embassy/embassy-nrf/src/spim.rs

659 lines
21 KiB
Rust
Raw Normal View History

#![macro_use]
use core::marker::PhantomData;
2021-01-18 13:22:55 +00:00
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;
2021-04-14 14:37:10 +00:00
use embassy::interrupt::InterruptExt;
use embassy::util::Unborrow;
use embassy_hal_common::unborrow;
2021-01-18 13:22:55 +00:00
use futures::future::poll_fn;
use crate::chip::FORCE_COPY_BUFFER_SIZE;
2021-03-27 02:20:58 +00:00
use crate::gpio::sealed::Pin as _;
2022-02-12 00:04:01 +00:00
use crate::gpio::{self, AnyPin};
use crate::gpio::{Pin as GpioPin, PselBits};
2021-05-17 09:48:58 +00:00
use crate::interrupt::Interrupt;
use crate::util::{slice_ptr_parts, slice_ptr_parts_mut};
2021-05-17 09:48:58 +00:00
use crate::{pac, util::slice_in_ram_or};
2021-01-18 13:22:55 +00:00
pub use embedded_hal_02::spi::{Mode, Phase, Polarity, MODE_0, MODE_1, MODE_2, MODE_3};
pub use pac::spim0::frequency::FREQUENCY_A as Frequency;
2021-01-18 13:22:55 +00:00
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
TxBufferTooLong,
RxBufferTooLong,
/// EasyDMA can only read from data memory, read only buffers in flash will fail.
DMABufferNotInDataMemory,
}
/// Interface for the SPIM peripheral using EasyDMA to offload the transmission and reception workload.
///
/// ## Data locality requirements
///
/// On nRF chips, EasyDMA requires the buffers to reside in RAM. However, Rust
/// slices will not always do so. Take the following example:
///
/// ```no_run
/// // As we pass a slice to the function whose contents will not ever change,
/// // the compiler writes it into the flash and thus the pointer to it will
/// // reference static memory. Since EasyDMA requires slices to reside in RAM,
/// // this function call will fail.
/// let result = spim.write_from_ram(&[1, 2, 3]);
/// assert_eq!(result, Error::DMABufferNotInDataMemory);
///
/// // The data is still static and located in flash. However, since we are assigning
/// // it to a variable, the compiler will load it into memory. Passing a reference to the
/// // variable will yield a pointer that references dynamic memory, thus making EasyDMA happy.
/// // This function call succeeds.
/// let data = [1, 2, 3];
/// let result = spim.write_from_ram(&data);
/// assert!(result.is_ok());
/// ```
///
/// Each function in this struct has a `_from_ram` variant and one without this suffix.
/// - Functions with the suffix (e.g. [`write_from_ram`](Spim::write_from_ram), [`transfer_from_ram`](Spim::transfer_from_ram)) will return an error if the passed slice does not reside in RAM.
/// - Functions without the suffix (e.g. [`write`](Spim::write), [`transfer`](Spim::transfer)) will check whether the data is in RAM and copy it into memory prior to transmission.
///
/// Since copying incurs a overhead, you are given the option to choose from `_from_ram` variants which will
/// fail and notify you, or the more convenient versions without the suffix which are potentially a little bit
/// more inefficient.
///
/// Note that the [`read`](Spim::read) and [`transfer_in_place`](Spim::transfer_in_place) methods do not have the corresponding `_from_ram` variants as
/// mutable slices always reside in RAM.
pub struct Spim<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
2021-01-18 13:22:55 +00:00
}
#[non_exhaustive]
2021-01-18 13:22:55 +00:00
pub struct Config {
pub frequency: Frequency,
pub mode: Mode,
pub orc: u8,
}
impl Default for Config {
fn default() -> Self {
Self {
frequency: Frequency::M1,
mode: MODE_0,
orc: 0x00,
}
}
}
impl<'d, T: Instance> Spim<'d, T> {
pub fn new(
2022-02-12 00:04:01 +00:00
spim: impl Unborrow<Target = T> + 'd,
irq: impl Unborrow<Target = T::Interrupt> + 'd,
sck: impl Unborrow<Target = impl GpioPin> + 'd,
miso: impl Unborrow<Target = impl GpioPin> + 'd,
mosi: impl Unborrow<Target = impl GpioPin> + 'd,
config: Config,
) -> Self {
unborrow!(sck, miso, mosi);
Self::new_inner(
spim,
irq,
sck.degrade(),
Some(miso.degrade()),
Some(mosi.degrade()),
config,
)
}
pub fn new_txonly(
spim: impl Unborrow<Target = T> + 'd,
2021-04-14 17:59:52 +00:00
irq: impl Unborrow<Target = T::Interrupt> + 'd,
sck: impl Unborrow<Target = impl GpioPin> + 'd,
2022-02-12 00:04:01 +00:00
mosi: impl Unborrow<Target = impl GpioPin> + 'd,
config: Config,
) -> Self {
unborrow!(sck, mosi);
Self::new_inner(spim, irq, sck.degrade(), None, Some(mosi.degrade()), config)
}
pub fn new_rxonly(
spim: impl Unborrow<Target = T> + 'd,
irq: impl Unborrow<Target = T::Interrupt> + 'd,
sck: impl Unborrow<Target = impl GpioPin> + 'd,
miso: impl Unborrow<Target = impl GpioPin> + 'd,
config: Config,
) -> Self {
unborrow!(sck, miso);
Self::new_inner(spim, irq, sck.degrade(), Some(miso.degrade()), None, config)
}
fn new_inner(
_spim: impl Unborrow<Target = T> + 'd,
irq: impl Unborrow<Target = T::Interrupt> + 'd,
sck: AnyPin,
miso: Option<AnyPin>,
mosi: Option<AnyPin>,
config: Config,
) -> Self {
2022-02-12 00:04:01 +00:00
unborrow!(irq);
2021-04-14 14:37:10 +00:00
let r = T::regs();
2021-01-18 13:22:55 +00:00
// Configure pins
sck.conf().write(|w| w.dir().output().drive().h0h1());
2022-02-12 00:04:01 +00:00
if let Some(mosi) = &mosi {
2021-03-27 02:20:58 +00:00
mosi.conf().write(|w| w.dir().output().drive().h0h1());
}
2022-02-12 00:04:01 +00:00
if let Some(miso) = &miso {
2021-03-27 02:20:58 +00:00
miso.conf().write(|w| w.input().connect().drive().h0h1());
}
match config.mode.polarity {
Polarity::IdleHigh => {
sck.set_high();
2022-02-12 00:04:01 +00:00
if let Some(mosi) = &mosi {
2021-03-27 02:20:58 +00:00
mosi.set_high();
}
}
Polarity::IdleLow => {
sck.set_low();
2022-02-12 00:04:01 +00:00
if let Some(mosi) = &mosi {
2021-03-27 02:20:58 +00:00
mosi.set_low();
}
}
}
2021-01-18 13:22:55 +00:00
// Select pins.
r.psel.sck.write(|w| unsafe { w.bits(sck.psel_bits()) });
r.psel.mosi.write(|w| unsafe { w.bits(mosi.psel_bits()) });
r.psel.miso.write(|w| unsafe { w.bits(miso.psel_bits()) });
2021-01-18 13:22:55 +00:00
// Enable SPIM instance.
r.enable.write(|w| w.enable().enabled());
// Configure mode.
let mode = config.mode;
r.config.write(|w| {
2021-06-03 09:38:25 +00:00
match mode {
MODE_0 => {
w.order().msb_first();
w.cpol().active_high();
w.cpha().leading();
}
MODE_1 => {
w.order().msb_first();
w.cpol().active_high();
w.cpha().trailing();
}
MODE_2 => {
w.order().msb_first();
w.cpol().active_low();
w.cpha().leading();
}
MODE_3 => {
w.order().msb_first();
w.cpol().active_low();
w.cpha().trailing();
}
2021-01-18 13:22:55 +00:00
}
2021-06-03 09:38:25 +00:00
2021-01-18 13:22:55 +00:00
w
});
// Configure frequency.
let frequency = config.frequency;
r.frequency.write(|w| w.frequency().variant(frequency));
// Set over-read character
let orc = config.orc;
r.orc.write(|w| unsafe { w.orc().bits(orc) });
2021-01-18 13:22:55 +00:00
// Disable all events interrupts
r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });
2021-04-14 14:37:10 +00:00
irq.set_handler(Self::on_interrupt);
irq.unpend();
irq.enable();
2021-01-18 13:22:55 +00:00
Self {
phantom: PhantomData,
2021-01-18 13:22:55 +00:00
}
}
2021-04-14 14:37:10 +00:00
fn on_interrupt(_: *mut ()) {
let r = T::regs();
let s = T::state();
if r.events_end.read().bits() != 0 {
s.end_waker.wake();
r.intenclr.write(|w| w.end().clear());
}
}
fn prepare(&mut self, rx: *mut [u8], tx: *const [u8]) -> Result<(), Error> {
slice_in_ram_or(tx, Error::DMABufferNotInDataMemory)?;
// NOTE: RAM slice check for rx is not necessary, as a mutable
// slice can only be built from data located in RAM.
compiler_fence(Ordering::SeqCst);
let r = T::regs();
// Set up the DMA write.
let (ptr, len) = slice_ptr_parts(tx);
r.txd.ptr.write(|w| unsafe { w.ptr().bits(ptr as _) });
r.txd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });
// Set up the DMA read.
let (ptr, len) = slice_ptr_parts_mut(rx);
r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as _) });
r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });
// Reset and enable the event
r.events_end.reset();
r.intenset.write(|w| w.end().set());
// Start SPI transaction.
r.tasks_start.write(|w| unsafe { w.bits(1) });
Ok(())
}
fn blocking_inner_from_ram(&mut self, rx: *mut [u8], tx: *const [u8]) -> Result<(), Error> {
self.prepare(rx, tx)?;
// Wait for 'end' event.
while T::regs().events_end.read().bits() == 0 {}
compiler_fence(Ordering::SeqCst);
Ok(())
}
fn blocking_inner(&mut self, rx: &mut [u8], tx: &[u8]) -> Result<(), Error> {
match self.blocking_inner_from_ram(rx, tx) {
Ok(_) => Ok(()),
Err(Error::DMABufferNotInDataMemory) => {
2022-02-23 22:27:12 +00:00
trace!("Copying SPIM tx buffer into RAM for DMA");
let mut tx_buf = [0u8; FORCE_COPY_BUFFER_SIZE];
tx_buf[..tx.len()].copy_from_slice(tx);
self.blocking_inner_from_ram(rx, &tx_buf[..tx.len()])
}
Err(error) => Err(error),
}
}
async fn async_inner_from_ram(&mut self, rx: *mut [u8], tx: *const [u8]) -> Result<(), Error> {
self.prepare(rx, tx)?;
// Wait for 'end' event.
poll_fn(|cx| {
T::state().end_waker.register(cx.waker());
if T::regs().events_end.read().bits() != 0 {
return Poll::Ready(());
}
Poll::Pending
})
.await;
compiler_fence(Ordering::SeqCst);
Ok(())
}
async fn async_inner(&mut self, rx: &mut [u8], tx: &[u8]) -> Result<(), Error> {
match self.async_inner_from_ram(rx, tx).await {
Ok(_) => Ok(()),
Err(Error::DMABufferNotInDataMemory) => {
2022-02-23 22:27:12 +00:00
trace!("Copying SPIM tx buffer into RAM for DMA");
let mut tx_buf = [0u8; FORCE_COPY_BUFFER_SIZE];
tx_buf[..tx.len()].copy_from_slice(tx);
self.async_inner_from_ram(rx, &tx_buf[..tx.len()]).await
}
Err(error) => Err(error),
}
}
/// Reads data from the SPI bus without sending anything. Blocks until the buffer has been filled.
pub fn blocking_read(&mut self, data: &mut [u8]) -> Result<(), Error> {
self.blocking_inner(data, &[])
}
/// Simultaneously sends and receives data. Blocks until the transmission is completed.
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
pub fn blocking_transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> {
self.blocking_inner(read, write)
}
/// Same as [`blocking_transfer`](Spim::blocking_transfer) but will fail instead of copying data into RAM.
pub fn blocking_transfer_from_ram(
&mut self,
read: &mut [u8],
write: &[u8],
) -> Result<(), Error> {
self.blocking_inner(read, write)
}
/// Simultaneously sends and receives data.
/// Places the received data into the same buffer and blocks until the transmission is completed.
pub fn blocking_transfer_in_place(&mut self, data: &mut [u8]) -> Result<(), Error> {
self.blocking_inner_from_ram(data, data)
}
/// Sends data, discarding any received data. Blocks until the transmission is completed.
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
pub fn blocking_write(&mut self, data: &[u8]) -> Result<(), Error> {
self.blocking_inner(&mut [], data)
}
/// Same as [`blocking_write`](Spim::blocking_write) but will fail instead of copying data into RAM.
pub fn blocking_write_from_ram(&mut self, data: &[u8]) -> Result<(), Error> {
self.blocking_inner(&mut [], data)
}
/// Reads data from the SPI bus without sending anything.
pub async fn read(&mut self, data: &mut [u8]) -> Result<(), Error> {
self.async_inner(data, &[]).await
}
/// Simultaneously sends and receives data.
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
pub async fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> {
self.async_inner(read, write).await
}
/// Same as [`transfer`](Spim::transfer) but will fail instead of copying data into RAM.
pub async fn transfer_from_ram(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> {
self.async_inner_from_ram(read, write).await
}
/// Simultaneously sends and receives data. Places the received data into the same buffer.
pub async fn transfer_in_place(&mut self, data: &mut [u8]) -> Result<(), Error> {
self.async_inner_from_ram(data, data).await
}
/// Sends data, discarding any received data.
/// If necessary, the write buffer will be copied into RAM (see struct description for detail).
pub async fn write(&mut self, data: &[u8]) -> Result<(), Error> {
self.async_inner(&mut [], data).await
}
/// Same as [`write`](Spim::write) but will fail instead of copying data into RAM.
pub async fn write_from_ram(&mut self, data: &[u8]) -> Result<(), Error> {
self.async_inner_from_ram(&mut [], data).await
}
2021-03-18 00:27:30 +00:00
}
impl<'d, T: Instance> Drop for Spim<'d, T> {
fn drop(&mut self) {
2021-12-23 12:43:14 +00:00
trace!("spim drop");
// TODO check for abort, wait for xxxstopped
// disable!
let r = T::regs();
r.enable.write(|w| w.enable().disabled());
gpio::deconfigure_pin(r.psel.sck.read().bits());
gpio::deconfigure_pin(r.psel.miso.read().bits());
gpio::deconfigure_pin(r.psel.mosi.read().bits());
2021-12-23 12:43:14 +00:00
trace!("spim drop: done");
}
}
pub(crate) mod sealed {
use embassy::waitqueue::AtomicWaker;
2021-03-18 19:56:10 +00:00
use super::*;
2021-04-14 14:37:10 +00:00
pub struct State {
pub end_waker: AtomicWaker,
}
impl State {
pub const fn new() -> Self {
Self {
end_waker: AtomicWaker::new(),
}
}
}
2021-03-18 19:56:10 +00:00
pub trait Instance {
2021-04-14 14:37:10 +00:00
fn regs() -> &'static pac::spim0::RegisterBlock;
fn state() -> &'static State;
2021-03-18 19:56:10 +00:00
}
2021-01-18 13:22:55 +00:00
}
pub trait Instance: Unborrow<Target = Self> + sealed::Instance + 'static {
2021-01-18 13:22:55 +00:00
type Interrupt: Interrupt;
}
macro_rules! impl_spim {
($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::spim::sealed::Instance for peripherals::$type {
2021-04-14 14:37:10 +00:00
fn regs() -> &'static pac::spim0::RegisterBlock {
unsafe { &*pac::$pac_type::ptr() }
2021-03-18 19:56:10 +00:00
}
fn state() -> &'static crate::spim::sealed::State {
static STATE: crate::spim::sealed::State = crate::spim::sealed::State::new();
2021-04-14 14:37:10 +00:00
&STATE
}
2021-03-18 19:56:10 +00:00
}
impl crate::spim::Instance for peripherals::$type {
type Interrupt = crate::interrupt::$irq;
2021-03-18 19:56:10 +00:00
}
};
2021-01-18 13:22:55 +00:00
}
// ====================
mod eh02 {
use super::*;
impl<'d, T: Instance> embedded_hal_02::blocking::spi::Transfer<u8> for Spim<'d, T> {
type Error = Error;
fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> {
self.blocking_transfer_in_place(words)?;
Ok(words)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::spi::Write<u8> for Spim<'d, T> {
type Error = Error;
fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(words)
}
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl embedded_hal_1::spi::Error for Error {
fn kind(&self) -> embedded_hal_1::spi::ErrorKind {
match *self {
Self::TxBufferTooLong => embedded_hal_1::spi::ErrorKind::Other,
Self::RxBufferTooLong => embedded_hal_1::spi::ErrorKind::Other,
Self::DMABufferNotInDataMemory => embedded_hal_1::spi::ErrorKind::Other,
}
}
}
impl<'d, T: Instance> embedded_hal_1::spi::ErrorType for Spim<'d, T> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::spi::blocking::Read<u8> for Spim<'d, T> {
fn read(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_transfer(words, &[])
}
fn read_transaction(&mut self, words: &mut [&mut [u8]]) -> Result<(), Self::Error> {
for buf in words {
self.blocking_read(buf)?
}
Ok(())
}
}
impl<'d, T: Instance> embedded_hal_1::spi::blocking::Write<u8> for Spim<'d, T> {
fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(words)
}
fn write_transaction(&mut self, words: &[&[u8]]) -> Result<(), Self::Error> {
for buf in words {
self.blocking_write(buf)?
}
Ok(())
}
fn write_iter<WI>(&mut self, words: WI) -> Result<(), Self::Error>
where
WI: IntoIterator<Item = u8>,
{
for w in words {
self.blocking_write(&[w])?;
}
Ok(())
}
}
impl<'d, T: Instance> embedded_hal_1::spi::blocking::ReadWrite<u8> for Spim<'d, T> {
fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Self::Error> {
self.blocking_transfer(read, write)
}
fn transfer_in_place(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_transfer_in_place(words)
}
fn transaction<'a>(
&mut self,
operations: &mut [embedded_hal_1::spi::blocking::Operation<'a, u8>],
) -> Result<(), Self::Error> {
use embedded_hal_1::spi::blocking::Operation;
for o in operations {
match o {
Operation::Read(b) => self.blocking_read(b)?,
Operation::Write(b) => self.blocking_write(b)?,
Operation::Transfer(r, w) => self.blocking_transfer(r, w)?,
Operation::TransferInPlace(b) => self.blocking_transfer_in_place(b)?,
}
}
Ok(())
}
}
}
#[cfg(all(feature = "unstable-traits", feature = "nightly"))]
mod eh1a {
use super::*;
use core::future::Future;
impl<'d, T: Instance> embedded_hal_async::spi::Read<u8> for Spim<'d, T> {
type ReadFuture<'a>
where
Self: 'a,
= impl Future<Output = Result<(), Self::Error>> + 'a;
fn read<'a>(&'a mut self, words: &'a mut [u8]) -> Self::ReadFuture<'a> {
self.read(words)
}
type ReadTransactionFuture<'a>
where
Self: 'a,
= impl Future<Output = Result<(), Self::Error>> + 'a;
fn read_transaction<'a>(
&'a mut self,
words: &'a mut [&'a mut [u8]],
) -> Self::ReadTransactionFuture<'a> {
async move {
for buf in words {
self.read(buf).await?
}
Ok(())
}
}
}
impl<'d, T: Instance> embedded_hal_async::spi::Write<u8> for Spim<'d, T> {
type WriteFuture<'a>
where
Self: 'a,
= impl Future<Output = Result<(), Self::Error>> + 'a;
fn write<'a>(&'a mut self, data: &'a [u8]) -> Self::WriteFuture<'a> {
self.write(data)
}
type WriteTransactionFuture<'a>
where
Self: 'a,
= impl Future<Output = Result<(), Self::Error>> + 'a;
fn write_transaction<'a>(
&'a mut self,
words: &'a [&'a [u8]],
) -> Self::WriteTransactionFuture<'a> {
async move {
for buf in words {
self.write(buf).await?
}
Ok(())
}
}
}
impl<'d, T: Instance> embedded_hal_async::spi::ReadWrite<u8> for Spim<'d, T> {
type TransferFuture<'a>
where
Self: 'a,
= impl Future<Output = Result<(), Self::Error>> + 'a;
fn transfer<'a>(&'a mut self, rx: &'a mut [u8], tx: &'a [u8]) -> Self::TransferFuture<'a> {
self.transfer(rx, tx)
}
type TransferInPlaceFuture<'a>
where
Self: 'a,
= impl Future<Output = Result<(), Self::Error>> + 'a;
fn transfer_in_place<'a>(
&'a mut self,
words: &'a mut [u8],
) -> Self::TransferInPlaceFuture<'a> {
self.transfer_in_place(words)
}
type TransactionFuture<'a>
where
Self: 'a,
= impl Future<Output = Result<(), Self::Error>> + 'a;
fn transaction<'a>(
&'a mut self,
operations: &'a mut [embedded_hal_async::spi::Operation<'a, u8>],
) -> Self::TransactionFuture<'a> {
use embedded_hal_1::spi::blocking::Operation;
async move {
for o in operations {
match o {
Operation::Read(b) => self.read(b).await?,
Operation::Write(b) => self.write(b).await?,
Operation::Transfer(r, w) => self.transfer(r, w).await?,
Operation::TransferInPlace(b) => self.transfer_in_place(b).await?,
}
}
Ok(())
}
}
}
}