embassy/embassy-nrf/src/buffered_uarte.rs

441 lines
15 KiB
Rust
Raw Normal View History

2020-09-22 16:03:43 +00:00
//! HAL interface to the UARTE peripheral
//!
//! See product specification:
//!
//! - nrf52832: Section 35
//! - nrf52840: Section 6.34
use core::cmp::min;
use core::marker::PhantomData;
use core::mem;
2020-09-22 16:03:43 +00:00
use core::ops::Deref;
use core::pin::Pin;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::{Context, Poll};
use embassy::io::{AsyncBufRead, AsyncWrite, Result};
use embassy::util::WakerRegistration;
2021-01-02 19:31:50 +00:00
use embedded_hal::digital::v2::OutputPin;
2020-09-22 16:03:43 +00:00
use crate::fmt::{panic, todo, *};
2021-01-02 19:31:50 +00:00
use crate::hal::gpio::Port as GpioPort;
use crate::interrupt::{self, OwnedInterrupt};
use crate::pac;
2021-01-02 19:31:50 +00:00
use crate::pac::uarte0;
use crate::util::peripheral;
use crate::util::ring_buffer::RingBuffer;
2020-09-22 16:03:43 +00:00
2021-01-02 19:31:50 +00:00
// Re-export SVD variants to allow user to directly set values
pub use crate::hal::uarte::Pins;
pub use uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity};
2020-09-22 16:03:43 +00:00
#[derive(Copy, Clone, Debug, PartialEq)]
enum RxState {
Idle,
Receiving,
ReceivingReady,
Stopping,
}
#[derive(Copy, Clone, Debug, PartialEq)]
enum TxState {
Idle,
Transmitting(usize),
}
/// Interface to a UARTE instance
///
/// This is a very basic interface that comes with the following limitations:
/// - The UARTE instances share the same address space with instances of UART.
/// You need to make sure that conflicting instances
/// are disabled before using `Uarte`. See product specification:
/// - nrf52832: Section 15.2
/// - nrf52840: Section 6.1.2
pub struct BufferedUarte<'a, T: Instance> {
reg: peripheral::Registration<State<'a, T>>,
wtf: PhantomData<&'a ()>,
2020-09-22 16:03:43 +00:00
}
impl<'a, T: Instance> Unpin for BufferedUarte<'a, T> {}
2020-09-22 16:03:43 +00:00
2020-10-31 22:03:09 +00:00
#[cfg(any(feature = "52833", feature = "52840"))]
2020-09-22 16:03:43 +00:00
fn port_bit(port: GpioPort) -> bool {
match port {
GpioPort::Port0 => false,
GpioPort::Port1 => true,
}
}
impl<'a, T: Instance> BufferedUarte<'a, T> {
2020-12-29 00:53:17 +00:00
pub fn new(
uarte: T,
irq: T::Interrupt,
rx_buffer: &'a mut [u8],
tx_buffer: &'a mut [u8],
2020-12-29 00:53:17 +00:00
mut pins: Pins,
parity: Parity,
baudrate: Baudrate,
) -> Self {
2020-09-22 16:03:43 +00:00
// Select pins
uarte.psel.rxd.write(|w| {
let w = unsafe { w.pin().bits(pins.rxd.pin()) };
2020-10-31 22:03:09 +00:00
#[cfg(any(feature = "52833", feature = "52840"))]
2020-09-22 16:03:43 +00:00
let w = w.port().bit(port_bit(pins.rxd.port()));
w.connect().connected()
});
pins.txd.set_high().unwrap();
uarte.psel.txd.write(|w| {
let w = unsafe { w.pin().bits(pins.txd.pin()) };
2020-10-31 22:03:09 +00:00
#[cfg(any(feature = "52833", feature = "52840"))]
2020-09-22 16:03:43 +00:00
let w = w.port().bit(port_bit(pins.txd.port()));
w.connect().connected()
});
// Optional pins
uarte.psel.cts.write(|w| {
if let Some(ref pin) = pins.cts {
let w = unsafe { w.pin().bits(pin.pin()) };
2020-10-31 22:03:09 +00:00
#[cfg(any(feature = "52833", feature = "52840"))]
2020-09-22 16:03:43 +00:00
let w = w.port().bit(port_bit(pin.port()));
w.connect().connected()
} else {
w.connect().disconnected()
}
});
uarte.psel.rts.write(|w| {
if let Some(ref pin) = pins.rts {
let w = unsafe { w.pin().bits(pin.pin()) };
2020-10-31 22:03:09 +00:00
#[cfg(any(feature = "52833", feature = "52840"))]
2020-09-22 16:03:43 +00:00
let w = w.port().bit(port_bit(pin.port()));
w.connect().connected()
} else {
w.connect().disconnected()
}
});
// Enable UARTE instance
uarte.enable.write(|w| w.enable().enabled());
// Enable interrupts
uarte.intenset.write(|w| w.endrx().set().endtx().set());
// Configure
let hardware_flow_control = pins.rts.is_some() && pins.cts.is_some();
uarte
.config
.write(|w| w.hwfc().bit(hardware_flow_control).parity().variant(parity));
// Configure frequency
uarte.baudrate.write(|w| w.baudrate().variant(baudrate));
irq.pend();
2020-12-28 22:57:50 +00:00
BufferedUarte {
reg: peripheral::Registration::new(
2020-12-29 00:53:17 +00:00
irq,
State {
inner: uarte,
rx: RingBuffer::new(rx_buffer),
rx_state: RxState::Idle,
rx_waker: WakerRegistration::new(),
tx: RingBuffer::new(tx_buffer),
tx_state: TxState::Idle,
tx_waker: WakerRegistration::new(),
},
),
wtf: PhantomData,
2020-09-22 16:03:43 +00:00
}
}
}
impl<'a, T: Instance> Drop for BufferedUarte<'a, T> {
2020-09-22 16:03:43 +00:00
fn drop(&mut self) {
// stop DMA before dropping, because DMA is using the buffer in `self`.
todo!()
}
}
impl<'a, T: Instance> AsyncBufRead for BufferedUarte<'a, T> {
2020-09-22 16:03:43 +00:00
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<&[u8]>> {
let this = unsafe { self.get_unchecked_mut() };
this.reg.with(|state, _| {
let z: Poll<Result<&[u8]>> = state.poll_fill_buf(cx);
let z: Poll<Result<&[u8]>> = unsafe { mem::transmute(z) };
z
})
2020-09-22 16:03:43 +00:00
}
fn consume(self: Pin<&mut Self>, amt: usize) {
let this = unsafe { self.get_unchecked_mut() };
this.reg.with(|state, irq| state.consume(irq, amt))
2020-09-22 16:03:43 +00:00
}
}
impl<'a, T: Instance> AsyncWrite for BufferedUarte<'a, T> {
2020-09-22 16:03:43 +00:00
fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<Result<usize>> {
let this = unsafe { self.get_unchecked_mut() };
this.reg.with(|state, irq| state.poll_write(irq, cx, buf))
2020-09-22 16:03:43 +00:00
}
}
// ====================================
// ====================================
// ====================================
2020-12-29 00:53:17 +00:00
// public because it needs to be used in Instance trait, but
// should not be used outside the module
#[doc(hidden)]
pub struct State<'a, T: Instance> {
inner: T,
2020-09-22 16:03:43 +00:00
rx: RingBuffer<'a>,
rx_state: RxState,
rx_waker: WakerRegistration,
tx: RingBuffer<'a>,
tx_state: TxState,
tx_waker: WakerRegistration,
}
2020-09-22 16:03:43 +00:00
impl<'a, T: Instance> State<'a, T> {
fn poll_fill_buf(&mut self, cx: &mut Context<'_>) -> Poll<Result<&[u8]>> {
2020-09-22 16:03:43 +00:00
// Conservative compiler fence to prevent optimizations that do not
// take in to account actions by DMA. The fence has been placed here,
// before any DMA action has started
compiler_fence(Ordering::SeqCst);
trace!("poll_read");
// We have data ready in buffer? Return it.
let buf = self.rx.pop_buf();
2020-09-22 16:03:43 +00:00
if buf.len() != 0 {
trace!(" got {:?} {:?}", buf.as_ptr() as u32, buf.len());
return Poll::Ready(Ok(buf));
}
trace!(" empty");
if self.rx_state == RxState::ReceivingReady {
2020-09-22 16:03:43 +00:00
trace!(" stopping");
self.rx_state = RxState::Stopping;
self.inner.tasks_stoprx.write(|w| unsafe { w.bits(1) });
2020-09-22 16:03:43 +00:00
}
self.rx_waker.register(cx.waker());
2020-09-22 16:03:43 +00:00
Poll::Pending
}
fn consume(&mut self, irq: &mut T::Interrupt, amt: usize) {
2020-09-22 16:03:43 +00:00
trace!("consume {:?}", amt);
self.rx.pop(amt);
irq.pend();
2020-09-22 16:03:43 +00:00
}
fn poll_write(
&mut self,
irq: &mut T::Interrupt,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<Result<usize>> {
2020-09-22 16:03:43 +00:00
trace!("poll_write: {:?}", buf.len());
let tx_buf = self.tx.push_buf();
2020-09-22 16:03:43 +00:00
if tx_buf.len() == 0 {
trace!("poll_write: pending");
self.tx_waker.register(cx.waker());
2020-09-22 16:03:43 +00:00
return Poll::Pending;
}
let n = min(tx_buf.len(), buf.len());
tx_buf[..n].copy_from_slice(&buf[..n]);
self.tx.push(n);
2020-09-22 16:03:43 +00:00
trace!("poll_write: queued {:?}", n);
// Conservative compiler fence to prevent optimizations that do not
// take in to account actions by DMA. The fence has been placed here,
// before any DMA action has started
compiler_fence(Ordering::SeqCst);
irq.pend();
2020-09-22 16:03:43 +00:00
Poll::Ready(Ok(n))
}
}
impl<'a, T: Instance> peripheral::State for State<'a, T> {
type Interrupt = T::Interrupt;
fn store<'b>() -> &'b peripheral::Store<Self> {
unsafe { mem::transmute(T::storage()) }
}
2020-09-22 16:03:43 +00:00
fn on_interrupt(&mut self) {
trace!("irq: start");
let mut more_work = true;
while more_work {
more_work = false;
match self.rx_state {
RxState::Idle => {
trace!(" irq_rx: in state idle");
if self.inner.events_rxdrdy.read().bits() != 0 {
trace!(" irq_rx: rxdrdy?????");
self.inner.events_rxdrdy.reset();
}
if self.inner.events_endrx.read().bits() != 0 {
panic!("unexpected endrx");
}
let buf = self.rx.push_buf();
if buf.len() != 0 {
trace!(" irq_rx: starting {:?}", buf.len());
self.rx_state = RxState::Receiving;
// Set up the DMA read
self.inner.rxd.ptr.write(|w|
// The PTR field is a full 32 bits wide and accepts the full range
// of values.
unsafe { w.ptr().bits(buf.as_ptr() as u32) });
self.inner.rxd.maxcnt.write(|w|
// We're giving it the length of the buffer, so no danger of
// accessing invalid memory. We have verified that the length of the
// buffer fits in an `u8`, so the cast to `u8` is also fine.
//
// The MAXCNT field is at least 8 bits wide and accepts the full
// range of values.
unsafe { w.maxcnt().bits(buf.len() as _) });
trace!(" irq_rx: buf {:?} {:?}", buf.as_ptr() as u32, buf.len());
// Enable RXRDY interrupt.
self.inner.events_rxdrdy.reset();
self.inner.intenset.write(|w| w.rxdrdy().set());
// Start UARTE Receive transaction
self.inner.tasks_startrx.write(|w|
// `1` is a valid value to write to task registers.
unsafe { w.bits(1) });
}
}
RxState::Receiving => {
trace!(" irq_rx: in state receiving");
if self.inner.events_rxdrdy.read().bits() != 0 {
trace!(" irq_rx: rxdrdy");
// Disable the RXRDY event interrupt
// RXRDY is triggered for every byte, but we only care about whether we have
// some bytes or not. So as soon as we have at least one, disable it, to avoid
// wasting CPU cycles in interrupts.
self.inner.intenclr.write(|w| w.rxdrdy().clear());
self.inner.events_rxdrdy.reset();
self.rx_waker.wake();
self.rx_state = RxState::ReceivingReady;
more_work = true; // in case we also have endrx pending
}
}
RxState::ReceivingReady | RxState::Stopping => {
trace!(" irq_rx: in state ReceivingReady");
if self.inner.events_rxdrdy.read().bits() != 0 {
trace!(" irq_rx: rxdrdy");
self.inner.events_rxdrdy.reset();
}
if self.inner.events_endrx.read().bits() != 0 {
let n: usize = self.inner.rxd.amount.read().amount().bits() as usize;
trace!(" irq_rx: endrx {:?}", n);
self.rx.push(n);
self.inner.events_endrx.reset();
self.rx_waker.wake();
self.rx_state = RxState::Idle;
more_work = true; // start another rx if possible
}
}
}
}
more_work = true;
while more_work {
more_work = false;
match self.tx_state {
TxState::Idle => {
trace!(" irq_tx: in state Idle");
let buf = self.tx.pop_buf();
if buf.len() != 0 {
trace!(" irq_tx: starting {:?}", buf.len());
self.tx_state = TxState::Transmitting(buf.len());
// Set up the DMA write
self.inner.txd.ptr.write(|w|
// The PTR field is a full 32 bits wide and accepts the full range
// of values.
unsafe { w.ptr().bits(buf.as_ptr() as u32) });
self.inner.txd.maxcnt.write(|w|
// We're giving it the length of the buffer, so no danger of
// accessing invalid memory. We have verified that the length of the
// buffer fits in an `u8`, so the cast to `u8` is also fine.
//
// The MAXCNT field is 8 bits wide and accepts the full range of
// values.
unsafe { w.maxcnt().bits(buf.len() as _) });
// Start UARTE Transmit transaction
self.inner.tasks_starttx.write(|w|
// `1` is a valid value to write to task registers.
unsafe { w.bits(1) });
}
}
TxState::Transmitting(n) => {
trace!(" irq_tx: in state Transmitting");
if self.inner.events_endtx.read().bits() != 0 {
self.inner.events_endtx.reset();
trace!(" irq_tx: endtx {:?}", n);
self.tx.pop(n);
self.tx_waker.wake();
self.tx_state = TxState::Idle;
more_work = true; // start another tx if possible
}
}
}
}
trace!("irq: end");
}
}
mod private {
pub trait Sealed {}
2020-10-31 22:03:09 +00:00
impl Sealed for crate::pac::UARTE0 {}
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
impl Sealed for crate::pac::UARTE1 {}
2020-09-22 16:03:43 +00:00
}
pub trait Instance:
Deref<Target = uarte0::RegisterBlock> + Sized + private::Sealed + 'static
{
2020-12-29 00:53:17 +00:00
type Interrupt: OwnedInterrupt;
fn storage() -> &'static peripheral::Store<State<'static, Self>>;
2020-09-22 16:03:43 +00:00
}
impl Instance for pac::UARTE0 {
2020-12-29 00:53:17 +00:00
type Interrupt = interrupt::UARTE0_UART0Interrupt;
fn storage() -> &'static peripheral::Store<State<'static, Self>> {
static STORAGE: peripheral::Store<State<'static, crate::pac::UARTE0>> =
peripheral::Store::uninit();
&STORAGE
2020-09-22 16:03:43 +00:00
}
}
impl Instance for pac::UARTE1 {
2020-12-29 00:53:17 +00:00
type Interrupt = interrupt::UARTE1Interrupt;
fn storage() -> &'static peripheral::Store<State<'static, Self>> {
static STORAGE: peripheral::Store<State<'static, crate::pac::UARTE1>> =
peripheral::Store::uninit();
&STORAGE
2020-09-22 16:03:43 +00:00
}
}