embassy/embassy-nrf-examples/src/bin/uart.rs

117 lines
3.5 KiB
Rust
Raw Normal View History

2020-09-22 16:03:43 +00:00
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
#[path = "../example_common.rs"]
mod example_common;
use example_common::*;
use cortex_m_rt::entry;
2020-12-29 00:53:17 +00:00
use defmt::panic;
use embassy::executor::{task, Executor};
2020-12-23 15:18:29 +00:00
use embassy::time::{Duration, Timer};
2020-10-31 21:37:24 +00:00
use embassy::util::Forever;
2020-12-23 15:18:29 +00:00
use embassy_nrf::{interrupt, pac, rtc, uarte};
use futures::future::{select, Either};
use nrf52840_hal::clocks;
use nrf52840_hal::gpio;
2020-09-24 20:04:45 +00:00
#[task]
2020-12-23 15:18:29 +00:00
async fn run(mut uart: uarte::Uarte<pac::UARTE0>) {
2020-09-22 16:03:43 +00:00
info!("uarte initialized!");
2020-12-23 15:18:29 +00:00
// Message must be in SRAM
let mut buf = [0; 8];
buf.copy_from_slice(b"Hello!\r\n");
uart.send(&buf).await;
2020-09-22 16:03:43 +00:00
info!("wrote hello in uart!");
loop {
2021-01-01 22:04:18 +00:00
info!("reading...");
// `receive()` doesn't return until the buffer has been completely filled with
// incoming data, which in this case is 8 bytes.
//
// This example shows how to use `select` to run an uart receive concurrently with a
// 1 second timer, effectively adding a timeout to the receive operation.
let recv_fut = uart.receive(&mut buf);
let timer_fut = Timer::after(Duration::from_millis(1000));
let received = match select(recv_fut, timer_fut).await {
// recv_fut completed first, so we've received `buf_len` bytes.
2020-12-23 15:18:29 +00:00
Either::Left((buf, _)) => buf,
2021-01-01 22:04:18 +00:00
// timer_fut completed first. `select` gives us back the future that didn't complete, which
// is `recv_fut` in this case, so we can do further stuff with it.
//
// The recv_fut would stop the uart read automatically when dropped. However, we want to know how
// many bytes have been received, so we have to "gracefully stop" it with `.stop()`.
Either::Right((_, recv_fut)) => {
let (buf, n) = recv_fut.stop().await;
2020-12-23 15:18:29 +00:00
&buf[..n]
}
};
if received.len() > 0 {
info!("read done, got {:[u8]}", received);
// Echo back received data
uart.send(received).await;
2020-09-22 16:03:43 +00:00
}
}
}
2020-12-23 15:18:29 +00:00
static RTC: Forever<rtc::RTC<pac::RTC1>> = Forever::new();
static ALARM: Forever<rtc::Alarm<pac::RTC1>> = Forever::new();
2020-10-31 21:37:24 +00:00
static EXECUTOR: Forever<Executor> = Forever::new();
2020-09-22 16:03:43 +00:00
#[entry]
fn main() -> ! {
info!("Hello World!");
2020-12-23 15:18:29 +00:00
let p = unwrap!(embassy_nrf::pac::Peripherals::take());
clocks::Clocks::new(p.CLOCK)
.enable_ext_hfosc()
.set_lfclk_src_external(clocks::LfOscConfiguration::NoExternalNoBypass)
.start_lfclk();
let rtc = RTC.put(rtc::RTC::new(p.RTC1, interrupt::take!(RTC1)));
rtc.start();
unsafe { embassy::time::set_clock(rtc) };
let alarm = ALARM.put(rtc.alarm0());
let executor = EXECUTOR.put(Executor::new_with_alarm(alarm, cortex_m::asm::sev));
// Init UART
let port0 = gpio::p0::Parts::new(p.P0);
let pins = uarte::Pins {
rxd: port0.p0_08.into_floating_input().degrade(),
txd: port0
.p0_06
.into_push_pull_output(gpio::Level::Low)
.degrade(),
cts: None,
rts: None,
};
// NOTE(unsafe): Safe becasue we do not use `mem::forget` anywhere.
let uart = unsafe {
uarte::Uarte::new(
p.UARTE0,
interrupt::take!(UARTE0_UART0),
pins,
uarte::Parity::EXCLUDED,
uarte::Baudrate::BAUD115200,
)
};
unwrap!(executor.spawn(run(uart)));
2020-09-24 20:04:45 +00:00
2020-10-31 21:37:24 +00:00
loop {
executor.run();
cortex_m::asm::wfe();
2020-09-22 16:03:43 +00:00
}
}