embassy/embassy-stm32/src/can/bxcan/registers.rs
Dario Nieuwenhuis c8936edb6c stm32/can: simplify bxcan api, merging bx::* into the main structs.
The bx::* separate structs (Can, Rx, Tx) and separate `Instance` trait
are a relic from the `bxcan` crate. Remove them, move the functionality
into the main structs.
2024-04-02 11:08:03 +02:00

510 lines
18 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use core::cmp::Ordering;
use core::convert::Infallible;
pub use embedded_can::{ExtendedId, Id, StandardId};
use stm32_metapac::can::vals::Lec;
use super::{Mailbox, TransmitStatus};
use crate::can::enums::BusError;
use crate::can::frame::{Envelope, Frame, Header};
pub(crate) struct Registers(pub crate::pac::can::Can);
impl Registers {
pub fn enter_init_mode(&mut self) {
self.0.mcr().modify(|reg| {
reg.set_sleep(false);
reg.set_inrq(true);
});
loop {
let msr = self.0.msr().read();
if !msr.slak() && msr.inak() {
break;
}
}
}
// Leaves initialization mode, enters sleep mode.
pub fn leave_init_mode(&mut self) {
self.0.mcr().modify(|reg| {
reg.set_sleep(true);
reg.set_inrq(false);
});
loop {
let msr = self.0.msr().read();
if msr.slak() && !msr.inak() {
break;
}
}
}
pub fn set_bit_timing(&mut self, bt: crate::can::util::NominalBitTiming) {
let prescaler = u16::from(bt.prescaler) & 0x1FF;
let seg1 = u8::from(bt.seg1);
let seg2 = u8::from(bt.seg2) & 0x7F;
let sync_jump_width = u8::from(bt.sync_jump_width) & 0x7F;
self.0.btr().modify(|reg| {
reg.set_brp(prescaler - 1);
reg.set_ts(0, seg1 - 1);
reg.set_ts(1, seg2 - 1);
reg.set_sjw(sync_jump_width - 1);
});
}
/// Enables or disables silent mode: Disconnects the TX signal from the pin.
pub fn set_silent(&self, enabled: bool) {
let mode = match enabled {
false => stm32_metapac::can::vals::Silm::NORMAL,
true => stm32_metapac::can::vals::Silm::SILENT,
};
self.0.btr().modify(|reg| reg.set_silm(mode));
}
/// Enables or disables automatic retransmission of messages.
///
/// If this is enabled, the CAN peripheral will automatically try to retransmit each frame
/// until it can be sent. Otherwise, it will try only once to send each frame.
///
/// Automatic retransmission is enabled by default.
pub fn set_automatic_retransmit(&self, enabled: bool) {
self.0.mcr().modify(|reg| reg.set_nart(enabled));
}
/// Enables or disables loopback mode: Internally connects the TX and RX
/// signals together.
pub fn set_loopback(&self, enabled: bool) {
self.0.btr().modify(|reg| reg.set_lbkm(enabled));
}
/// Configures the automatic wake-up feature.
///
/// This is turned off by default.
///
/// When turned on, an incoming frame will cause the peripheral to wake up from sleep and
/// receive the frame. If enabled, [`Interrupt::Wakeup`] will also be triggered by the incoming
/// frame.
#[allow(dead_code)]
pub fn set_automatic_wakeup(&mut self, enabled: bool) {
self.0.mcr().modify(|reg| reg.set_awum(enabled));
}
/// Leaves initialization mode and enables the peripheral (non-blocking version).
///
/// Usually, it is recommended to call [`CanConfig::enable`] instead. This method is only needed
/// if you want non-blocking initialization.
///
/// If this returns [`WouldBlock`][nb::Error::WouldBlock], the peripheral will enable itself
/// in the background. The peripheral is enabled and ready to use when this method returns
/// successfully.
pub fn enable_non_blocking(&mut self) -> nb::Result<(), Infallible> {
let msr = self.0.msr().read();
if msr.slak() {
self.0.mcr().modify(|reg| {
reg.set_abom(true);
reg.set_sleep(false);
});
Err(nb::Error::WouldBlock)
} else {
Ok(())
}
}
/// Puts the peripheral in a sleep mode to save power.
///
/// While in sleep mode, an incoming CAN frame will trigger [`Interrupt::Wakeup`] if enabled.
#[allow(dead_code)]
pub fn sleep(&mut self) {
self.0.mcr().modify(|reg| {
reg.set_sleep(true);
reg.set_inrq(false);
});
loop {
let msr = self.0.msr().read();
if msr.slak() && !msr.inak() {
break;
}
}
}
/// Wakes up from sleep mode.
///
/// Note that this will not trigger [`Interrupt::Wakeup`], only reception of an incoming CAN
/// frame will cause that interrupt.
#[allow(dead_code)]
pub fn wakeup(&mut self) {
self.0.mcr().modify(|reg| {
reg.set_sleep(false);
reg.set_inrq(false);
});
loop {
let msr = self.0.msr().read();
if !msr.slak() && !msr.inak() {
break;
}
}
}
pub fn curr_error(&self) -> Option<BusError> {
let err = { self.0.esr().read() };
if err.boff() {
return Some(BusError::BusOff);
} else if err.epvf() {
return Some(BusError::BusPassive);
} else if err.ewgf() {
return Some(BusError::BusWarning);
} else if err.lec() != Lec::NOERROR {
return Some(match err.lec() {
Lec::STUFF => BusError::Stuff,
Lec::FORM => BusError::Form,
Lec::ACK => BusError::Acknowledge,
Lec::BITRECESSIVE => BusError::BitRecessive,
Lec::BITDOMINANT => BusError::BitDominant,
Lec::CRC => BusError::Crc,
Lec::CUSTOM => BusError::Software,
Lec::NOERROR => unreachable!(),
});
}
None
}
/// Puts a CAN frame in a transmit mailbox for transmission on the bus.
///
/// Frames are transmitted to the bus based on their priority (see [`FramePriority`]).
/// Transmit order is preserved for frames with identical priority.
///
/// If all transmit mailboxes are full, and `frame` has a higher priority than the
/// lowest-priority message in the transmit mailboxes, transmission of the enqueued frame is
/// cancelled and `frame` is enqueued instead. The frame that was replaced is returned as
/// [`TransmitStatus::dequeued_frame`].
pub fn transmit(&mut self, frame: &Frame) -> nb::Result<TransmitStatus, Infallible> {
// Get the index of the next free mailbox or the one with the lowest priority.
let tsr = self.0.tsr().read();
let idx = tsr.code() as usize;
let frame_is_pending = !tsr.tme(0) || !tsr.tme(1) || !tsr.tme(2);
let pending_frame = if frame_is_pending {
// High priority frames are transmitted first by the mailbox system.
// Frames with identical identifier shall be transmitted in FIFO order.
// The controller schedules pending frames of same priority based on the
// mailbox index instead. As a workaround check all pending mailboxes
// and only accept higher priority frames.
self.check_priority(0, frame.id().into())?;
self.check_priority(1, frame.id().into())?;
self.check_priority(2, frame.id().into())?;
let all_frames_are_pending = !tsr.tme(0) && !tsr.tme(1) && !tsr.tme(2);
if all_frames_are_pending {
// No free mailbox is available. This can only happen when three frames with
// ascending priority (descending IDs) were requested for transmission and all
// of them are blocked by bus traffic with even higher priority.
// To prevent a priority inversion abort and replace the lowest priority frame.
self.read_pending_mailbox(idx)
} else {
// There was a free mailbox.
None
}
} else {
// All mailboxes are available: Send frame without performing any checks.
None
};
self.write_mailbox(idx, frame);
let mailbox = match idx {
0 => Mailbox::Mailbox0,
1 => Mailbox::Mailbox1,
2 => Mailbox::Mailbox2,
_ => unreachable!(),
};
Ok(TransmitStatus {
dequeued_frame: pending_frame,
mailbox,
})
}
/// Returns `Ok` when the mailbox is free or if it contains pending frame with a
/// lower priority (higher ID) than the identifier `id`.
fn check_priority(&self, idx: usize, id: IdReg) -> nb::Result<(), Infallible> {
// Read the pending frame's id to check its priority.
assert!(idx < 3);
let tir = &self.0.tx(idx).tir().read();
//let tir = &can.tx[idx].tir.read();
// Check the priority by comparing the identifiers. But first make sure the
// frame has not finished the transmission (`TXRQ` == 0) in the meantime.
if tir.txrq() && id <= IdReg::from_register(tir.0) {
// There's a mailbox whose priority is higher or equal
// the priority of the new frame.
return Err(nb::Error::WouldBlock);
}
Ok(())
}
fn write_mailbox(&mut self, idx: usize, frame: &Frame) {
debug_assert!(idx < 3);
let mb = self.0.tx(idx);
mb.tdtr().write(|w| w.set_dlc(frame.header().len() as u8));
mb.tdlr()
.write(|w| w.0 = u32::from_ne_bytes(frame.data()[0..4].try_into().unwrap()));
mb.tdhr()
.write(|w| w.0 = u32::from_ne_bytes(frame.data()[4..8].try_into().unwrap()));
let id: IdReg = frame.id().into();
mb.tir().write(|w| {
w.0 = id.0;
w.set_txrq(true);
});
}
fn read_pending_mailbox(&mut self, idx: usize) -> Option<Frame> {
if self.abort_by_index(idx) {
debug_assert!(idx < 3);
let mb = self.0.tx(idx);
let id = IdReg(mb.tir().read().0);
let mut data = [0xff; 8];
data[0..4].copy_from_slice(&mb.tdlr().read().0.to_ne_bytes());
data[4..8].copy_from_slice(&mb.tdhr().read().0.to_ne_bytes());
let len = mb.tdtr().read().dlc();
Some(Frame::new(Header::new(id.id(), len, id.rtr()), &data).unwrap())
} else {
// Abort request failed because the frame was already sent (or being sent) on
// the bus. All mailboxes are now free. This can happen for small prescaler
// values (e.g. 1MBit/s bit timing with a source clock of 8MHz) or when an ISR
// has preempted the execution.
None
}
}
/// Tries to abort a pending frame. Returns `true` when aborted.
fn abort_by_index(&mut self, idx: usize) -> bool {
self.0.tsr().write(|reg| reg.set_abrq(idx, true));
// Wait for the abort request to be finished.
loop {
let tsr = self.0.tsr().read();
if false == tsr.abrq(idx) {
break tsr.txok(idx) == false;
}
}
}
/// Attempts to abort the sending of a frame that is pending in a mailbox.
///
/// If there is no frame in the provided mailbox, or its transmission succeeds before it can be
/// aborted, this function has no effect and returns `false`.
///
/// If there is a frame in the provided mailbox, and it is canceled successfully, this function
/// returns `true`.
pub fn abort(&mut self, mailbox: Mailbox) -> bool {
// If the mailbox is empty, the value of TXOKx depends on what happened with the previous
// frame in that mailbox. Only call abort_by_index() if the mailbox is not empty.
let tsr = self.0.tsr().read();
let mailbox_empty = match mailbox {
Mailbox::Mailbox0 => tsr.tme(0),
Mailbox::Mailbox1 => tsr.tme(1),
Mailbox::Mailbox2 => tsr.tme(2),
};
if mailbox_empty {
false
} else {
self.abort_by_index(mailbox as usize)
}
}
/// Returns `true` if no frame is pending for transmission.
pub fn is_idle(&self) -> bool {
let tsr = self.0.tsr().read();
tsr.tme(0) && tsr.tme(1) && tsr.tme(2)
}
pub fn receive_frame_available(&self) -> bool {
if self.0.rfr(0).read().fmp() != 0 {
true
} else if self.0.rfr(1).read().fmp() != 0 {
true
} else {
false
}
}
pub fn receive_fifo(&self, fifo: RxFifo) -> Option<Envelope> {
// Generate timestamp as early as possible
#[cfg(feature = "time")]
let ts = embassy_time::Instant::now();
use crate::pac::can::vals::Ide;
let fifo_idx = match fifo {
RxFifo::Fifo0 => 0usize,
RxFifo::Fifo1 => 1usize,
};
let rfr = self.0.rfr(fifo_idx);
let fifo = self.0.rx(fifo_idx);
// If there are no pending messages, there is nothing to do
if rfr.read().fmp() == 0 {
return None;
}
let rir = fifo.rir().read();
let id: embedded_can::Id = if rir.ide() == Ide::STANDARD {
embedded_can::StandardId::new(rir.stid()).unwrap().into()
} else {
let stid = (rir.stid() & 0x7FF) as u32;
let exid = rir.exid() & 0x3FFFF;
let id = (stid << 18) | (exid);
embedded_can::ExtendedId::new(id).unwrap().into()
};
let rdtr = fifo.rdtr().read();
let data_len = rdtr.dlc();
let rtr = rir.rtr() == stm32_metapac::can::vals::Rtr::REMOTE;
#[cfg(not(feature = "time"))]
let ts = rdtr.time();
let mut data: [u8; 8] = [0; 8];
data[0..4].copy_from_slice(&fifo.rdlr().read().0.to_ne_bytes());
data[4..8].copy_from_slice(&fifo.rdhr().read().0.to_ne_bytes());
let frame = Frame::new(Header::new(id, data_len, rtr), &data).unwrap();
let envelope = Envelope { ts, frame };
rfr.modify(|v| v.set_rfom(true));
Some(envelope)
}
}
/// Identifier of a CAN message.
///
/// Can be either a standard identifier (11bit, Range: 0..0x3FF) or a
/// extendended identifier (29bit , Range: 0..0x1FFFFFFF).
///
/// The `Ord` trait can be used to determine the frames priority this ID
/// belongs to.
/// Lower identifier values have a higher priority. Additionally standard frames
/// have a higher priority than extended frames and data frames have a higher
/// priority than remote frames.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub(crate) struct IdReg(u32);
impl IdReg {
const STANDARD_SHIFT: u32 = 21;
const EXTENDED_SHIFT: u32 = 3;
const IDE_MASK: u32 = 0x0000_0004;
const RTR_MASK: u32 = 0x0000_0002;
/// Creates a new standard identifier (11bit, Range: 0..0x7FF)
///
/// Panics for IDs outside the allowed range.
fn new_standard(id: StandardId) -> Self {
Self(u32::from(id.as_raw()) << Self::STANDARD_SHIFT)
}
/// Creates a new extendended identifier (29bit , Range: 0..0x1FFFFFFF).
///
/// Panics for IDs outside the allowed range.
fn new_extended(id: ExtendedId) -> IdReg {
Self(id.as_raw() << Self::EXTENDED_SHIFT | Self::IDE_MASK)
}
fn from_register(reg: u32) -> IdReg {
Self(reg & 0xFFFF_FFFE)
}
/// Returns the identifier.
fn to_id(self) -> Id {
if self.is_extended() {
Id::Extended(unsafe { ExtendedId::new_unchecked(self.0 >> Self::EXTENDED_SHIFT) })
} else {
Id::Standard(unsafe { StandardId::new_unchecked((self.0 >> Self::STANDARD_SHIFT) as u16) })
}
}
/// Returns the identifier.
fn id(self) -> embedded_can::Id {
if self.is_extended() {
embedded_can::ExtendedId::new(self.0 >> Self::EXTENDED_SHIFT)
.unwrap()
.into()
} else {
embedded_can::StandardId::new((self.0 >> Self::STANDARD_SHIFT) as u16)
.unwrap()
.into()
}
}
/// Returns `true` if the identifier is an extended identifier.
fn is_extended(self) -> bool {
self.0 & Self::IDE_MASK != 0
}
/// Returns `true` if the identifer is part of a remote frame (RTR bit set).
fn rtr(self) -> bool {
self.0 & Self::RTR_MASK != 0
}
}
impl From<&embedded_can::Id> for IdReg {
fn from(eid: &embedded_can::Id) -> Self {
match eid {
embedded_can::Id::Standard(id) => IdReg::new_standard(StandardId::new(id.as_raw()).unwrap()),
embedded_can::Id::Extended(id) => IdReg::new_extended(ExtendedId::new(id.as_raw()).unwrap()),
}
}
}
impl From<IdReg> for embedded_can::Id {
fn from(idr: IdReg) -> Self {
idr.id()
}
}
/// `IdReg` is ordered by priority.
impl Ord for IdReg {
fn cmp(&self, other: &Self) -> Ordering {
// When the IDs match, data frames have priority over remote frames.
let rtr = self.rtr().cmp(&other.rtr()).reverse();
let id_a = self.to_id();
let id_b = other.to_id();
match (id_a, id_b) {
(Id::Standard(a), Id::Standard(b)) => {
// Lower IDs have priority over higher IDs.
a.as_raw().cmp(&b.as_raw()).reverse().then(rtr)
}
(Id::Extended(a), Id::Extended(b)) => a.as_raw().cmp(&b.as_raw()).reverse().then(rtr),
(Id::Standard(a), Id::Extended(b)) => {
// Standard frames have priority over extended frames if their Base IDs match.
a.as_raw()
.cmp(&b.standard_id().as_raw())
.reverse()
.then(Ordering::Greater)
}
(Id::Extended(a), Id::Standard(b)) => {
a.standard_id().as_raw().cmp(&b.as_raw()).reverse().then(Ordering::Less)
}
}
}
}
impl PartialOrd for IdReg {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub(crate) enum RxFifo {
Fifo0,
Fifo1,
}