rjx-mirror/Ryujinx.Graphics.Gpu/Memory/RangeList.cs

246 lines
No EOL
6 KiB
C#

using System;
using System.Collections.Generic;
namespace Ryujinx.Graphics.Gpu.Memory
{
class RangeList<T> where T : IRange<T>
{
private const int ArrayGrowthSize = 32;
private List<T> _items;
public RangeList()
{
_items = new List<T>();
}
public void Add(T item)
{
int index = BinarySearch(item.Address);
if (index < 0)
{
index = ~index;
}
_items.Insert(index, item);
}
public bool Remove(T item)
{
int index = BinarySearch(item.Address);
if (index >= 0)
{
while (index > 0 && _items[index - 1].Address == item.Address)
{
index--;
}
while (index < _items.Count)
{
if (_items[index].Equals(item))
{
_items.RemoveAt(index);
return true;
}
if (_items[index].Address > item.Address)
{
break;
}
index++;
}
}
return false;
}
public T FindFirstOverlap(T item)
{
return FindFirstOverlap(item.Address, item.Size);
}
public T FindFirstOverlap(ulong address, ulong size)
{
int index = BinarySearch(address, size);
if (index < 0)
{
return default(T);
}
return _items[index];
}
public int FindOverlaps(T item, ref T[] output)
{
return FindOverlaps(item.Address, item.Size, ref output);
}
public int FindOverlaps(ulong address, ulong size, ref T[] output)
{
int outputIndex = 0;
ulong endAddress = address + size;
lock (_items)
{
foreach (T item in _items)
{
if (item.Address >= endAddress)
{
break;
}
if (item.OverlapsWith(address, size))
{
if (outputIndex == output.Length)
{
Array.Resize(ref output, outputIndex + ArrayGrowthSize);
}
output[outputIndex++] = item;
}
}
}
return outputIndex;
}
public int FindOverlapsNonOverlapping(T item, ref T[] output)
{
return FindOverlapsNonOverlapping(item.Address, item.Size, ref output);
}
public int FindOverlapsNonOverlapping(ulong address, ulong size, ref T[] output)
{
// This is a bit faster than FindOverlaps, but only works
// when none of the items on the list overlaps with each other.
int outputIndex = 0;
ulong endAddress = address + size;
int index = BinarySearch(address, size);
if (index >= 0)
{
while (index > 0 && _items[index - 1].OverlapsWith(address, size))
{
index--;
}
do
{
if (outputIndex == output.Length)
{
Array.Resize(ref output, outputIndex + ArrayGrowthSize);
}
output[outputIndex++] = _items[index++];
}
while (index < _items.Count && _items[index].OverlapsWith(address, size));
}
return outputIndex;
}
public int FindOverlaps(ulong address, ref T[] output)
{
int index = BinarySearch(address);
int outputIndex = 0;
if (index >= 0)
{
while (index > 0 && _items[index - 1].Address == address)
{
index--;
}
while (index < _items.Count)
{
T overlap = _items[index++];
if (overlap.Address != address)
{
break;
}
if (outputIndex == output.Length)
{
Array.Resize(ref output, outputIndex + ArrayGrowthSize);
}
output[outputIndex++] = overlap;
}
}
return outputIndex;
}
private int BinarySearch(ulong address)
{
int left = 0;
int right = _items.Count - 1;
while (left <= right)
{
int range = right - left;
int middle = left + (range >> 1);
T item = _items[middle];
if (item.Address == address)
{
return middle;
}
if (address < item.Address)
{
right = middle - 1;
}
else
{
left = middle + 1;
}
}
return ~left;
}
private int BinarySearch(ulong address, ulong size)
{
int left = 0;
int right = _items.Count - 1;
while (left <= right)
{
int range = right - left;
int middle = left + (range >> 1);
T item = _items[middle];
if (item.OverlapsWith(address, size))
{
return middle;
}
if (address < item.Address)
{
right = middle - 1;
}
else
{
left = middle + 1;
}
}
return ~left;
}
}
}