rjx-mirror/Ryujinx.HLE/HOS/Kernel/KAddressArbiter.cs
Alex Barney fb1d9493a3 Adjust naming conventions and general refactoring in HLE Project (#527)
* Rename enum fields

* Naming conventions

* Remove unneeded ".this"

* Remove unneeded semicolons

* Remove unused Usings

* Don't use var

* Remove unneeded enum underlying types

* Explicitly label class visibility

* Remove unneeded @ prefixes

* Remove unneeded commas

* Remove unneeded if expressions

* Method doesn't use unsafe code

* Remove unneeded casts

* Initialized objects don't need an empty constructor

* Remove settings from DotSettings

* Revert "Explicitly label class visibility"

This reverts commit ad5eb5787c.

* Small changes

* Revert external enum renaming

* Changes from feedback

* Apply previous refactorings to the merged code
2018-12-06 09:16:24 -02:00

650 lines
20 KiB
C#

using System.Collections.Generic;
using System.Linq;
using static Ryujinx.HLE.HOS.ErrorCode;
namespace Ryujinx.HLE.HOS.Kernel
{
class KAddressArbiter
{
private const int HasListenersMask = 0x40000000;
private Horizon _system;
public List<KThread> CondVarThreads;
public List<KThread> ArbiterThreads;
public KAddressArbiter(Horizon system)
{
_system = system;
CondVarThreads = new List<KThread>();
ArbiterThreads = new List<KThread>();
}
public long ArbitrateLock(int ownerHandle, long mutexAddress, int requesterHandle)
{
KThread currentThread = _system.Scheduler.GetCurrentThread();
_system.CriticalSection.Enter();
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = 0;
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
if (!KernelTransfer.UserToKernelInt32(_system, mutexAddress, out int mutexValue))
{
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
}
if (mutexValue != (ownerHandle | HasListenersMask))
{
_system.CriticalSection.Leave();
return 0;
}
KThread mutexOwner = currentProcess.HandleTable.GetObject<KThread>(ownerHandle);
if (mutexOwner == null)
{
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
}
currentThread.MutexAddress = mutexAddress;
currentThread.ThreadHandleForUserMutex = requesterHandle;
mutexOwner.AddMutexWaiter(currentThread);
currentThread.Reschedule(ThreadSchedState.Paused);
_system.CriticalSection.Leave();
_system.CriticalSection.Enter();
if (currentThread.MutexOwner != null)
{
currentThread.MutexOwner.RemoveMutexWaiter(currentThread);
}
_system.CriticalSection.Leave();
return (uint)currentThread.ObjSyncResult;
}
public long ArbitrateUnlock(long mutexAddress)
{
_system.CriticalSection.Enter();
KThread currentThread = _system.Scheduler.GetCurrentThread();
(long result, KThread newOwnerThread) = MutexUnlock(currentThread, mutexAddress);
if (result != 0 && newOwnerThread != null)
{
newOwnerThread.SignaledObj = null;
newOwnerThread.ObjSyncResult = (int)result;
}
_system.CriticalSection.Leave();
return result;
}
public long WaitProcessWideKeyAtomic(
long mutexAddress,
long condVarAddress,
int threadHandle,
long timeout)
{
_system.CriticalSection.Enter();
KThread currentThread = _system.Scheduler.GetCurrentThread();
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.Timeout);
if (currentThread.ShallBeTerminated ||
currentThread.SchedFlags == ThreadSchedState.TerminationPending)
{
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.ThreadTerminating);
}
(long result, _) = MutexUnlock(currentThread, mutexAddress);
if (result != 0)
{
_system.CriticalSection.Leave();
return result;
}
currentThread.MutexAddress = mutexAddress;
currentThread.ThreadHandleForUserMutex = threadHandle;
currentThread.CondVarAddress = condVarAddress;
CondVarThreads.Add(currentThread);
if (timeout != 0)
{
currentThread.Reschedule(ThreadSchedState.Paused);
if (timeout > 0)
{
_system.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
}
}
_system.CriticalSection.Leave();
if (timeout > 0)
{
_system.TimeManager.UnscheduleFutureInvocation(currentThread);
}
_system.CriticalSection.Enter();
if (currentThread.MutexOwner != null)
{
currentThread.MutexOwner.RemoveMutexWaiter(currentThread);
}
CondVarThreads.Remove(currentThread);
_system.CriticalSection.Leave();
return (uint)currentThread.ObjSyncResult;
}
private (long, KThread) MutexUnlock(KThread currentThread, long mutexAddress)
{
KThread newOwnerThread = currentThread.RelinquishMutex(mutexAddress, out int count);
int mutexValue = 0;
if (newOwnerThread != null)
{
mutexValue = newOwnerThread.ThreadHandleForUserMutex;
if (count >= 2)
{
mutexValue |= HasListenersMask;
}
newOwnerThread.SignaledObj = null;
newOwnerThread.ObjSyncResult = 0;
newOwnerThread.ReleaseAndResume();
}
long result = 0;
if (!KernelTransfer.KernelToUserInt32(_system, mutexAddress, mutexValue))
{
result = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
}
return (result, newOwnerThread);
}
public void SignalProcessWideKey(long address, int count)
{
Queue<KThread> signaledThreads = new Queue<KThread>();
_system.CriticalSection.Enter();
IOrderedEnumerable<KThread> sortedThreads = CondVarThreads.OrderBy(x => x.DynamicPriority);
foreach (KThread thread in sortedThreads.Where(x => x.CondVarAddress == address))
{
TryAcquireMutex(thread);
signaledThreads.Enqueue(thread);
//If the count is <= 0, we should signal all threads waiting.
if (count >= 1 && --count == 0)
{
break;
}
}
while (signaledThreads.TryDequeue(out KThread thread))
{
CondVarThreads.Remove(thread);
}
_system.CriticalSection.Leave();
}
private KThread TryAcquireMutex(KThread requester)
{
long address = requester.MutexAddress;
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
currentProcess.CpuMemory.SetExclusive(0, address);
if (!KernelTransfer.UserToKernelInt32(_system, address, out int mutexValue))
{
//Invalid address.
currentProcess.CpuMemory.ClearExclusive(0);
requester.SignaledObj = null;
requester.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return null;
}
while (true)
{
if (currentProcess.CpuMemory.TestExclusive(0, address))
{
if (mutexValue != 0)
{
//Update value to indicate there is a mutex waiter now.
currentProcess.CpuMemory.WriteInt32(address, mutexValue | HasListenersMask);
}
else
{
//No thread owning the mutex, assign to requesting thread.
currentProcess.CpuMemory.WriteInt32(address, requester.ThreadHandleForUserMutex);
}
currentProcess.CpuMemory.ClearExclusiveForStore(0);
break;
}
currentProcess.CpuMemory.SetExclusive(0, address);
mutexValue = currentProcess.CpuMemory.ReadInt32(address);
}
if (mutexValue == 0)
{
//We now own the mutex.
requester.SignaledObj = null;
requester.ObjSyncResult = 0;
requester.ReleaseAndResume();
return null;
}
mutexValue &= ~HasListenersMask;
KThread mutexOwner = currentProcess.HandleTable.GetObject<KThread>(mutexValue);
if (mutexOwner != null)
{
//Mutex already belongs to another thread, wait for it.
mutexOwner.AddMutexWaiter(requester);
}
else
{
//Invalid mutex owner.
requester.SignaledObj = null;
requester.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
requester.ReleaseAndResume();
}
return mutexOwner;
}
public long WaitForAddressIfEqual(long address, int value, long timeout)
{
KThread currentThread = _system.Scheduler.GetCurrentThread();
_system.CriticalSection.Enter();
if (currentThread.ShallBeTerminated ||
currentThread.SchedFlags == ThreadSchedState.TerminationPending)
{
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.ThreadTerminating);
}
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.Timeout);
if (!KernelTransfer.UserToKernelInt32(_system, address, out int currentValue))
{
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
}
if (currentValue == value)
{
if (timeout == 0)
{
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.Timeout);
}
currentThread.MutexAddress = address;
currentThread.WaitingInArbitration = true;
InsertSortedByPriority(ArbiterThreads, currentThread);
currentThread.Reschedule(ThreadSchedState.Paused);
if (timeout > 0)
{
_system.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
}
_system.CriticalSection.Leave();
if (timeout > 0)
{
_system.TimeManager.UnscheduleFutureInvocation(currentThread);
}
_system.CriticalSection.Enter();
if (currentThread.WaitingInArbitration)
{
ArbiterThreads.Remove(currentThread);
currentThread.WaitingInArbitration = false;
}
_system.CriticalSection.Leave();
return currentThread.ObjSyncResult;
}
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.InvalidState);
}
public long WaitForAddressIfLessThan(long address, int value, bool shouldDecrement, long timeout)
{
KThread currentThread = _system.Scheduler.GetCurrentThread();
_system.CriticalSection.Enter();
if (currentThread.ShallBeTerminated ||
currentThread.SchedFlags == ThreadSchedState.TerminationPending)
{
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.ThreadTerminating);
}
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = (int)MakeError(ErrorModule.Kernel, KernelErr.Timeout);
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
//If ShouldDecrement is true, do atomic decrement of the value at Address.
currentProcess.CpuMemory.SetExclusive(0, address);
if (!KernelTransfer.UserToKernelInt32(_system, address, out int currentValue))
{
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
}
if (shouldDecrement)
{
while (currentValue < value)
{
if (currentProcess.CpuMemory.TestExclusive(0, address))
{
currentProcess.CpuMemory.WriteInt32(address, currentValue - 1);
currentProcess.CpuMemory.ClearExclusiveForStore(0);
break;
}
currentProcess.CpuMemory.SetExclusive(0, address);
currentValue = currentProcess.CpuMemory.ReadInt32(address);
}
}
currentProcess.CpuMemory.ClearExclusive(0);
if (currentValue < value)
{
if (timeout == 0)
{
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.Timeout);
}
currentThread.MutexAddress = address;
currentThread.WaitingInArbitration = true;
InsertSortedByPriority(ArbiterThreads, currentThread);
currentThread.Reschedule(ThreadSchedState.Paused);
if (timeout > 0)
{
_system.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
}
_system.CriticalSection.Leave();
if (timeout > 0)
{
_system.TimeManager.UnscheduleFutureInvocation(currentThread);
}
_system.CriticalSection.Enter();
if (currentThread.WaitingInArbitration)
{
ArbiterThreads.Remove(currentThread);
currentThread.WaitingInArbitration = false;
}
_system.CriticalSection.Leave();
return currentThread.ObjSyncResult;
}
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.InvalidState);
}
private void InsertSortedByPriority(List<KThread> threads, KThread thread)
{
int nextIndex = -1;
for (int index = 0; index < threads.Count; index++)
{
if (threads[index].DynamicPriority > thread.DynamicPriority)
{
nextIndex = index;
break;
}
}
if (nextIndex != -1)
{
threads.Insert(nextIndex, thread);
}
else
{
threads.Add(thread);
}
}
public long Signal(long address, int count)
{
_system.CriticalSection.Enter();
WakeArbiterThreads(address, count);
_system.CriticalSection.Leave();
return 0;
}
public long SignalAndIncrementIfEqual(long address, int value, int count)
{
_system.CriticalSection.Enter();
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
currentProcess.CpuMemory.SetExclusive(0, address);
if (!KernelTransfer.UserToKernelInt32(_system, address, out int currentValue))
{
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
}
while (currentValue == value)
{
if (currentProcess.CpuMemory.TestExclusive(0, address))
{
currentProcess.CpuMemory.WriteInt32(address, currentValue + 1);
currentProcess.CpuMemory.ClearExclusiveForStore(0);
break;
}
currentProcess.CpuMemory.SetExclusive(0, address);
currentValue = currentProcess.CpuMemory.ReadInt32(address);
}
currentProcess.CpuMemory.ClearExclusive(0);
if (currentValue != value)
{
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.InvalidState);
}
WakeArbiterThreads(address, count);
_system.CriticalSection.Leave();
return 0;
}
public long SignalAndModifyIfEqual(long address, int value, int count)
{
_system.CriticalSection.Enter();
int offset;
//The value is decremented if the number of threads waiting is less
//or equal to the Count of threads to be signaled, or Count is zero
//or negative. It is incremented if there are no threads waiting.
int waitingCount = 0;
foreach (KThread thread in ArbiterThreads.Where(x => x.MutexAddress == address))
{
if (++waitingCount > count)
{
break;
}
}
if (waitingCount > 0)
{
offset = waitingCount <= count || count <= 0 ? -1 : 0;
}
else
{
offset = 1;
}
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
currentProcess.CpuMemory.SetExclusive(0, address);
if (!KernelTransfer.UserToKernelInt32(_system, address, out int currentValue))
{
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
}
while (currentValue == value)
{
if (currentProcess.CpuMemory.TestExclusive(0, address))
{
currentProcess.CpuMemory.WriteInt32(address, currentValue + offset);
currentProcess.CpuMemory.ClearExclusiveForStore(0);
break;
}
currentProcess.CpuMemory.SetExclusive(0, address);
currentValue = currentProcess.CpuMemory.ReadInt32(address);
}
currentProcess.CpuMemory.ClearExclusive(0);
if (currentValue != value)
{
_system.CriticalSection.Leave();
return MakeError(ErrorModule.Kernel, KernelErr.InvalidState);
}
WakeArbiterThreads(address, count);
_system.CriticalSection.Leave();
return 0;
}
private void WakeArbiterThreads(long address, int count)
{
Queue<KThread> signaledThreads = new Queue<KThread>();
foreach (KThread thread in ArbiterThreads.Where(x => x.MutexAddress == address))
{
signaledThreads.Enqueue(thread);
//If the count is <= 0, we should signal all threads waiting.
if (count >= 1 && --count == 0)
{
break;
}
}
while (signaledThreads.TryDequeue(out KThread thread))
{
thread.SignaledObj = null;
thread.ObjSyncResult = 0;
thread.ReleaseAndResume();
thread.WaitingInArbitration = false;
ArbiterThreads.Remove(thread);
}
}
}
}