embassy/embassy-nrf/src/uarte.rs
Dario Nieuwenhuis 9a57deef9b First commit
2020-09-22 18:03:43 +02:00

550 lines
18 KiB
Rust

//! HAL interface to the UARTE peripheral
//!
//! See product specification:
//!
//! - nrf52832: Section 35
//! - nrf52840: Section 6.34
use core::cell::UnsafeCell;
use core::cmp::min;
use core::marker::PhantomPinned;
use core::ops::Deref;
use core::pin::Pin;
use core::ptr;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::{Context, Poll};
use crate::interrupt;
use crate::interrupt::CriticalSection;
use crate::pac::{uarte0, Interrupt, UARTE0, UARTE1};
use embedded_hal::digital::v2::OutputPin;
use nrf52840_hal::gpio::{Floating, Input, Output, Pin as GpioPin, Port as GpioPort, PushPull};
// Re-export SVD variants to allow user to directly set values
pub use uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity};
use embassy::io::{AsyncBufRead, AsyncWrite, Result};
use embassy::util::WakerStore;
use defmt::trace;
//use crate::trace;
const RINGBUF_SIZE: usize = 512;
struct RingBuf {
buf: [u8; RINGBUF_SIZE],
start: usize,
end: usize,
empty: bool,
}
impl RingBuf {
fn new() -> Self {
RingBuf {
buf: [0; RINGBUF_SIZE],
start: 0,
end: 0,
empty: true,
}
}
fn push_buf(&mut self) -> &mut [u8] {
if self.start == self.end && !self.empty {
trace!(" ringbuf: push_buf empty");
return &mut self.buf[..0];
}
let n = if self.start <= self.end {
RINGBUF_SIZE - self.end
} else {
self.start - self.end
};
trace!(" ringbuf: push_buf {:?}..{:?}", self.end, self.end + n);
&mut self.buf[self.end..self.end + n]
}
fn push(&mut self, n: usize) {
trace!(" ringbuf: push {:?}", n);
if n == 0 {
return;
}
self.end = Self::wrap(self.end + n);
self.empty = false;
}
fn pop_buf(&mut self) -> &mut [u8] {
if self.empty {
trace!(" ringbuf: pop_buf empty");
return &mut self.buf[..0];
}
let n = if self.end <= self.start {
RINGBUF_SIZE - self.start
} else {
self.end - self.start
};
trace!(" ringbuf: pop_buf {:?}..{:?}", self.start, self.start + n);
&mut self.buf[self.start..self.start + n]
}
fn pop(&mut self, n: usize) {
trace!(" ringbuf: pop {:?}", n);
if n == 0 {
return;
}
self.start = Self::wrap(self.start + n);
self.empty = self.start == self.end;
}
fn wrap(n: usize) -> usize {
assert!(n <= RINGBUF_SIZE);
if n == RINGBUF_SIZE {
0
} else {
n
}
}
}
#[derive(Copy, Clone, Debug, PartialEq)]
enum RxState {
Idle,
Receiving,
ReceivingReady,
Stopping,
}
#[derive(Copy, Clone, Debug, PartialEq)]
enum TxState {
Idle,
Transmitting(usize),
}
/// Interface to a UARTE instance
///
/// This is a very basic interface that comes with the following limitations:
/// - The UARTE instances share the same address space with instances of UART.
/// You need to make sure that conflicting instances
/// are disabled before using `Uarte`. See product specification:
/// - nrf52832: Section 15.2
/// - nrf52840: Section 6.1.2
pub struct Uarte<T: Instance> {
started: bool,
state: UnsafeCell<UarteState<T>>,
}
// public because it needs to be used in Instance::{get_state, set_state}, but
// should not be used outside the module
#[doc(hidden)]
pub struct UarteState<T> {
inner: T,
rx: RingBuf,
rx_state: RxState,
rx_waker: WakerStore,
tx: RingBuf,
tx_state: TxState,
tx_waker: WakerStore,
_pin: PhantomPinned,
}
fn port_bit(port: GpioPort) -> bool {
match port {
GpioPort::Port0 => false,
GpioPort::Port1 => true,
}
}
impl<T: Instance> Uarte<T> {
pub fn new(uarte: T, mut pins: Pins, parity: Parity, baudrate: Baudrate) -> Self {
// Select pins
uarte.psel.rxd.write(|w| {
let w = unsafe { w.pin().bits(pins.rxd.pin()) };
let w = w.port().bit(port_bit(pins.rxd.port()));
w.connect().connected()
});
pins.txd.set_high().unwrap();
uarte.psel.txd.write(|w| {
let w = unsafe { w.pin().bits(pins.txd.pin()) };
let w = w.port().bit(port_bit(pins.txd.port()));
w.connect().connected()
});
// Optional pins
uarte.psel.cts.write(|w| {
if let Some(ref pin) = pins.cts {
let w = unsafe { w.pin().bits(pin.pin()) };
let w = w.port().bit(port_bit(pin.port()));
w.connect().connected()
} else {
w.connect().disconnected()
}
});
uarte.psel.rts.write(|w| {
if let Some(ref pin) = pins.rts {
let w = unsafe { w.pin().bits(pin.pin()) };
let w = w.port().bit(port_bit(pin.port()));
w.connect().connected()
} else {
w.connect().disconnected()
}
});
// Enable UARTE instance
uarte.enable.write(|w| w.enable().enabled());
// Enable interrupts
uarte.intenset.write(|w| w.endrx().set().endtx().set());
// Configure
let hardware_flow_control = pins.rts.is_some() && pins.cts.is_some();
uarte
.config
.write(|w| w.hwfc().bit(hardware_flow_control).parity().variant(parity));
// Configure frequency
uarte.baudrate.write(|w| w.baudrate().variant(baudrate));
Uarte {
started: false,
state: UnsafeCell::new(UarteState {
inner: uarte,
rx: RingBuf::new(),
rx_state: RxState::Idle,
rx_waker: WakerStore::new(),
tx: RingBuf::new(),
tx_state: TxState::Idle,
tx_waker: WakerStore::new(),
_pin: PhantomPinned,
}),
}
}
fn with_state<'a, R>(
self: Pin<&'a mut Self>,
f: impl FnOnce(Pin<&'a mut UarteState<T>>) -> R,
) -> R {
let Self { state, started } = unsafe { self.get_unchecked_mut() };
interrupt::free(|cs| {
let ptr = state.get();
if !*started {
T::set_state(cs, ptr);
*started = true;
// safety: safe because critical section ensures only one *mut UartState
// exists at the same time.
unsafe { Pin::new_unchecked(&mut *ptr) }.start();
}
// safety: safe because critical section ensures only one *mut UartState
// exists at the same time.
f(unsafe { Pin::new_unchecked(&mut *ptr) })
})
}
}
impl<T: Instance> Drop for Uarte<T> {
fn drop(&mut self) {
// stop DMA before dropping, because DMA is using the buffer in `self`.
todo!()
}
}
impl<T: Instance> AsyncBufRead for Uarte<T> {
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<&[u8]>> {
self.with_state(|s| s.poll_fill_buf(cx))
}
fn consume(self: Pin<&mut Self>, amt: usize) {
self.with_state(|s| s.consume(amt))
}
}
impl<T: Instance> AsyncWrite for Uarte<T> {
fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<Result<usize>> {
self.with_state(|s| s.poll_write(cx, buf))
}
}
impl<T: Instance> UarteState<T> {
pub fn start(self: Pin<&mut Self>) {
interrupt::set_priority(T::interrupt(), interrupt::Priority::Level7);
interrupt::enable(T::interrupt());
interrupt::pend(T::interrupt());
}
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<&[u8]>> {
let this = unsafe { self.get_unchecked_mut() };
// Conservative compiler fence to prevent optimizations that do not
// take in to account actions by DMA. The fence has been placed here,
// before any DMA action has started
compiler_fence(Ordering::SeqCst);
trace!("poll_read");
// We have data ready in buffer? Return it.
let buf = this.rx.pop_buf();
if buf.len() != 0 {
trace!(" got {:?} {:?}", buf.as_ptr() as u32, buf.len());
return Poll::Ready(Ok(buf));
}
trace!(" empty");
if this.rx_state == RxState::ReceivingReady {
trace!(" stopping");
this.rx_state = RxState::Stopping;
this.inner.tasks_stoprx.write(|w| unsafe { w.bits(1) });
}
this.rx_waker.store(cx.waker());
Poll::Pending
}
fn consume(self: Pin<&mut Self>, amt: usize) {
let this = unsafe { self.get_unchecked_mut() };
trace!("consume {:?}", amt);
this.rx.pop(amt);
interrupt::pend(T::interrupt());
}
fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<Result<usize>> {
let this = unsafe { self.get_unchecked_mut() };
trace!("poll_write: {:?}", buf.len());
let tx_buf = this.tx.push_buf();
if tx_buf.len() == 0 {
trace!("poll_write: pending");
this.tx_waker.store(cx.waker());
return Poll::Pending;
}
let n = min(tx_buf.len(), buf.len());
tx_buf[..n].copy_from_slice(&buf[..n]);
this.tx.push(n);
trace!("poll_write: queued {:?}", n);
// Conservative compiler fence to prevent optimizations that do not
// take in to account actions by DMA. The fence has been placed here,
// before any DMA action has started
compiler_fence(Ordering::SeqCst);
interrupt::pend(T::interrupt());
Poll::Ready(Ok(n))
}
fn on_interrupt(&mut self) {
trace!("irq: start");
let mut more_work = true;
while more_work {
more_work = false;
match self.rx_state {
RxState::Idle => {
trace!(" irq_rx: in state idle");
if self.inner.events_rxdrdy.read().bits() != 0 {
trace!(" irq_rx: rxdrdy?????");
self.inner.events_rxdrdy.reset();
}
if self.inner.events_endrx.read().bits() != 0 {
panic!("unexpected endrx");
}
let buf = self.rx.push_buf();
if buf.len() != 0 {
trace!(" irq_rx: starting {:?}", buf.len());
self.rx_state = RxState::Receiving;
// Set up the DMA read
self.inner.rxd.ptr.write(|w|
// The PTR field is a full 32 bits wide and accepts the full range
// of values.
unsafe { w.ptr().bits(buf.as_ptr() as u32) });
self.inner.rxd.maxcnt.write(|w|
// We're giving it the length of the buffer, so no danger of
// accessing invalid memory. We have verified that the length of the
// buffer fits in an `u8`, so the cast to `u8` is also fine.
//
// The MAXCNT field is at least 8 bits wide and accepts the full
// range of values.
unsafe { w.maxcnt().bits(buf.len() as _) });
trace!(" irq_rx: buf {:?} {:?}", buf.as_ptr() as u32, buf.len());
// Enable RXRDY interrupt.
self.inner.events_rxdrdy.reset();
self.inner.intenset.write(|w| w.rxdrdy().set());
// Start UARTE Receive transaction
self.inner.tasks_startrx.write(|w|
// `1` is a valid value to write to task registers.
unsafe { w.bits(1) });
}
}
RxState::Receiving => {
trace!(" irq_rx: in state receiving");
if self.inner.events_rxdrdy.read().bits() != 0 {
trace!(" irq_rx: rxdrdy");
// Disable the RXRDY event interrupt
// RXRDY is triggered for every byte, but we only care about whether we have
// some bytes or not. So as soon as we have at least one, disable it, to avoid
// wasting CPU cycles in interrupts.
self.inner.intenclr.write(|w| w.rxdrdy().clear());
self.inner.events_rxdrdy.reset();
self.rx_waker.wake();
self.rx_state = RxState::ReceivingReady;
more_work = true; // in case we also have endrx pending
}
}
RxState::ReceivingReady | RxState::Stopping => {
trace!(" irq_rx: in state ReceivingReady");
if self.inner.events_rxdrdy.read().bits() != 0 {
trace!(" irq_rx: rxdrdy");
self.inner.events_rxdrdy.reset();
}
if self.inner.events_endrx.read().bits() != 0 {
let n: usize = self.inner.rxd.amount.read().amount().bits() as usize;
trace!(" irq_rx: endrx {:?}", n);
self.rx.push(n);
self.inner.events_endrx.reset();
self.rx_waker.wake();
self.rx_state = RxState::Idle;
more_work = true; // start another rx if possible
}
}
}
}
more_work = true;
while more_work {
more_work = false;
match self.tx_state {
TxState::Idle => {
trace!(" irq_tx: in state Idle");
let buf = self.tx.pop_buf();
if buf.len() != 0 {
trace!(" irq_tx: starting {:?}", buf.len());
self.tx_state = TxState::Transmitting(buf.len());
// Set up the DMA write
self.inner.txd.ptr.write(|w|
// The PTR field is a full 32 bits wide and accepts the full range
// of values.
unsafe { w.ptr().bits(buf.as_ptr() as u32) });
self.inner.txd.maxcnt.write(|w|
// We're giving it the length of the buffer, so no danger of
// accessing invalid memory. We have verified that the length of the
// buffer fits in an `u8`, so the cast to `u8` is also fine.
//
// The MAXCNT field is 8 bits wide and accepts the full range of
// values.
unsafe { w.maxcnt().bits(buf.len() as _) });
// Start UARTE Transmit transaction
self.inner.tasks_starttx.write(|w|
// `1` is a valid value to write to task registers.
unsafe { w.bits(1) });
}
}
TxState::Transmitting(n) => {
trace!(" irq_tx: in state Transmitting");
if self.inner.events_endtx.read().bits() != 0 {
self.inner.events_endtx.reset();
trace!(" irq_tx: endtx {:?}", n);
self.tx.pop(n);
self.tx_waker.wake();
self.tx_state = TxState::Idle;
more_work = true; // start another tx if possible
}
}
}
}
trace!("irq: end");
}
}
pub struct Pins {
pub rxd: GpioPin<Input<Floating>>,
pub txd: GpioPin<Output<PushPull>>,
pub cts: Option<GpioPin<Input<Floating>>>,
pub rts: Option<GpioPin<Output<PushPull>>>,
}
mod private {
use nrf52840_pac::{UARTE0, UARTE1};
pub trait Sealed {}
impl Sealed for UARTE0 {}
impl Sealed for UARTE1 {}
}
pub trait Instance: Deref<Target = uarte0::RegisterBlock> + Sized + private::Sealed {
fn interrupt() -> Interrupt;
#[doc(hidden)]
fn get_state(_cs: &CriticalSection) -> *mut UarteState<Self>;
#[doc(hidden)]
fn set_state(_cs: &CriticalSection, state: *mut UarteState<Self>);
}
#[interrupt]
unsafe fn UARTE0_UART0() {
interrupt::free(|cs| UARTE0::get_state(cs).as_mut().unwrap().on_interrupt());
}
#[interrupt]
unsafe fn UARTE1() {
interrupt::free(|cs| UARTE1::get_state(cs).as_mut().unwrap().on_interrupt());
}
static mut UARTE0_STATE: *mut UarteState<UARTE0> = ptr::null_mut();
static mut UARTE1_STATE: *mut UarteState<UARTE1> = ptr::null_mut();
impl Instance for UARTE0 {
fn interrupt() -> Interrupt {
Interrupt::UARTE0_UART0
}
fn get_state(_cs: &CriticalSection) -> *mut UarteState<Self> {
unsafe { UARTE0_STATE } // Safe because of CriticalSection
}
fn set_state(_cs: &CriticalSection, state: *mut UarteState<Self>) {
unsafe { UARTE0_STATE = state } // Safe because of CriticalSection
}
}
impl Instance for UARTE1 {
fn interrupt() -> Interrupt {
Interrupt::UARTE1
}
fn get_state(_cs: &CriticalSection) -> *mut UarteState<Self> {
unsafe { UARTE1_STATE } // Safe because of CriticalSection
}
fn set_state(_cs: &CriticalSection, state: *mut UarteState<Self>) {
unsafe { UARTE1_STATE = state } // Safe because of CriticalSection
}
}