1
0
Fork 0
mirror of https://github.com/jugeeya/UltimateTrainingModpack.git synced 2025-01-04 06:30:31 +00:00
UltimateTrainingModpack/training_mod_metrics/src/main.rs

144 lines
5.3 KiB
Rust
Raw Normal View History

use datafusion::prelude::*;
use datafusion::arrow::record_batch::RecordBatch;
use datafusion::datasource::json::NdJsonFile;
use datafusion::physical_plan::json::NdJsonReadOptions;
use datafusion::arrow::datatypes::{Schema, Field, DataType};
use std::sync::Arc;
// export.json is relative to /event/
// cat export.json | jq -c '.SMASH_OPEN.device[][][]' > smash_open.json
#[derive(Debug)]
struct Event {
device_id: String,
event_name: String,
event_time: i64,
menu_settings: String,
mod_version: String,
session_id: String,
smash_version: String,
user_id: String
}
use chrono::{DateTime, NaiveDateTime, Utc};
fn timestamp_secs_to_datetime(ts: i64) -> DateTime<Utc> {
DateTime::<Utc>::from_utc(NaiveDateTime::from_timestamp(ts, 0), Utc)
}
use plotters::prelude::*;
const OUT_FILE_NAME: &'static str = "boxplot.svg";
fn draw_chart(results: Vec<RecordBatch>) -> Result<(), Box<dyn std::error::Error>> {
let num_devices_idx = results[0].schema().column_with_name("num_devices").unwrap().0;
let num_sessions_idx = results[0].schema().column_with_name("num_sessions").unwrap().0;
let timestamps_idx = results[0].schema().column_with_name("date").unwrap().0;
let num_devices = results[0].column(num_devices_idx).as_any()
.downcast_ref::<datafusion::arrow::array::UInt64Array>()
.expect("Failed to downcast").values();
let num_sessions = results[0].column(num_sessions_idx).as_any()
.downcast_ref::<datafusion::arrow::array::UInt64Array>()
.expect("Failed to downcast").values();
let timestamp_millis = results[0].column(timestamps_idx).as_any()
.downcast_ref::<datafusion::arrow::array::TimestampMillisecondArray>()
.expect("Failed to downcast").values();
let device_data_points = num_devices.iter()
.enumerate().map(|(i, x)| (timestamp_secs_to_datetime(timestamp_millis[i] / 1000), *x));
let session_data_points = num_sessions.iter()
.enumerate().map(|(i, x)| (timestamp_secs_to_datetime(timestamp_millis[i] / 1000), *x));
let root = SVGBackend::new(OUT_FILE_NAME, (1024, 768)).into_drawing_area();
root.fill(&WHITE)?;
let mut chart = ChartBuilder::on(&root)
.caption("Users and Sessions by Date", ("sans-serif", 50).into_font())
.margin(5)
.x_label_area_size(30)
.y_label_area_size(30)
.build_cartesian_2d(
(timestamp_secs_to_datetime(timestamp_millis[0] / 1000))..(timestamp_secs_to_datetime(*timestamp_millis.last().unwrap() / 1000)),
0..*num_sessions.iter().max().unwrap())?;
chart.configure_mesh().draw()?;
chart
.draw_series(LineSeries::new(
device_data_points,
&RED,
))?
.label("Unique Devices")
.legend(|(x, y)| PathElement::new(vec![(x, y), (x + 20, y)], &RED));
chart
.draw_series(LineSeries::new(
session_data_points,
&BLUE,
))?
.label("Unique Sessions")
.legend(|(x, y)| PathElement::new(vec![(x, y), (x + 20, y)], &BLUE));
chart
.configure_series_labels()
.background_style(&WHITE.mix(0.8))
.border_style(&BLACK)
.draw()?;
Ok(())
}
#[tokio::main]
async fn main() -> datafusion::error::Result<()> {
// let smash_open_table = NdJsonFile::try_new(
// "smash_open.json",
// NdJsonReadOptions{
// schema: None,
// schema_infer_max_records: 1,
// file_extension: ".json",
// }
// ).unwrap();
let menu_open_table = NdJsonFile::try_new(
"menu_open.json",
NdJsonReadOptions{
schema: Some(Arc::new(Schema::new(vec![
Field::new("device_id", DataType::Utf8, false),
Field::new("event_name", DataType::Utf8, false),
Field::new("event_time", DataType::Int64, false),
Field::new("menu_settings", DataType::Utf8, false),
Field::new("session_id", DataType::Utf8, false),
Field::new("smash_version", DataType::Utf8, false),
Field::new("mod_version", DataType::Utf8, false),
Field::new("user_id", DataType::Utf8, false),
]))),
schema_infer_max_records: 0,
file_extension: ".json",
}
).unwrap();
// // declare a new context. In spark API, this corresponds to a new spark SQLsession
let mut ctx = ExecutionContext::new();
// ctx.register_table("smash_open", Arc::new(smash_open_table))?;
ctx.register_table("menu_open", Arc::new(menu_open_table))?;
// create a plan to run a SQL query
let df = ctx.sql(
"SELECT
COUNT(DISTINCT device_id) num_devices,
COUNT(DISTINCT session_id) num_sessions,
COUNT(*) num_events,
TO_TIMESTAMP_MILLIS(DATE_TRUNC('day', CAST(event_time * 1000000 AS timestamp))) AS date FROM menu_open
WHERE
-- after 09/01/2021
event_time > 1630454400000
-- before today
AND CAST(event_time * 1000000 AS timestamp) < NOW()
GROUP BY date ORDER BY date"
)?;
let results: Vec<RecordBatch> = df.collect().await?;
// use datafusion::arrow::util::pretty::pretty_format_batches;
// println!("{}", pretty_format_batches(&results)?);
draw_chart(results).unwrap();
Ok(())
}