The DAC driver defaults to enabling the channel trigger, but leaves it
at the default value of TIM6 TRGO, then performs a software trigger
after writing the new output value. We could change the trigger
selection to software trigger, but for this example it's simpler to just
disable the trigger.
- Allows classes to handle vendor requests.
- Allows classes to use a single handler for multiple interfaces.
- Allows classes to access the other events (previously only `reset` was available).
1025: Implement I2C timeouts, second attempt r=Dirbaio a=chemicstry
This is an alterrnative to #1022 as discussed there.
Timeouts are implemented using suggested `check_timeout: impl Fn() -> Result<(), Error>` function, which does not depend on `embassy-time` by default and is a noop for regular I2C.
This also adds `time` feature like in `embassy-nrf` to enable `embassy-time` dependencies. While at it, I also gated some other peripherals that depend on `embassy-time`, notably `usb` and (partially) `subghz`.
`TimeoutI2c` is currently only implemented for i2cv1, because i2cv2 has additional complications:
- Async methods still use a lot of busy waiting code in between DMA transfers, so simple `with_timeout()` will not work and it will have to use both types of timeouts. It could probably be rewritten to replace busy waits with IRQs, but that's outside the scope of this PR.
- I2C definition `I2c<'d, T, TXDMA, RXDMA>` is different from i2cv1 `I2c<'d, T>` making it hard to share single `TimeoutI2c` wrapper. A couple of options here:
- Duplicate `TimeoutI2c` code
- Add dummy `TXDMA`, `RXDMA` types to i2cv1 considering that in the future it should also support DMA
Co-authored-by: chemicstry <chemicstry@gmail.com>
It was only useful for doing #[embassy_executor::main(config = "config()")]`. Now that
it's gone, it makes more sense to build the config in main directly.
896: Implement I2C pullup configuration r=lulf a=chemicstry
I wasn't sure if I should put frequency into config struct, so left it separate as in SPI periph.
Also added Copy derives to gpio types, not sure why they weren't?
Co-authored-by: chemicstry <chemicstry@gmail.com>
- Remove unused `MilliSeconds`, `MicroSeconds`, and `NanoSeconds` types
- Remove `Bps`, `KiloHertz`, and `MegaHertz` types that were only used
for converting to `Hertz`
- Replace all instances of `impl Into<Hertz>` with `Hertz`
- Add `hz`, `khz`, and `mhz` methods to `Hertz`, as well as
free function shortcuts
- Remove `U32Ext` extension trait
806: Add embassy-cortex-m crate. r=Dirbaio a=Dirbaio
- Move Interrupt and InterruptExecutor from `embassy` to `embassy-cortex-m`.
- Move Unborrow from `embassy` to `embassy-hal-common` (nothing in `embassy` requires it anymore)
- Move PeripheralMutex from `embassy-hal-common` to `embassy-cortex-m`.
Co-authored-by: Dario Nieuwenhuis <dirbaio@dirbaio.net>
- Move Interrupt and InterruptExecutor from `embassy` to `embassy-cortex-m`.
- Move Unborrow from `embassy` to `embassy-hal-common` (nothing in `embassy` requires it anymore)
- Move PeripheralMutex from `embassy-hal-common` to `embassy-cortex-m`.
I've renamed the channel module for the MPMC as mpmc. There was a previous debate about this, but I feel that the strategy here avoids importing `channel::channel`. The change leaves `signal::Signal`, but I think that's ok. It is all a bit subjective of course. The bottom line for me is that I really like the term mpmc - it means something to me and aligns with broader naming e.g. in Tokio.
SMI Ethernet PHYs all share a common base set of registers that can do
90% of all tasks. The LAN8742 driver used some vendor-specific
registers to check link negotiation status, but the need for that was
debatable, so I migrated it to a generic driver instead, anybody who
wants extra functionality can copy it and impl their own on top of it.
- Allow initializing in a static, without Forever.
- Remove ability to close, since in embedded enviromnents channels usually live forever and don't get closed.
- Remove MPSC restriction, it's MPMC now. Rename "mpsc" to "channel".
- `Sender` and `Receiver` are still available if you want to enforce a piece of code only has send/receive access, but are optional: you can send/receive directly into the Channel if you want.
* Keeps existing API for usart, but wraps it in Tx and Rx sub-types
* Adds split() method similar to nRF for getting indepdendent TX and RX
parts
* Implements e-h traits for TX and RX types
* Add stm32h7 example