rjx-mirror/ARMeilleure/Translation/Translator.cs
gdkchan a1a4771ac1
Remove use of GetFunctionPointerForDelegate to get JIT cache function pointer (#4337)
* Remove use of GetFunctionPointerForDelegate to get JIT cache function pointer

* Rename FuncPtr to FuncPointer
2023-01-23 22:37:53 +00:00

576 lines
19 KiB
C#

using ARMeilleure.CodeGen;
using ARMeilleure.Common;
using ARMeilleure.Decoders;
using ARMeilleure.Diagnostics;
using ARMeilleure.Instructions;
using ARMeilleure.IntermediateRepresentation;
using ARMeilleure.Memory;
using ARMeilleure.Signal;
using ARMeilleure.State;
using ARMeilleure.Translation.Cache;
using ARMeilleure.Translation.PTC;
using Ryujinx.Common;
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Diagnostics;
using System.Runtime.InteropServices;
using System.Threading;
using static ARMeilleure.IntermediateRepresentation.Operand.Factory;
namespace ARMeilleure.Translation
{
public class Translator
{
private static readonly AddressTable<ulong>.Level[] Levels64Bit =
new AddressTable<ulong>.Level[]
{
new(31, 17),
new(23, 8),
new(15, 8),
new( 7, 8),
new( 2, 5)
};
private static readonly AddressTable<ulong>.Level[] Levels32Bit =
new AddressTable<ulong>.Level[]
{
new(31, 17),
new(23, 8),
new(15, 8),
new( 7, 8),
new( 1, 6)
};
private readonly IJitMemoryAllocator _allocator;
private readonly ConcurrentQueue<KeyValuePair<ulong, TranslatedFunction>> _oldFuncs;
private readonly Ptc _ptc;
internal TranslatorCache<TranslatedFunction> Functions { get; }
internal AddressTable<ulong> FunctionTable { get; }
internal EntryTable<uint> CountTable { get; }
internal TranslatorStubs Stubs { get; }
internal TranslatorQueue Queue { get; }
internal IMemoryManager Memory { get; }
private volatile int _threadCount;
// FIXME: Remove this once the init logic of the emulator will be redone.
public static readonly ManualResetEvent IsReadyForTranslation = new(false);
public Translator(IJitMemoryAllocator allocator, IMemoryManager memory, bool for64Bits)
{
_allocator = allocator;
Memory = memory;
_oldFuncs = new ConcurrentQueue<KeyValuePair<ulong, TranslatedFunction>>();
_ptc = new Ptc();
Queue = new TranslatorQueue();
JitCache.Initialize(allocator);
CountTable = new EntryTable<uint>();
Functions = new TranslatorCache<TranslatedFunction>();
FunctionTable = new AddressTable<ulong>(for64Bits ? Levels64Bit : Levels32Bit);
Stubs = new TranslatorStubs(this);
FunctionTable.Fill = (ulong)Stubs.SlowDispatchStub;
if (memory.Type.IsHostMapped())
{
NativeSignalHandler.InitializeSignalHandler(allocator.GetPageSize());
}
}
public IPtcLoadState LoadDiskCache(string titleIdText, string displayVersion, bool enabled)
{
_ptc.Initialize(titleIdText, displayVersion, enabled, Memory.Type);
return _ptc;
}
public void PrepareCodeRange(ulong address, ulong size)
{
if (_ptc.Profiler.StaticCodeSize == 0)
{
_ptc.Profiler.StaticCodeStart = address;
_ptc.Profiler.StaticCodeSize = size;
}
}
public void Execute(State.ExecutionContext context, ulong address)
{
if (Interlocked.Increment(ref _threadCount) == 1)
{
IsReadyForTranslation.WaitOne();
if (_ptc.State == PtcState.Enabled)
{
Debug.Assert(Functions.Count == 0);
_ptc.LoadTranslations(this);
_ptc.MakeAndSaveTranslations(this);
}
_ptc.Profiler.Start();
_ptc.Disable();
// Simple heuristic, should be user configurable in future. (1 for 4 core/ht or less, 2 for 6 core + ht
// etc). All threads are normal priority except from the last, which just fills as much of the last core
// as the os lets it with a low priority. If we only have one rejit thread, it should be normal priority
// as highCq code is performance critical.
//
// TODO: Use physical cores rather than logical. This only really makes sense for processors with
// hyperthreading. Requires OS specific code.
int unboundedThreadCount = Math.Max(1, (Environment.ProcessorCount - 6) / 3);
int threadCount = Math.Min(4, unboundedThreadCount);
for (int i = 0; i < threadCount; i++)
{
bool last = i != 0 && i == unboundedThreadCount - 1;
Thread backgroundTranslatorThread = new Thread(BackgroundTranslate)
{
Name = "CPU.BackgroundTranslatorThread." + i,
Priority = last ? ThreadPriority.Lowest : ThreadPriority.Normal
};
backgroundTranslatorThread.Start();
}
}
Statistics.InitializeTimer();
NativeInterface.RegisterThread(context, Memory, this);
if (Optimizations.UseUnmanagedDispatchLoop)
{
Stubs.DispatchLoop(context.NativeContextPtr, address);
}
else
{
do
{
address = ExecuteSingle(context, address);
}
while (context.Running && address != 0);
}
NativeInterface.UnregisterThread();
if (Interlocked.Decrement(ref _threadCount) == 0)
{
ClearJitCache();
Queue.Dispose();
Stubs.Dispose();
FunctionTable.Dispose();
CountTable.Dispose();
_ptc.Close();
_ptc.Profiler.Stop();
_ptc.Dispose();
_ptc.Profiler.Dispose();
}
}
private ulong ExecuteSingle(State.ExecutionContext context, ulong address)
{
TranslatedFunction func = GetOrTranslate(address, context.ExecutionMode);
Statistics.StartTimer();
ulong nextAddr = func.Execute(context);
Statistics.StopTimer(address);
return nextAddr;
}
public ulong Step(State.ExecutionContext context, ulong address)
{
TranslatedFunction func = Translate(address, context.ExecutionMode, highCq: false, singleStep: true);
address = func.Execute(context);
EnqueueForDeletion(address, func);
return address;
}
internal TranslatedFunction GetOrTranslate(ulong address, ExecutionMode mode)
{
if (!Functions.TryGetValue(address, out TranslatedFunction func))
{
func = Translate(address, mode, highCq: false);
TranslatedFunction oldFunc = Functions.GetOrAdd(address, func.GuestSize, func);
if (oldFunc != func)
{
JitCache.Unmap(func.FuncPointer);
func = oldFunc;
}
if (_ptc.Profiler.Enabled)
{
_ptc.Profiler.AddEntry(address, mode, highCq: false);
}
RegisterFunction(address, func);
}
return func;
}
internal void RegisterFunction(ulong guestAddress, TranslatedFunction func)
{
if (FunctionTable.IsValid(guestAddress) && (Optimizations.AllowLcqInFunctionTable || func.HighCq))
{
Volatile.Write(ref FunctionTable.GetValue(guestAddress), (ulong)func.FuncPointer);
}
}
internal TranslatedFunction Translate(ulong address, ExecutionMode mode, bool highCq, bool singleStep = false)
{
var context = new ArmEmitterContext(
Memory,
CountTable,
FunctionTable,
Stubs,
address,
highCq,
_ptc.State != PtcState.Disabled,
mode: Aarch32Mode.User);
Logger.StartPass(PassName.Decoding);
Block[] blocks = Decoder.Decode(Memory, address, mode, highCq, singleStep ? DecoderMode.SingleInstruction : DecoderMode.MultipleBlocks);
Logger.EndPass(PassName.Decoding);
Logger.StartPass(PassName.Translation);
EmitSynchronization(context);
if (blocks[0].Address != address)
{
context.Branch(context.GetLabel(address));
}
ControlFlowGraph cfg = EmitAndGetCFG(context, blocks, out Range funcRange, out Counter<uint> counter);
ulong funcSize = funcRange.End - funcRange.Start;
Logger.EndPass(PassName.Translation, cfg);
Logger.StartPass(PassName.RegisterUsage);
RegisterUsage.RunPass(cfg, mode);
Logger.EndPass(PassName.RegisterUsage);
var retType = OperandType.I64;
var argTypes = new OperandType[] { OperandType.I64 };
var options = highCq ? CompilerOptions.HighCq : CompilerOptions.None;
if (context.HasPtc && !singleStep)
{
options |= CompilerOptions.Relocatable;
}
CompiledFunction compiledFunc = Compiler.Compile(cfg, argTypes, retType, options, RuntimeInformation.ProcessArchitecture);
if (context.HasPtc && !singleStep)
{
Hash128 hash = Ptc.ComputeHash(Memory, address, funcSize);
_ptc.WriteCompiledFunction(address, funcSize, hash, highCq, compiledFunc);
}
GuestFunction func = compiledFunc.MapWithPointer<GuestFunction>(out IntPtr funcPointer);
Allocators.ResetAll();
return new TranslatedFunction(func, funcPointer, counter, funcSize, highCq);
}
private void BackgroundTranslate()
{
while (_threadCount != 0 && Queue.TryDequeue(out RejitRequest request))
{
TranslatedFunction func = Translate(request.Address, request.Mode, highCq: true);
Functions.AddOrUpdate(request.Address, func.GuestSize, func, (key, oldFunc) =>
{
EnqueueForDeletion(key, oldFunc);
return func;
});
if (_ptc.Profiler.Enabled)
{
_ptc.Profiler.UpdateEntry(request.Address, request.Mode, highCq: true);
}
RegisterFunction(request.Address, func);
}
}
private readonly struct Range
{
public ulong Start { get; }
public ulong End { get; }
public Range(ulong start, ulong end)
{
Start = start;
End = end;
}
}
private static ControlFlowGraph EmitAndGetCFG(
ArmEmitterContext context,
Block[] blocks,
out Range range,
out Counter<uint> counter)
{
counter = null;
ulong rangeStart = ulong.MaxValue;
ulong rangeEnd = 0;
for (int blkIndex = 0; blkIndex < blocks.Length; blkIndex++)
{
Block block = blocks[blkIndex];
if (!block.Exit)
{
if (rangeStart > block.Address)
{
rangeStart = block.Address;
}
if (rangeEnd < block.EndAddress)
{
rangeEnd = block.EndAddress;
}
}
if (block.Address == context.EntryAddress)
{
if (!context.HighCq)
{
EmitRejitCheck(context, out counter);
}
context.ClearQcFlag();
}
context.CurrBlock = block;
context.MarkLabel(context.GetLabel(block.Address));
if (block.Exit)
{
// Left option here as it may be useful if we need to return to managed rather than tail call in
// future. (eg. for debug)
bool useReturns = false;
InstEmitFlowHelper.EmitVirtualJump(context, Const(block.Address), isReturn: useReturns);
}
else
{
for (int opcIndex = 0; opcIndex < block.OpCodes.Count; opcIndex++)
{
OpCode opCode = block.OpCodes[opcIndex];
context.CurrOp = opCode;
bool isLastOp = opcIndex == block.OpCodes.Count - 1;
if (isLastOp)
{
context.SyncQcFlag();
if (block.Branch != null && !block.Branch.Exit && block.Branch.Address <= block.Address)
{
EmitSynchronization(context);
}
}
Operand lblPredicateSkip = default;
if (context.IsInIfThenBlock && context.CurrentIfThenBlockCond != Condition.Al)
{
lblPredicateSkip = Label();
InstEmitFlowHelper.EmitCondBranch(context, lblPredicateSkip, context.CurrentIfThenBlockCond.Invert());
}
if (opCode is OpCode32 op && op.Cond < Condition.Al)
{
lblPredicateSkip = Label();
InstEmitFlowHelper.EmitCondBranch(context, lblPredicateSkip, op.Cond.Invert());
}
if (opCode.Instruction.Emitter != null)
{
opCode.Instruction.Emitter(context);
}
else
{
throw new InvalidOperationException($"Invalid instruction \"{opCode.Instruction.Name}\".");
}
if (lblPredicateSkip != default)
{
context.MarkLabel(lblPredicateSkip);
}
if (context.IsInIfThenBlock && opCode.Instruction.Name != InstName.It)
{
context.AdvanceIfThenBlockState();
}
}
}
}
range = new Range(rangeStart, rangeEnd);
return context.GetControlFlowGraph();
}
internal static void EmitRejitCheck(ArmEmitterContext context, out Counter<uint> counter)
{
const int MinsCallForRejit = 100;
counter = new Counter<uint>(context.CountTable);
Operand lblEnd = Label();
Operand address = !context.HasPtc ?
Const(ref counter.Value) :
Const(ref counter.Value, Ptc.CountTableSymbol);
Operand curCount = context.Load(OperandType.I32, address);
Operand count = context.Add(curCount, Const(1));
context.Store(address, count);
context.BranchIf(lblEnd, curCount, Const(MinsCallForRejit), Comparison.NotEqual, BasicBlockFrequency.Cold);
context.Call(typeof(NativeInterface).GetMethod(nameof(NativeInterface.EnqueueForRejit)), Const(context.EntryAddress));
context.MarkLabel(lblEnd);
}
internal static void EmitSynchronization(EmitterContext context)
{
long countOffs = NativeContext.GetCounterOffset();
Operand lblNonZero = Label();
Operand lblExit = Label();
Operand countAddr = context.Add(context.LoadArgument(OperandType.I64, 0), Const(countOffs));
Operand count = context.Load(OperandType.I32, countAddr);
context.BranchIfTrue(lblNonZero, count, BasicBlockFrequency.Cold);
Operand running = context.Call(typeof(NativeInterface).GetMethod(nameof(NativeInterface.CheckSynchronization)));
context.BranchIfTrue(lblExit, running, BasicBlockFrequency.Cold);
context.Return(Const(0L));
context.MarkLabel(lblNonZero);
count = context.Subtract(count, Const(1));
context.Store(countAddr, count);
context.MarkLabel(lblExit);
}
public void InvalidateJitCacheRegion(ulong address, ulong size)
{
ulong[] overlapAddresses = Array.Empty<ulong>();
int overlapsCount = Functions.GetOverlaps(address, size, ref overlapAddresses);
if (overlapsCount != 0)
{
// If rejit is running, stop it as it may be trying to rejit a function on the invalidated region.
ClearRejitQueue(allowRequeue: true);
}
for (int index = 0; index < overlapsCount; index++)
{
ulong overlapAddress = overlapAddresses[index];
if (Functions.TryGetValue(overlapAddress, out TranslatedFunction overlap))
{
Functions.Remove(overlapAddress);
Volatile.Write(ref FunctionTable.GetValue(overlapAddress), FunctionTable.Fill);
EnqueueForDeletion(overlapAddress, overlap);
}
}
// TODO: Remove overlapping functions from the JitCache aswell.
// This should be done safely, with a mechanism to ensure the function is not being executed.
}
internal void EnqueueForRejit(ulong guestAddress, ExecutionMode mode)
{
Queue.Enqueue(guestAddress, mode);
}
private void EnqueueForDeletion(ulong guestAddress, TranslatedFunction func)
{
_oldFuncs.Enqueue(new(guestAddress, func));
}
private void ClearJitCache()
{
// Ensure no attempt will be made to compile new functions due to rejit.
ClearRejitQueue(allowRequeue: false);
List<TranslatedFunction> functions = Functions.AsList();
foreach (var func in functions)
{
JitCache.Unmap(func.FuncPointer);
func.CallCounter?.Dispose();
}
Functions.Clear();
while (_oldFuncs.TryDequeue(out var kv))
{
JitCache.Unmap(kv.Value.FuncPointer);
kv.Value.CallCounter?.Dispose();
}
}
private void ClearRejitQueue(bool allowRequeue)
{
if (!allowRequeue)
{
Queue.Clear();
return;
}
lock (Queue.Sync)
{
while (Queue.Count > 0 && Queue.TryDequeue(out RejitRequest request))
{
if (Functions.TryGetValue(request.Address, out var func) && func.CallCounter != null)
{
Volatile.Write(ref func.CallCounter.Value, 0);
}
}
}
}
}
}