size of the compute shader</param>
/// <param name="localSizeX">Local group size X of the computer shader</param>
/// <param name="localSizeY">Local group size Y of the computer shader</param>
/// <param name="localSizeZ">Local group size Z of the computer shader</param>
/// <returns>Compiled compute shader code</returns>
public ComputeShader GetComputeShader(ulong gpuVa, int sharedMemorySize, int localSizeX, int localSizeY, int localSizeZ)
{
bool isCached = _cpPrograms.TryGetValue(gpuVa, out List<ComputeShader> list);
if (isCached)
{
foreach (ComputeShader cachedCpShader in list)
{
if (!IsShaderDifferent(cachedCpShader, gpuVa))
{
return cachedCpShader;
}
}
}
CachedShader shader = TranslateComputeShader(gpuVa, sharedMemorySize, localSizeX, localSizeY, localSizeZ);
IShader hostShader = _context.Renderer.CompileShader(shader.Program);
IProgram hostProgram = _context.Renderer.CreateProgram(new IShader[] { hostShader });
ulong address = _context.MemoryManager.Translate(gpuVa);
ComputeShader cpShader = new ComputeShader(hostProgram, shader);
if (!isCached)
{
list = new List<ComputeShader>();
_cpPrograms.Add(gpuVa, list);
}
list.Add(cpShader);
return cpShader;
}
/// <summary>
/// Gets a graphics shader program from the shader cache.
/// This includes all the specified shader stages.
/// This automatically translates, compiles and adds the code to the cache if not present.
/// </summary>
/// <param name="state">Current GPU state</param>
/// <param name="addresses">Addresses of the shaders for each stage</param>
/// <returns>Compiled graphics shader code</returns>
public GraphicsShader GetGraphicsShader(GpuState state, ShaderAddresses addresses)
{
bool isCached = _gpPrograms.TryGetValue(addresses, out List<GraphicsShader> list);
if (isCached)
{
foreach (GraphicsShader cachedGpShaders in list)
{
if (!IsShaderDifferent(cachedGpShaders, addresses))
{
return cachedGpShaders;
}
}
}
GraphicsShader gpShaders = new GraphicsShader();
if (addresses.VertexA != 0)
{
gpShaders.Shaders[0] = TranslateGraphicsShader(state, ShaderStage.Vertex, addresses.Vertex, addresses.VertexA);
}
else
{
gpShaders.Shaders[0] = TranslateGraphicsShader(state, ShaderStage.Vertex, addresses.Vertex);
}
gpShaders.Shaders[1] = TranslateGraphicsShader(state, ShaderStage.TessellationControl, addresses.TessControl);
gpShaders.Shaders[2] = TranslateGraphicsShader(state, ShaderStage.TessellationEvaluation, addresses.TessEvaluation);
gpShaders.Shaders[3] = TranslateGraphicsShader(state, ShaderStage.Geometry, addresses.Geometry);
gpShaders.Shaders[4] = TranslateGraphicsShader(state, ShaderStage.Fragment, addresses.Fragment);
BackpropQualifiers(gpShaders);
List<IShader> hostShaders = new List<IShader>();
for (int stage = 0; stage < gpShaders.Shaders.Length; stage++)
{
ShaderProgram program = gpShaders.Shaders[stage].Program;
if (program == null)
{
continue;
}
IShader hostShader = _context.Renderer.CompileShader(program);
gpShaders.Shaders[stage].HostShader = hostShader;
hostShaders.Add(hostShader);
}
gpShaders.HostProgram = _context.Renderer.CreateProgram(hostShaders.ToArray());
if (!isCached)
{
list = new List<GraphicsShader>();
_gpPrograms.Add(addresses, list);
}
list.Add(gpShaders);
return gpShaders;
}
/// <summary>
/// Checks if compute shader code in memory is different from the cached shader.
/// </summary>
/// <param name="cpShader">Cached compute shader</param>
/// <param name="gpuVa">GPU virtual address of the shader code in memory</param>
/// <returns>True if the code is different, false otherwise</returns>
private bool IsShaderDifferent(ComputeShader cpShader, ulong gpuVa)
{
return IsShaderDifferent(cpShader.Shader, gpuVa);
}
/// <summary>
/// Checks if graphics shader code from all stages in memory is different from the cached shaders.
/// </summary>
/// <param name="gpShaders">Cached graphics shaders</param>
/// <param name="addresses">GPU virtual addresses of all enabled shader stages</param>
/// <returns>True if the code is different, false otherwise</returns>
private bool IsShaderDifferent(GraphicsShader gpShaders, ShaderAddresses addresses)
{
for (int stage = 0; stage < gpShaders.Shaders.Length; stage++)
{
CachedShader shader = gpShaders.Shaders[stage];
if (shader.Code == null)
{
continue;
}
ulong gpuVa = 0;
switch (stage)
{
case 0: gpuVa = addresses.Vertex; break;
case 1: gpuVa = addresses.TessControl; break;
case 2: gpuVa = addresses.TessEvaluation; break;
case 3: gpuVa = addresses.Geometry; break;
case 4: gpuVa = addresses.Fragment; break;
}
if (IsShaderDifferent(shader, gpuVa))
{
return true;
}
}
return false;
}
/// <summary>
/// Checks if the code of the specified cached shader is different from the code in memory.
/// </summary>
/// <param name="shader">Cached shader to compare with</param>
/// <param name="gpuVa">GPU virtual address of the binary shader code</param>
/// <returns>True if the code is different, false otherwise</returns>
private bool IsShaderDifferent(CachedShader shader, ulong gpuVa)
{
for (int index = 0; index < shader.Code.Length; index++)
{
if (_context.MemoryAccessor.ReadInt32(gpuVa + (ulong)index * 4) != shader.Code[index])
{
return true;
}
}
return false;
}
/// <summary>
/// Translates the binary Maxwell shader code to something that the host API accepts.
/// </summary>
/// <param name="gpuVa">GPU virtual address of the binary shader code</param>
/// <param name="sharedMemorySize">Shared memory size of the compute shader</param>
/// <param name="localSizeX">Local group size X of the computer shader</param>
/// <param name="localSizeY">Local group size Y of the computer shader</param>
/// <param name="localSizeZ">Local group size Z of the computer shader</param>
/// <returns>Compiled compute shader code</returns>
private CachedShader TranslateComputeShader(ulong gpuVa, int sharedMemorySize, int localSizeX, int localSizeY, int localSizeZ)
{
if (gpuVa == 0)
{
return null;
}
QueryInfoCallback queryInfo = (QueryInfoName info, int index) =>
{
switch (info)
{
case QueryInfoName.ComputeLocalSizeX:
return localSizeX;
case QueryInfoName.ComputeLocalSizeY:
return localSizeY;
case QueryInfoName.ComputeLocalSizeZ:
return localSizeZ;
case QueryInfoName.ComputeSharedMemorySize:
return sharedMemorySize;
}
return QueryInfoCommon(info);
};
ShaderProgram program;
Span<byte> code = _context.MemoryAccessor.Read(gpuVa, MaxProgramSize);
program = Translator.Translate(code, queryInfo, DefaultFlags | TranslationFlags.Compute);
int[] codeCached = MemoryMarshal.Cast<byte, int>(code.Slice(0, program.Size)).ToArray();
_dumper.Dump(code, compute: true, out string fullPath, out string codePath);
if (fullPath != null && codePath != null)
{
program.Prepend("// " + codePath);
program.Prepend("// " + fullPath);
}
return new CachedShader(program, codeCached);
}
/// <summary>
/// Translates the binary Maxwell shader code to something that the host API accepts.
/// This will combine the "Vertex A" and "Vertex B" shader stages, if specified, into one shader.
/// </summary>
/// <param name="state">Current GPU state</param>
/// <param name="stage">Shader stage</param>
/// <param name="gpuVa">GPU virtual address of the shader code</param>
/// <param name="gpuVaA">Optional GPU virtual address of the "Vertex A" shader code</param>
/// <returns></returns>
private CachedShader TranslateGraphicsShader(GpuState state, ShaderStage stage, ulong gpuVa, ulong gpuVaA = 0)
{
if (gpuVa == 0)
{
return new CachedShader(null, null);
}
QueryInfoCallback queryInfo = (QueryInfoName info, int index) =>
{
switch (info)
{
case QueryInfoName.IsTextureBuffer:
return Convert.ToInt32(QueryIsTextureBuffer(state, (int)stage - 1, index));
case QueryInfoName.IsTextureRectangle:
return Convert.ToInt32(QueryIsTextureRectangle(state, (int)stage - 1, index));
case QueryInfoName.PrimitiveTopology:
return (int)GetPrimitiveTopology();
case QueryInfoName.ViewportTransformEnable:
return Convert.ToInt32(_context.Methods.GetViewportTransformEnable(state));
}
return QueryInfoCommon(info);
};
ShaderProgram program;
int[] codeCached = null;
if (gpuVaA != 0)
{
Span<byte> codeA = _context.MemoryAccessor.Read(gpuVaA, MaxProgramSize);
Span<byte> codeB = _context.MemoryAccessor.Read(gpuVa, MaxProgramSize);
program = Translator.Translate(codeA, codeB, queryInfo, DefaultFlags);
// TODO: We should also take "codeA" into account.
codeCached = MemoryMarshal.Cast<byte, int>(codeB.Slice(0, program.Size)).ToArray();
_dumper.Dump(codeA, compute: false, out string fullPathA, out string codePathA);
_dumper.Dump(codeB, compute: false, out string fullPathB, out string codePathB);
if (fullPathA != null && fullPathB != null && codePathA != null && codePathB != null)
{
program.Prepend("// " + codePathB);
program.Prepend("// " + fullPathB);
program.Prepend("// " + codePathA);
program.Prepend("// " + fullPathA);
}
}
else
{
Span<byte> code = _context.MemoryAccessor.Read(gpuVa, MaxProgramSize);
program = Translator.Translate(code, queryInfo, DefaultFlags);
codeCached = MemoryMarshal.Cast<byte, int>(code.Slice(0, program.Size)).ToArray();
_dumper.Dump(code, compute: false, out string fullPath, out string codePath);
if (fullPath != null && codePath != null)
{
program.Prepend("// " + codePath);
program.Prepend("// " + fullPath);
}
}
ulong address = _context.MemoryManager.Translate(gpuVa);
return new CachedShader(program, codeCached);
}
/// <summary>
/// Performs backwards propagation of interpolation qualifiers or later shader stages input,
/// to ealier shader stages output.
/// This is required by older versions of OpenGL (pre-4.3).
/// </summary>
/// <param name="program">Graphics shader cached code</param>
private void BackpropQualifiers(GraphicsShader program)
{
ShaderProgram fragmentShader = program.Shaders[4].Program;
bool isFirst = true;
for (int stage = 3; stage >= 0; stage--)
{
if (program.Shaders[stage].Program == null)
{
continue;
}
// We need to iterate backwards, since we do name replacement,
// and it would otherwise replace a subset of the longer names.
for (int attr = 31; attr >= 0; attr--)
{
string iq = fragmentShader?.Info.InterpolationQualifiers[attr].ToGlslQualifier() ?? string.Empty;
if (isFirst && iq != string.Empty)
{
program.Shaders[stage].Program.Replace($"{DefineNames.OutQualifierPrefixName}{attr}", iq);
}
else
{
program.Shaders[stage].Program.Replace($"{DefineNames.OutQualifierPrefixName}{attr} ", string.Empty);
}
}
isFirst = false;
}
}
/// <summary>
/// Gets the primitive topology for the current draw.
/// This is required by geometry shaders.
/// </summary>
/// <returns>Primitive topology</returns>
private InputTopology GetPrimitiveTopology()
{
switch (_context.Methods.PrimitiveType)
{
case PrimitiveType.Points:
return InputTopology.Points;
case PrimitiveType.Lines:
case PrimitiveType.LineLoop:
case PrimitiveType.LineStrip:
return InputTopology.Lines;
case PrimitiveType.LinesAdjacency:
case PrimitiveType.LineStripAdjacency:
return InputTopology.LinesAdjacency;
case PrimitiveType.Triangles:
case PrimitiveType.TriangleStrip:
case PrimitiveType.TriangleFan:
return InputTopology.Triangles;
case PrimitiveType.TrianglesAdjacency:
case PrimitiveType.TriangleStripAdjacency:
return InputTopology.TrianglesAdjacency;
}
return InputTopology.Points;
}
/// <summary>
/// Check if the target of a given texture is texture buffer.
/// This is required as 1D textures and buffer textures shares the same sampler type on binary shader code,
/// but not on GLSL.
/// </summary>
/// <param name="state">Current GPU state</param>
/// <param name="stageIndex">Index of the shader stage</param>
/// <param name="index">Index of the texture (this is the shader "fake" handle)</param>
/// <returns>True if the texture is a buffer texture, false otherwise</returns>
private bool QueryIsTextureBuffer(GpuState state, int stageIndex, int index)
{
return GetTextureDescriptor(state, stageIndex, index).UnpackTextureTarget() == TextureTarget.TextureBuffer;
}
/// <summary>
/// Check if the target of a given texture is texture rectangle.
/// This is required as 2D textures and rectangle textures shares the same sampler type on binary shader code,
/// but not on GLSL.
/// </summary>
/// <param name="state">Current GPU state</param>
/// <param name="stageIndex">Index of the shader stage</param>
/// <param name="index">Index of the texture (this is the shader "fake" handle)</param>
/// <returns>True if the texture is a rectangle texture, false otherwise</returns>
private bool QueryIsTextureRectangle(GpuState state, int stageIndex, int index)
{
var descriptor = GetTextureDescriptor(state, stageIndex, index);
TextureTarget target = descriptor.UnpackTextureTarget();
bool is2DTexture = target == TextureTarget.Texture2D ||
target == TextureTarget.Texture2DRect;
return !descriptor.UnpackTextureCoordNormalized() && is2DTexture;
}
/// <summary>
/// Gets the texture descriptor for a given texture on the pool.
/// </summary>
/// <param name="state">Current GPU state</param>
/// <param name="stageIndex">Index of the shader stage</param>
/// <param name="index">Index of the texture (this is the shader "fake" handle)</param>
/// <returns>Texture descriptor</returns>
private TextureDescriptor GetTextureDescriptor(GpuState state, int stageIndex, int index)
{
return _context.Methods.TextureManager.GetGraphicsTextureDescriptor(state, stageIndex, index);
}
/// <summary>
/// Returns information required by both compute and graphics shader compilation.
/// </summary>
/// <param name="info">Information queried</param>
/// <returns>Requested information</returns>
private int QueryInfoCommon(QueryInfoName info)
{
switch (info)
{
case QueryInfoName.MaximumViewportDimensions:
return _context.Capabilities.MaximumViewportDimensions;
case QueryInfoName.StorageBufferOffsetAlignment:
return _context.Capabilities.StorageBufferOffsetAlignment;
case QueryInfoName.SupportsNonConstantTextureOffset:
return Convert.ToInt32(_context.Capabilities.SupportsNonConstantTextureOffset);
}
return 0;
}
/// <summary>
/// Disposes the shader cache, deleting all the cached shaders.
/// It's an error to use the shader cache after disposal.
/// </summary>
public void Dispose()
{
foreach (List<ComputeShader> list in _cpPrograms.Values)
{
foreach (ComputeShader shader in list)
{
shader.HostProgram.Dispose();
shader.Shader.HostShader.Dispose();
}
}
foreach (List<GraphicsShader> list in _gpPrograms.Values)
{
foreach (GraphicsShader shader in list)
{
shader.HostProgram.Dispose();
foreach (CachedShader cachedShader in shader.Shaders)
{
cachedShader.HostShader?.Dispose();
}
}
}
}
}
}