forked from Mirror/Ryujinx
Implement AESMC, AESIMC, AESE, AESD and VEOR AArch32 instructions (#982)
* Add VEOR and AES instructions. * Add tests for crypto instructions. * Update ValueSource name.
This commit is contained in:
parent
ff2bac9c90
commit
dd433c1296
7 changed files with 239 additions and 14 deletions
|
@ -752,6 +752,10 @@ namespace ARMeilleure.Decoders
|
|||
SetA32("<<<<01101111xxxxxxxxxx000111xxxx", InstName.Uxth, InstEmit32.Uxth, typeof(OpCode32AluUx));
|
||||
|
||||
// FP & SIMD
|
||||
SetA32("111100111x110000xxx0001101x0xxx0", InstName.Aesd_V, InstEmit32.Aesd_V, typeof(OpCode32Simd));
|
||||
SetA32("111100111x110000xxx0001100x0xxx0", InstName.Aese_V, InstEmit32.Aese_V, typeof(OpCode32Simd));
|
||||
SetA32("111100111x110000xxx0001111x0xxx0", InstName.Aesimc_V, InstEmit32.Aesimc_V, typeof(OpCode32Simd));
|
||||
SetA32("111100111x110000xxx0001110x0xxx0", InstName.Aesmc_V, InstEmit32.Aesmc_V, typeof(OpCode32Simd));
|
||||
SetA32("<<<<11101x110000xxxx10xx11x0xxxx", InstName.Vabs, InstEmit32.Vabs_S, typeof(OpCode32SimdRegS));
|
||||
SetA32("111100111x11xx01xxxx0x110xx0xxxx", InstName.Vabs, InstEmit32.Vabs_V, typeof(OpCode32SimdReg));
|
||||
SetA32("111100100xxxxxxxxxxx1000xxx0xxxx", InstName.Vadd, InstEmit32.Vadd_I, typeof(OpCode32SimdReg));
|
||||
|
@ -782,6 +786,7 @@ namespace ARMeilleure.Decoders
|
|||
SetA32("<<<<11101x00xxxxxxxx101xx0x0xxxx", InstName.Vdiv, InstEmit32.Vdiv_S, typeof(OpCode32SimdRegS));
|
||||
SetA32("<<<<11101xx0xxxxxxxx1011x0x10000", InstName.Vdup, InstEmit32.Vdup, typeof(OpCode32SimdDupGP));
|
||||
SetA32("111100111x11xxxxxxxx11000xx0xxxx", InstName.Vdup, InstEmit32.Vdup_1, typeof(OpCode32SimdDupElem));
|
||||
SetA32("111100110x00xxxxxxxx0001xxx1xxxx", InstName.Veor, InstEmit32.Veor_I, typeof(OpCode32SimdBinary));
|
||||
SetA32("111100101x11xxxxxxxxxxxxxxx0xxxx", InstName.Vext, InstEmit32.Vext, typeof(OpCode32SimdExt));
|
||||
SetA32("111101001x10xxxxxxxxxx00xxxxxxxx", InstName.Vld1, InstEmit32.Vld1, typeof(OpCode32SimdMemSingle));
|
||||
SetA32("111101000x10xxxxxxxx0111xxxxxxxx", InstName.Vld1, InstEmit32.Vld1, typeof(OpCode32SimdMemPair)); // Regs = 1.
|
||||
|
|
49
ARMeilleure/Instructions/InstEmitSimdCrypto32.cs
Normal file
49
ARMeilleure/Instructions/InstEmitSimdCrypto32.cs
Normal file
|
@ -0,0 +1,49 @@
|
|||
using ARMeilleure.Decoders;
|
||||
using ARMeilleure.IntermediateRepresentation;
|
||||
using ARMeilleure.Translation;
|
||||
|
||||
using static ARMeilleure.Instructions.InstEmitHelper;
|
||||
|
||||
namespace ARMeilleure.Instructions
|
||||
{
|
||||
partial class InstEmit32
|
||||
{
|
||||
public static void Aesd_V(ArmEmitterContext context)
|
||||
{
|
||||
OpCode32Simd op = (OpCode32Simd)context.CurrOp;
|
||||
|
||||
Operand d = GetVecA32(op.Qd);
|
||||
Operand n = GetVecA32(op.Qm);
|
||||
|
||||
context.Copy(d, context.Call(new _V128_V128_V128(SoftFallback.Decrypt), d, n));
|
||||
}
|
||||
|
||||
public static void Aese_V(ArmEmitterContext context)
|
||||
{
|
||||
OpCode32Simd op = (OpCode32Simd)context.CurrOp;
|
||||
|
||||
Operand d = GetVecA32(op.Qd);
|
||||
Operand n = GetVecA32(op.Qm);
|
||||
|
||||
context.Copy(d, context.Call(new _V128_V128_V128(SoftFallback.Encrypt), d, n));
|
||||
}
|
||||
|
||||
public static void Aesimc_V(ArmEmitterContext context)
|
||||
{
|
||||
OpCode32Simd op = (OpCode32Simd)context.CurrOp;
|
||||
|
||||
Operand n = GetVecA32(op.Qm);
|
||||
|
||||
context.Copy(GetVec(op.Qd), context.Call(new _V128_V128(SoftFallback.InverseMixColumns), n));
|
||||
}
|
||||
|
||||
public static void Aesmc_V(ArmEmitterContext context)
|
||||
{
|
||||
OpCode32Simd op = (OpCode32Simd)context.CurrOp;
|
||||
|
||||
Operand n = GetVecA32(op.Qm);
|
||||
|
||||
context.Copy(GetVec(op.Qd), context.Call(new _V128_V128(SoftFallback.MixColumns), n));
|
||||
}
|
||||
}
|
||||
}
|
|
@ -55,6 +55,18 @@ namespace ARMeilleure.Instructions
|
|||
}
|
||||
}
|
||||
|
||||
public static void Veor_I(ArmEmitterContext context)
|
||||
{
|
||||
if (Optimizations.UseSse2)
|
||||
{
|
||||
EmitVectorBinaryOpF32(context, Intrinsic.X86Pxor, Intrinsic.X86Pxor);
|
||||
}
|
||||
else
|
||||
{
|
||||
EmitVectorBinaryOpZx32(context, (op1, op2) => context.BitwiseExclusiveOr(op1, op2));
|
||||
}
|
||||
}
|
||||
|
||||
public static void Vorr_I(ArmEmitterContext context)
|
||||
{
|
||||
if (Optimizations.UseSse2)
|
||||
|
|
|
@ -547,6 +547,7 @@ namespace ARMeilleure.Instructions
|
|||
Vcvt,
|
||||
Vdiv,
|
||||
Vdup,
|
||||
Veor,
|
||||
Vext,
|
||||
Vld1,
|
||||
Vld2,
|
||||
|
|
|
@ -164,11 +164,11 @@ namespace Ryujinx.Tests.Cpu
|
|||
}
|
||||
}
|
||||
|
||||
protected void ExecuteOpcodes()
|
||||
protected void ExecuteOpcodes(bool runUnicorn = true)
|
||||
{
|
||||
_translator.Execute(_context, _entryPoint);
|
||||
|
||||
if (_unicornAvailable)
|
||||
if (_unicornAvailable && runUnicorn)
|
||||
{
|
||||
_unicornEmu.RunForCount((ulong)(_currAddress - _entryPoint - 4) / 4);
|
||||
}
|
||||
|
@ -193,7 +193,8 @@ namespace Ryujinx.Tests.Cpu
|
|||
bool zero = false,
|
||||
bool negative = false,
|
||||
int fpscr = 0,
|
||||
bool copyFpFlags = false)
|
||||
bool copyFpFlags = false,
|
||||
bool runUnicorn = true)
|
||||
{
|
||||
Opcode(opcode);
|
||||
if (copyFpFlags)
|
||||
|
@ -202,7 +203,7 @@ namespace Ryujinx.Tests.Cpu
|
|||
}
|
||||
Opcode(0xe12fff1e); // BX LR
|
||||
SetContext(r0, r1, r2, r3, sp, v0, v1, v2, v3, v4, v5, v14, v15, overflow, carry, zero, negative, fpscr);
|
||||
ExecuteOpcodes();
|
||||
ExecuteOpcodes(runUnicorn);
|
||||
|
||||
return GetContext();
|
||||
}
|
||||
|
|
155
Ryujinx.Tests/Cpu/CpuTestSimdCrypto32.cs
Normal file
155
Ryujinx.Tests/Cpu/CpuTestSimdCrypto32.cs
Normal file
|
@ -0,0 +1,155 @@
|
|||
// https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
|
||||
|
||||
using ARMeilleure.State;
|
||||
|
||||
using NUnit.Framework;
|
||||
|
||||
namespace Ryujinx.Tests.Cpu
|
||||
{
|
||||
public class CpuTestSimdCrypto32 : CpuTest32
|
||||
{
|
||||
[Test, Description("AESD.8 <Qd>, <Qm>")]
|
||||
public void Aesd_V([Values(0u)] uint rd,
|
||||
[Values(2u)] uint rm,
|
||||
[Values(0x7B5B546573745665ul)] ulong valueH,
|
||||
[Values(0x63746F725D53475Dul)] ulong valueL,
|
||||
[Random(2)] ulong roundKeyH,
|
||||
[Random(2)] ulong roundKeyL,
|
||||
[Values(0x8DCAB9BC035006BCul)] ulong resultH,
|
||||
[Values(0x8F57161E00CAFD8Dul)] ulong resultL)
|
||||
{
|
||||
uint opcode = 0xf3b00340; // AESD.8 Q0, Q0
|
||||
opcode |= ((rm & 0xf) << 0) | ((rm & 0x10) << 1);
|
||||
opcode |= ((rd & 0xf) << 12) | ((rd & 0x10) << 18);
|
||||
|
||||
V128 v0 = MakeVectorE0E1(roundKeyL ^ valueL, roundKeyH ^ valueH);
|
||||
V128 v1 = MakeVectorE0E1(roundKeyL, roundKeyH);
|
||||
|
||||
ExecutionContext context = SingleOpcode(opcode, v0: v0, v1: v1, runUnicorn: false);
|
||||
|
||||
Assert.Multiple(() =>
|
||||
{
|
||||
Assert.That(GetVectorE0(context.GetV(0)), Is.EqualTo(resultL));
|
||||
Assert.That(GetVectorE1(context.GetV(0)), Is.EqualTo(resultH));
|
||||
});
|
||||
Assert.Multiple(() =>
|
||||
{
|
||||
Assert.That(GetVectorE0(context.GetV(1)), Is.EqualTo(roundKeyL));
|
||||
Assert.That(GetVectorE1(context.GetV(1)), Is.EqualTo(roundKeyH));
|
||||
});
|
||||
|
||||
// Unicorn does not yet support crypto instructions in A32.
|
||||
// CompareAgainstUnicorn();
|
||||
}
|
||||
|
||||
[Test, Description("AESE.8 <Qd>, <Qm>")]
|
||||
public void Aese_V([Values(0u)] uint rd,
|
||||
[Values(2u)] uint rm,
|
||||
[Values(0x7B5B546573745665ul)] ulong valueH,
|
||||
[Values(0x63746F725D53475Dul)] ulong valueL,
|
||||
[Random(2)] ulong roundKeyH,
|
||||
[Random(2)] ulong roundKeyL,
|
||||
[Values(0x8F92A04DFBED204Dul)] ulong resultH,
|
||||
[Values(0x4C39B1402192A84Cul)] ulong resultL)
|
||||
{
|
||||
uint opcode = 0xf3b00300; // AESE.8 Q0, Q0
|
||||
opcode |= ((rm & 0xf) << 0) | ((rm & 0x10) << 1);
|
||||
opcode |= ((rd & 0xf) << 12) | ((rd & 0x10) << 18);
|
||||
|
||||
V128 v0 = MakeVectorE0E1(roundKeyL ^ valueL, roundKeyH ^ valueH);
|
||||
V128 v1 = MakeVectorE0E1(roundKeyL, roundKeyH);
|
||||
|
||||
ExecutionContext context = SingleOpcode(opcode, v0: v0, v1: v1, runUnicorn: false);
|
||||
|
||||
Assert.Multiple(() =>
|
||||
{
|
||||
Assert.That(GetVectorE0(context.GetV(0)), Is.EqualTo(resultL));
|
||||
Assert.That(GetVectorE1(context.GetV(0)), Is.EqualTo(resultH));
|
||||
});
|
||||
Assert.Multiple(() =>
|
||||
{
|
||||
Assert.That(GetVectorE0(context.GetV(1)), Is.EqualTo(roundKeyL));
|
||||
Assert.That(GetVectorE1(context.GetV(1)), Is.EqualTo(roundKeyH));
|
||||
});
|
||||
|
||||
// Unicorn does not yet support crypto instructions in A32.
|
||||
// CompareAgainstUnicorn();
|
||||
}
|
||||
|
||||
[Test, Description("AESIMC.8 <Qd>, <Qm>")]
|
||||
public void Aesimc_V([Values(0u)] uint rd,
|
||||
[Values(2u, 0u)] uint rm,
|
||||
[Values(0x8DCAB9DC035006BCul)] ulong valueH,
|
||||
[Values(0x8F57161E00CAFD8Dul)] ulong valueL,
|
||||
[Values(0xD635A667928B5EAEul)] ulong resultH,
|
||||
[Values(0xEEC9CC3BC55F5777ul)] ulong resultL)
|
||||
{
|
||||
uint opcode = 0xf3b003c0; // AESIMC.8 Q0, Q0
|
||||
opcode |= ((rm & 0xf) << 0) | ((rm & 0x10) << 1);
|
||||
opcode |= ((rd & 0xf) << 12) | ((rd & 0x10) << 18);
|
||||
|
||||
V128 v = MakeVectorE0E1(valueL, valueH);
|
||||
|
||||
ExecutionContext context = SingleOpcode(
|
||||
opcode,
|
||||
v0: rm == 0u ? v : default(V128),
|
||||
v1: rm == 2u ? v : default(V128),
|
||||
runUnicorn: false);
|
||||
|
||||
Assert.Multiple(() =>
|
||||
{
|
||||
Assert.That(GetVectorE0(context.GetV(0)), Is.EqualTo(resultL));
|
||||
Assert.That(GetVectorE1(context.GetV(0)), Is.EqualTo(resultH));
|
||||
});
|
||||
if (rm == 2u)
|
||||
{
|
||||
Assert.Multiple(() =>
|
||||
{
|
||||
Assert.That(GetVectorE0(context.GetV(1)), Is.EqualTo(valueL));
|
||||
Assert.That(GetVectorE1(context.GetV(1)), Is.EqualTo(valueH));
|
||||
});
|
||||
}
|
||||
|
||||
// Unicorn does not yet support crypto instructions in A32.
|
||||
// CompareAgainstUnicorn();
|
||||
}
|
||||
|
||||
[Test, Description("AESMC.8 <Qd>, <Qm>")]
|
||||
public void Aesmc_V([Values(0u)] uint rd,
|
||||
[Values(2u, 0u)] uint rm,
|
||||
[Values(0x627A6F6644B109C8ul)] ulong valueH,
|
||||
[Values(0x2B18330A81C3B3E5ul)] ulong valueL,
|
||||
[Values(0x7B5B546573745665ul)] ulong resultH,
|
||||
[Values(0x63746F725D53475Dul)] ulong resultL)
|
||||
{
|
||||
uint opcode = 0xf3b00380; // AESMC.8 Q0, Q0
|
||||
opcode |= ((rm & 0xf) << 0) | ((rm & 0x10) << 1);
|
||||
opcode |= ((rd & 0xf) << 12) | ((rd & 0x10) << 18);
|
||||
|
||||
V128 v = MakeVectorE0E1(valueL, valueH);
|
||||
|
||||
ExecutionContext context = SingleOpcode(
|
||||
opcode,
|
||||
v0: rm == 0u ? v : default(V128),
|
||||
v1: rm == 2u ? v : default(V128),
|
||||
runUnicorn: false);
|
||||
|
||||
Assert.Multiple(() =>
|
||||
{
|
||||
Assert.That(GetVectorE0(context.GetV(0)), Is.EqualTo(resultL));
|
||||
Assert.That(GetVectorE1(context.GetV(0)), Is.EqualTo(resultH));
|
||||
});
|
||||
if (rm == 2u)
|
||||
{
|
||||
Assert.Multiple(() =>
|
||||
{
|
||||
Assert.That(GetVectorE0(context.GetV(1)), Is.EqualTo(valueL));
|
||||
Assert.That(GetVectorE1(context.GetV(1)), Is.EqualTo(valueH));
|
||||
});
|
||||
}
|
||||
|
||||
// Unicorn does not yet support crypto instructions in A32.
|
||||
// CompareAgainstUnicorn();
|
||||
}
|
||||
}
|
||||
}
|
|
@ -12,14 +12,16 @@ namespace Ryujinx.Tests.Cpu
|
|||
#if SimdLogical32
|
||||
|
||||
#region "ValueSource (Opcodes)"
|
||||
private static uint[] _Vbif_Vbit_Vbsl_Vand_()
|
||||
private static uint[] _Vbif_Vbit_Vbsl_Vand_Vorr_Veor_()
|
||||
{
|
||||
return new uint[]
|
||||
{
|
||||
0xf3300110u, // VBIF D0, D0, D0
|
||||
0xf3200110u, // VBIT D0, D0, D0
|
||||
0xf3100110u, // VBSL D0, D0, D0
|
||||
0xf2000110u // VAND D0, D0, D0
|
||||
0xf2000110u, // VAND D0, D0, D0
|
||||
0xf2200110u, // VORR D0, D0, D0
|
||||
0xf3000110u // VEOR D0, D0, D0
|
||||
};
|
||||
}
|
||||
#endregion
|
||||
|
@ -27,7 +29,7 @@ namespace Ryujinx.Tests.Cpu
|
|||
private const int RndCnt = 2;
|
||||
|
||||
[Test, Pairwise]
|
||||
public void Vbif_Vbit_Vbsl_Vand([ValueSource("_Vbif_Vbit_Vbsl_Vand_")] uint opcode,
|
||||
public void Vbif_Vbit_Vbsl_Vand_Vorr_Veor([ValueSource("_Vbif_Vbit_Vbsl_Vand_Vorr_Veor_")] uint opcode,
|
||||
[Range(0u, 4u)] uint rd,
|
||||
[Range(0u, 4u)] uint rn,
|
||||
[Range(0u, 4u)] uint rm,
|
||||
|
|
Loading…
Reference in a new issue