embassy/embassy-stm32/src/adc/v1.rs

195 lines
5.5 KiB
Rust
Raw Normal View History

2023-09-20 21:07:35 +00:00
use core::future::poll_fn;
use core::marker::PhantomData;
use core::task::Poll;
use embassy_hal_internal::into_ref;
2022-09-14 03:08:03 +00:00
use embedded_hal_02::blocking::delay::DelayUs;
2023-04-05 21:11:21 +00:00
use crate::adc::{Adc, AdcPin, Instance, InternalChannel, Resolution, SampleTime};
2023-09-20 21:07:35 +00:00
use crate::interrupt::typelevel::Interrupt;
2023-04-05 21:52:32 +00:00
use crate::peripherals::ADC;
2023-09-20 21:07:35 +00:00
use crate::{interrupt, Peripheral};
2022-09-14 03:08:03 +00:00
pub const VDDA_CALIB_MV: u32 = 3300;
pub const VREF_INT: u32 = 1230;
2023-09-20 21:07:35 +00:00
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
if T::regs().isr().read().eoc() {
T::regs().ier().modify(|w| w.set_eocie(false));
} else {
return;
}
T::state().waker.wake();
}
}
2022-09-14 03:08:03 +00:00
pub struct Vbat;
2023-04-05 21:52:32 +00:00
impl InternalChannel<ADC> for Vbat {}
impl super::sealed::InternalChannel<ADC> for Vbat {
2022-09-14 03:08:03 +00:00
fn channel(&self) -> u8 {
18
}
}
pub struct Vref;
2023-04-05 21:52:32 +00:00
impl InternalChannel<ADC> for Vref {}
impl super::sealed::InternalChannel<ADC> for Vref {
2022-09-14 03:08:03 +00:00
fn channel(&self) -> u8 {
17
}
}
pub struct Temperature;
2023-04-05 21:52:32 +00:00
impl InternalChannel<ADC> for Temperature {}
impl super::sealed::InternalChannel<ADC> for Temperature {
2022-09-14 03:08:03 +00:00
fn channel(&self) -> u8 {
16
}
}
impl<'d, T: Instance> Adc<'d, T> {
2023-09-20 21:07:35 +00:00
pub fn new(
adc: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
delay: &mut impl DelayUs<u32>,
) -> Self {
2023-04-05 19:31:32 +00:00
into_ref!(adc);
2023-04-05 20:28:42 +00:00
T::enable();
T::reset();
2022-09-14 03:08:03 +00:00
// Delay 1μs when using HSI14 as the ADC clock.
//
// Table 57. ADC characteristics
// tstab = 14 * 1/fadc
delay.delay_us(1);
2023-09-20 21:07:35 +00:00
// A.7.1 ADC calibration code example
T::regs().cfgr1().modify(|reg| reg.set_dmaen(false));
T::regs().cr().modify(|reg| reg.set_adcal(true));
while T::regs().cr().read().adcal() {}
// A.7.2 ADC enable sequence code example
if T::regs().isr().read().adrdy() {
T::regs().isr().modify(|reg| reg.set_adrdy(true));
}
T::regs().cr().modify(|reg| reg.set_aden(true));
while !T::regs().isr().read().adrdy() {
// ES0233, 2.4.3 ADEN bit cannot be set immediately after the ADC calibration
// Workaround: When the ADC calibration is complete (ADCAL = 0), keep setting the
// ADEN bit until the ADRDY flag goes high.
T::regs().cr().modify(|reg| reg.set_aden(true));
}
T::Interrupt::unpend();
unsafe {
T::Interrupt::enable();
}
Self {
2023-04-05 19:31:32 +00:00
adc,
2022-09-14 03:08:03 +00:00
sample_time: Default::default(),
2023-09-20 21:07:35 +00:00
}
2022-09-14 03:08:03 +00:00
}
pub fn enable_vbat(&self, _delay: &mut impl DelayUs<u32>) -> Vbat {
// SMP must be ≥ 56 ADC clock cycles when using HSI14.
//
// 6.3.20 Vbat monitoring characteristics
// ts_vbat ≥ 4μs
2023-06-19 01:07:26 +00:00
T::regs().ccr().modify(|reg| reg.set_vbaten(true));
2022-09-14 03:08:03 +00:00
Vbat
}
pub fn enable_vref(&self, delay: &mut impl DelayUs<u32>) -> Vref {
// Table 28. Embedded internal reference voltage
// tstart = 10μs
2023-06-19 01:07:26 +00:00
T::regs().ccr().modify(|reg| reg.set_vrefen(true));
2022-09-14 03:08:03 +00:00
delay.delay_us(10);
Vref
}
pub fn enable_temperature(&self, delay: &mut impl DelayUs<u32>) -> Temperature {
// SMP must be ≥ 56 ADC clock cycles when using HSI14.
//
// 6.3.19 Temperature sensor characteristics
// tstart ≤ 10μs
// ts_temp ≥ 4μs
2023-06-19 01:07:26 +00:00
T::regs().ccr().modify(|reg| reg.set_tsen(true));
2022-09-14 03:08:03 +00:00
delay.delay_us(10);
Temperature
}
pub fn set_sample_time(&mut self, sample_time: SampleTime) {
self.sample_time = sample_time;
}
pub fn set_resolution(&mut self, resolution: Resolution) {
2023-06-19 01:07:26 +00:00
T::regs().cfgr1().modify(|reg| reg.set_res(resolution.into()));
2022-09-14 03:08:03 +00:00
}
2023-09-20 21:07:35 +00:00
pub async fn read<P>(&mut self, pin: &mut P) -> u16
2022-10-03 17:03:42 +00:00
where
P: AdcPin<T> + crate::gpio::sealed::Pin,
{
let channel = pin.channel();
2023-06-19 01:07:26 +00:00
pin.set_as_analog();
2023-09-20 21:07:35 +00:00
self.read_channel(channel).await
}
2022-09-14 03:08:03 +00:00
2023-09-20 21:07:35 +00:00
pub async fn read_internal(&mut self, channel: &mut impl InternalChannel<T>) -> u16 {
let channel = channel.channel();
2023-09-20 21:07:35 +00:00
self.read_channel(channel).await
}
2022-09-14 03:08:03 +00:00
2023-09-20 21:07:35 +00:00
async fn convert(&mut self) -> u16 {
T::regs().isr().modify(|reg| {
reg.set_eoc(true);
reg.set_eosmp(true);
});
2023-04-05 19:31:32 +00:00
T::regs().smpr().modify(|reg| reg.set_smp(self.sample_time.into()));
2023-09-20 21:07:35 +00:00
T::regs().ier().modify(|w| w.set_eocie(true));
T::regs().cr().modify(|reg| reg.set_adstart(true));
2023-09-20 21:07:35 +00:00
poll_fn(|cx| {
T::state().waker.register(cx.waker());
if T::regs().isr().read().eoc() {
Poll::Ready(())
} else {
Poll::Pending
}
})
.await;
T::regs().dr().read().data()
}
async fn read_channel(&mut self, channel: u8) -> u16 {
// A.7.5 Single conversion sequence code example - Software trigger
T::regs().chselr().write(|reg| reg.set_chselx(channel as usize, true));
self.convert().await
}
}
impl<'d, T: Instance> Drop for Adc<'d, T> {
fn drop(&mut self) {
// A.7.3 ADC disable code example
T::regs().cr().modify(|reg| reg.set_adstp(true));
2023-09-20 21:07:35 +00:00
while T::regs().cr().read().adstp() {}
T::regs().cr().modify(|reg| reg.set_addis(true));
2023-09-20 21:07:35 +00:00
while T::regs().cr().read().aden() {}
2022-09-14 03:08:03 +00:00
2023-09-20 21:07:35 +00:00
T::disable();
2022-09-14 03:08:03 +00:00
}
}